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a b s t r a c t

A novel Finite Word Length (FWL) controller design is proposed in the framework of a mixed µ theory.
A robust FWL controller performance measure is first developed, which takes into account the standard
robust control requirements as well as the FWL implementation considerations, and the corresponding
controller design problem is naturally reformulated as amixedµproblemwhich can be treated effectively
with the results of the mixed µ theory.
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1. Introduction

Robust control capable of coping with uncertainty in plant
dynamics has been the focal point of the control community for the
past three decades. An implicit assumption in most of the existing
robust designmethods is that controllers are implemented exactly,
i.e. there is no uncertainty occurring in realising controllers. In
reality controllers are implementedwith FiniteWord Length (FWL)
processors. In 1997, the fragility problem was raised in the work
of (Keel & Bhattacharyya, 1997) which showed by examples that
a controller achieving the largest robustness to plant uncertainty
most likely has a vanishingly small closed-loop stability margin
with respect to the controller parameters. Thus, a control system
designed by maximising its robustness to plant uncertainty may
be fragile, and the resulting fragile controller will need a processor
with a very long bit length in implementation to minimise
the FWL effects and therefore avoid degrading the designed
closed-loop performance or even destabilising the designed stable
closed-loop system. However, in many practical systems, such as
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mass-produced electronic consumer goods, fixed-point processors
of short word length are preferred because of their advantages
in component cost, chip area, operation simplicity and power
consumption. Therefore, it is not a practical approach to simply
pursue the optimal robustness to plant uncertainty without
considering the FWL effects (Franklin, Powell & Workman, 1998;
Gevers & Li, 1993; Istepanian & Whidborne, 2001).
A suitable robust design approach is maintaining a suboptimal

robustness to plant uncertainty while simultaneously making the
controller tolerance to FWL implementation as large as possible.
Through this design, a robust controller can be obtained which
does not require a long word-length hardware for implementa-
tion. There exist two types of main FWL errors in digital controller
implementation. The first one is the rounding errors that occur in
arithmetic operations, and the second one is the parameter rep-
resentation errors. Typically, these two types of errors are inves-
tigated separately for the reason of mathematical tractability. In
this paper we deal with the second type of FWL errors. Specifically
we consider FWL parameter representation errors in the design of
robust controllers.
Most of the existing researches (Collins & Zhao, 2001; D’Andrea

& Istepanian, 2002; Mahmoud, 2004, 2005; Norlander & Mäkilä,
2001; Park, 2004; Yang, Wang, & Soh, 2000, 2001; Yee, Yang
& Wang, 2000; Yee, Yang, & Wang, 2001) refer to robust
digital control design with the consideration of FWL parameter
representation errors as non-fragile/defragile/resilient control. The
works (Mahmoud, 2004, 2005; Park, 2004; Yang et al., 2000;
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Yee et al., 2001) hypothesize that the controller parameter
perturbation block is 2-norm bounded, while the works (Collins
& Zhao, 2001; D’Andrea & Istepanian, 2002; Norlander & Mäkilä,
2001; Yang et al., 2001; Yee et al., 2000) use a more suitable
hypothesis which claims that every parameter perturbation is
independent and is magnitude bounded. The methods of D’Andrea
and Istepanian (2002) and Yee et al. (2000) deal with static
state feedback, while the LQ control of a fixed order and PID
control are studied in Norlander andMäkilä (2001) and Collins and
Zhao (2001), respectively. A common Lyapunov function matrix
is sought in Yang et al. (2001) for all the vertices of the FWL
perturbation hypercube in designing a H2 controller of fixed order,
but the huge number of these vertices can result in excessive
complexity in practical computation.
Under the suitable hypothesis similar to the one used in Collins

and Zhao (2001), D’Andrea and Istepanian (2002), Norlander and
Mäkilä (2001), Yang et al. (2001) and Yee et al. (2000) we study
the design of the H∞ output feedback controller of a fixed or-
der with FWL considerations. A novel FWL robust control perfor-
mancemeasure is proposed which takes into account the standard
robust control requirements, such as plant uncertainties and in-
put–output characteristics, as well as the FWL effects on controller
implementation. We show that the related robust FWL controller
design problem can naturally be formulated as amixedµ problem,
and thus it can be solved effectively with the aid of the mixed µ
theory. Our proposed robust FWL controller design is also compu-
tationally more attractive than the existing design methods, such
as the one introduced in Yang et al. (2001)which suffers fromhigh-
dimensionality difficulty.
The remainder of this paper is organised in the following way.

Notations and preliminaries are offered in Section 2. Section 3
presents a robust FWL performance measure, while Section 4
derives the proposed design approach through optimising this
measure. Two numerical examples are given in Section 5 to
demonstrate the effectiveness of our proposed method, and the
paper concludes at Section 6.

2. Notations and preliminaries

Let R be the field of real numbers and C the field of complex
numbers, while U is the closed unit disk in C. For a matrix A,
A > 0 means that A is a positive definite matrix, AT denotes
the transpose of A, and A∗ the complex conjugate transpose of
A. The largest singular value of A is denoted by σ(A). ‖A‖F is the
Frobenius norm of A, while ‖A‖m is the modulus of the entry
whose modulus is the largest among all the entries of A. ρ(A)
and detA represent the spectral radius and the determinant of
square matrix A, respectively. In is the n× n identity matrix, while
I and 0 represent the identity and zero matrices of appropriate
dimensions, respectively. Let dn = [ 1 · · · 1 ] ∈ R1×nbe the
1 × n row vector whose elements are all equal to 1. A

⊗
B is the

Kronecker product of matrices A and B.
Denote F the set of all the causal finite-dimensional linear

time-invariant discrete-time systems. Any system in F can be
described as{
x(k+ 1) = Ax(k)+ Bu(k),
y(k) = Cx(k)+ Du(k), (1)

where the real constant matrices A, B, C and D have appropriate
dimensions. The transfer function matrix of the above system is

Ĝ(w) 4= wC(I− wA)−1B+ D. (2)
Ĝ(w) is stable (A is stable) if and only if ρ(A) < 1 or equivalently
∀w ∈ U, det(I − wA) 6= 0. The H∞ norm and H2 norm of stable
Ĝ(w) are defined as

‖Ĝ(w)‖∞
4
= sup

w∈U
σ(Ĝ(w)) <∞, (3)

‖Ĝ(w)‖2
4
=

(
‖D‖2F +

∞∑
i=0

‖CAiB‖2F

)1/2
<∞, (4)

respectively. For a discrete-time stable system, its H∞ norm is no
less than its H2 norm.
The following results of the mixed µ theory are from Young

(1993). Suppose that we have a matrixM ∈ Cna×na and three non-
negative integers p, q and r with p+ q+ r ≤ na, which specify the
numbers of uncertainty blocks of three types: repeated complex
scalars, repeated real scalars and full complex blocks. A (p+q+r)-
tuple of positive integers

k(p, q, r) =
[
k1 · · · kp kp+1 · · · kp+q m1 · · · mr

]T (5)

specifies the dimensions of the perturbation blocks, and
p+q∑
i=1

ki +
r∑
j=1

mj = na

in order that these dimensions are compatible with M. The block
structure k(p, q, r) determines the set of allowable perturbations,
namely,

K
4
=

ϒ
∣∣∣∣∣∣∣∣∣
ϒ = diag(ζ1Ik1 , · · · , ζpIkp ,
ζp+1Ikp+1 , . . . , ζp+qIkp+q ,01, . . . ,0r)
∀i ∈ {1, . . . , p}, ζi ∈ C
∀i ∈ {p+ 1, . . . , p+ q}, ζi ∈ R
∀j ∈ {1, . . . , r},0j ∈ Cmj×mj

 .
Themixedµ of amatrixM ∈ Cna×na with respect to a perturbation
setK is defined as

µK(M)
4
=

(
inf
ϒ∈K
{σ(ϒ)| det(I− ϒM) = 0}

)−1
. (6)

Lemma 1. Suppose that p = 1, q = 0 and r = 0. Then µK(M) =
ρ(M).

Presently, except for a few special cases, how to compute
µK(M) is unknown. However, an upper bound ofµK(M) provided
in the following is easy to compute and is often used to replace
µK(M) in practice. Define

EK
4
=

E

∣∣∣∣∣∣
E = diag(E1, · · · , Ep+q, η1Im1 , . . . , ηr Imr )
∀i ∈ {1, . . . , p+ q}, 0 < Ei ∈ Cki×ki

∀j ∈ {1, . . . , r}, 0 < ηj ∈ R


GK

4
=

G

∣∣∣∣∣∣
G = diag(0Ik1 , . . . , 0Ikp ,
Gp+1, . . . ,Gp+q, 0Im1 , . . . , 0Imr )
∀i ∈ {p+ 1, . . . , p+ q},Gi = G∗i ∈ Cki×ki

 .
Then an upper bound of µK(M) is

αK(M)
4
= inf

E∈EK
G∈GK
0<α∈R

{
α

∣∣∣∣α2E−M∗EM
−
√
−1(GM−M∗G) > 0

}
. (7)

When the real scalars of ϒ ∈ K are not repeated and M is a
real matrix, αK(M) can be expressed and computed more simply.
Define ERK

4
=
{
E ∈ EK

∣∣E ∈ Rna×na
}
.
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Lemma 2. Suppose that we have a real matrix M ∈ Rna×na and a
perturbation set K with ki = 1 for i ∈ {p+ 1, . . . , p+ q} (i.e. none
of the real scalars are repeated). Then

αK(M) = inf
E∈ERK
0<α∈R

{α | α2E−MTEM > 0}. (8)

Corollary 1. For M andK as in Lemma 2, αK(M) < 1 if and only if
there exists E ∈ ERK such that E−MTEM > 0.

Consider a matrixM ∈ Cna×na partitioned as

M =
[
M1,1 M1,2
M2,1 M2,2

]
with square M1,1 and M2,2. The perturbation sets K1 and K2 are
compatiblewithM1,1 andM2,2, respectively. Then the perturbation
set defined in (9) is compatible withM.

Kf
4
= {ϒ = diag(ϒ1,ϒ2)|Υ 1 ∈ K1,ϒ2 ∈ K2} . (9)

Lemma 3. For 0 < α ∈ R,µKf (M) < α if and only if µK1(M1,1) <
α and ∀ϒ1 ∈ K1 with σ(Υ 1) ≤ 1

α
, µK2(F(M,Υ 1)) < α, where

F(M,ϒ1)
4
= M2,2 +M2,1(I− ϒ1M1,1)−1Υ 1M1,2. (10)

3. FWL robust performance measure υ̃

The plant is described by a known nominal model P̂g(w) and
an unknown but bounded structured uncertainty Û(w). Themodel
P̂g(w) is given as

xP(k+ 1) = APxP(k)+ Bvv(k)+ Bww(k)+ BPuP(k),
h(k) = ChxP(k)+ D1,1v(k)+ D1,2w(k),
z(k) = CzxP(k)+ D2,1v(k)+ D2,2w(k)+ D2,3uP(k),
yP(k) = CPxP(k)+ D3,2w(k),

(11)

where state xP(k) ∈ Rn, uncertainty-linked input v(k) ∈ Rn1 ,
external disturbance input w(k) ∈ Rn2 , control input uP(k) ∈ Rs,
uncertainty-linked output h(k) ∈ Rn1 , controlled output z(k) ∈
Rn2 , andmeasured output yP(k) ∈ Rt . Note thatwe have assumed
without loss of generality that v(k) and h(k) have the same
dimension as well as thatw(k) and z(k) have the same dimension.
If the dimensions of the paired two variables are different, they can
always be made equal by adding an appropriate number of zero
rows/columns to the corresponding plant matrices. In addition, it
is assumed that BTPBP > 0 and CPC

T
P > 0. This assumption reflects

a reasonable practical situation of no redundant actuator or sensor.
Through h and v, P̂g(w) connects with the structured uncer-

tainty Û(w), i.e.

v = Û(w)h = diag
(
Û1(w), . . . , Ûb+d(w)

)
h, (12)

where Ûi(w) = ϕi(w)Ipi with ϕi(w) ∈ C, ∀w ∈ C, ∀i ∈ {1, . . . , b},
and Ûi(w) ∈ Cpi×pi , ∀w ∈ C, ∀i ∈ {b+ 1, . . . , b+ d}, while
b+d∑
i=1

pi = n1, pi ≥ 1.

It is assumed that the above Û(w) is included in the set

Hτ
4
=

Û(w)

∣∣∣∣∣∣∣
Û(w) = diag

(
Û1(w), . . . , Ûb+d(w)

)
Û(w) ∈ F , Û(w)is stable,
‖Û(w)‖∞ < τ


with a given constant τ > 0.
The digital controller Ĉ(w) of themth-order is described by{
xC (k+ 1) = ACxC (k)+ BCyP(k)
uP(k) = CCxC (k)+ DCyP(k)

(13)

with AC ∈ Rm×m, BC ∈ Rm×t , CC ∈ Rs×m and DC ∈ Rs×t . Let us
denote

X 4=
[
DC CC
BC AC

]
∈ R(s+m)×(t+m).

When X is implemented in a fixed-point format of FWL, it is
perturbed into X+1with1 belonging to the hypercube

Dβ
4
= {1 | 1 ∈ R(s+m)×(t+m), ‖1‖m ≤ β}, (14)

where 0 ≤ β ∈ R is the maximum representation error of the
fixed-point digital processor. Denote

N
4
= (s+m)(t +m), (15)

O
4
= {Q | Q ∈ RN×N ,Q is diagonal}, (16)

Oβ
4
= {Q | Q ∈ O, σ (Q) ≤ β}. (17)

Further express1 as

1
4
=


δ1,1 δ1,2 · · · δ1,t+m
δ2,1 δ2,2 · · · δ2,t+m
...

... · · ·
...

δs+m,1 δs+m,2 · · · δs+m,t+m

 . (18)

It is easy to check that

X+1 = X+
(
dt+m

⊗
Is+m

)
3

(
It+m

⊗
dTs+m

)
, (19)

3
4
= diag

(
δ1,1, δ2,1, . . . , δs+m,1, δ1,2, . . . , δs+m,2,

. . . , δ1,t+m, . . . , δs+m,t+m
)
∈ Oβ . (20)

The above description represents a closed-loop system consisting
of P̂g(w) and Û(w) as well as X and 3. Denote this closed-loop
system as 8̂(w, Û(w),X,3) and the closed-loop transfer function
from w(k) to z(k) as 8̂wz(w, Û(w),X,3). For 0 < ξ ∈ R, a set
is defined which consists of all the mth-order robust controllers
without FWL consideration, that is,

Xm
4
=

X

∣∣∣∣∣∣
X ∈ R(s+m)×(t+m),∀Û(w) ∈ Hτ ,

8̂(w, Û(w),X, 0) is stable,
‖8̂wz(w, Û(w),X, 0)‖∞ ≤ ξ

 . (21)

To take into account the FWL error 3, we propose the following
FWL performance measure for X ∈ Xm

υ(X) 4= sup
0≤β∈R

β
∣∣∣∣∣∣
∀Û(w) ∈ Hτ ,∀3 ∈ Oβ ,

8̂(w, Û(w),X,3) is stable,
‖8̂wz(w, Û(w),X,3)‖∞ ≤ ξ

 .
For a givenX ∈ Xm, how to compute the value ofυ(X) is unknown.
Therefore, a tractable lower bound of υ(X) is derived with the aid
of mixed µ. We begin the derivation by ‘‘pulling out’’ Û(w) from
8̂(w, Û(w),X,3) and considering the composite systemof P̂g(w),
X and3. The description of this composite system can be obtained
as

xPC (k+ 1) =
(
A(X)+ BuΛCu

)
xPC (k)+ Bvv(k)

+ B(X)w(k),
h(k) = Ch xPC (k)+ D1,1v(k)+ D1,2w(k),
z(k) = C(X)xPC (k)+ D2,1v(k)+ D(X)w(k),

(22)
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where

A(X) =
[
AP 0
0 0

]
+

[
BP 0
0 Im

]
X
[
CP 0
0 Im

]
4
= M0 +M1XM2 ∈ R(n+m)×(n+m), (23)

Bu
4
= dt+m

⊗
M1 ∈ R(n+m)×N , (24)

Cu
4
= M2

⊗
dTs+m ∈ RN×(n+m), (25)

Bv =
[
BTv 0

]T
∈ R(n+m)×n1 , (26)

B(X) =
[
BTw 0

]T
+M1X

[
DT3,2 0

]T
4
= Bw +M1XN2 ∈ R(n+m)×n2 , (27)

Ch =
[
Ch 0

]
∈ Rn1×(n+m), (28)

C(X) =
[
Cz 0

]
+
[
D2,3 0

]
XM2

4
= Cz + N1XM2 ∈ Rn2×(n+m), (29)

D(X) = D2,2 + N1XN2 ∈ Rn2×n2 , (30)

xPC (k)
4
=
[
xTP(k) xTC (k)

]T
. (31)

The transfer function matrix of (22) is

9̂(w,X,3) 4= w
[

Ch
C(X)

]
(I− w(A(X)+ BuΛCu))−1

×
[
Bv B(X)

]
+

[
D1,1 D1,2
D2,1 D(X)

]
, (32)

where 9̂(w,X,3) ∈ C(n1+n2)×(n1+n2) for anyw ∈ U. Let

Kψ
4
=

Υψ
∣∣∣∣∣∣∣∣∣
ϒψ = diag(θ1Ip1 , . . . , θbIpb ,
�1, . . . ,�d+1) ∈ C(n1+n2)×(n1+n2)

∀i ∈ {1, . . . , b}, θi ∈ C
∀j ∈ {1, . . . , d},�j ∈ Cpb+j×pb+j

�d+1 ∈ Cn2×n2

 .
Then, we can obtain the corresponding µKψ

(Ψ̂(w,X,3)). The
following result on robust performance (Zhou, Doyle, & Glover,
1996) links υ(X) to µKψ

(Ψ̂(w,X,3)).

Lemma 4. For X ∈ R(s+m)×(t+m), if there exists 0 ≤ β ∈ R such
that

9̂(w,X,3) is stable,∀3 ∈ Oβ , (33)µKψ

(
diag

(
τ In1 ,

1
ξ
In2

)
9̂ (w,X,3)

)
< 1,

∀w ∈ U, ∀3 ∈ Oβ ,

(34)

then X ∈ Xm and β < υ(X).

The problem in dealing with (33) and (34) is that 9̂(w,X,3)
contains an indeterminate w and 3. For this reason, we need the
following theorem.

Theorem 1. For X ∈ R(s+m)×(t+m), if there exists 0 ≤ β ∈ R such
that

µKθ
(2(X, β)) < 1, (35)

then (33) and (34) hold. In (35),

2(X, β) 4=


A(X) Bu Bv B(X)
βCu 0 0 0
τCh 0 τD1,1 τD1,2
1
ξ
C(X) 0

1
ξ
D2,1

1
ξ
D(X)

 , (36)
Kθ
4
=
{
diag(ϒh,ϒψ )|ϒh ∈ Kh,ϒψ ∈ Kψ

}
, (37)

Kh
4
= {ϒh = diag(wIn+m,3)|w ∈ C,3 ∈ O} . (38)

Proof. Denote

H(X, β) 4=
[
A(X) Bu
βCu 0IN

]
.

By Lemma 3, (35) is equivalent to

µKh(H(X, β)) < 1, (39)

µKψ
(F(2(X, β),ϒh)) < 1, ∀ϒh ∈ BKh, (40)

whereBKh
4
= {ϒh | ϒh ∈ Kh, σ (ϒh) ≤ 1}. Define

Ka
4
= {wIn+m | w ∈ C}, K0

4
= O (41)

which are compatible with A(X) and 0IN , respectively. Since A(X)
is stable and Ka contains perturbations of one repeated complex
scalar, we conclude by Lemma 1 that

µKa(A(X)) = ρ(A(X)) < 1. (42)

Thus, again from Lemma 3, (39) means that ∀w ∈ U,

µK0(F(H(X, β), wIn+m))

= µK0(βCu(I− wA(X))−1wBu) < 1. (43)

It is known from the stability of A(X) that I − wA(X) is invertible
for anyw ∈ U. Then, (43) and (6) imply

inf
3∈O
w∈U

{σ(3) | det(I− w(I− wA(X))−1Bu3Cu) = 0}

= inf
3∈O
w∈U

{σ(3) | det(I− wA(X)− wBu3Cu) = 0}

= inf
3∈O
{σ(3) | A(X)+ Bu3Cu is unstable} > β.

Thus, (33) holds. For anyϒh = diag(wIn+m,30) ∈ BKh,

F(2(X, β),ϒh) =

τD1,1 τD1,2
1
ξ
D2,1

1
ξ
D(X)

+
 τCh 0
1
ξ
C(X) 0


×(I− ϒhH(X, β))−1ϒh

[
Bv B(X)
0 0

]

=

τD1,1 τD1,2
1
ξ
D2,1

1
ξ
D(X)

+ w
 τCh
1
ξ
C(X)


×(I− w(A(X)+ βBu30Cu))−1

[
Bv B(X)

]
= diag

(
τ In1 ,

1
ξ
In2

)
9̂(w,X, β30). (44)

Thus, (40) guarantees that (34) holds. �

Due to the well-known difficulty in computing the value of
µKθ

(2(X, β)), we replace µKθ
(2(X, β))with αKθ

(2(X, β)).

Corollary 2. For X ∈ R(s+m)×(t+m), if there exists 0 ≤ β ∈ R such
that αKθ

(2(X, β)) < 1, then X ∈ Xm and β < υ(X).

Based on Corollary 2, define

X̃m
4
= {X | X ∈ R(s+m)×(t+m), αKθ

(2(X, 0)) < 1}, (45)

which obviously is a subset ofXm. For X ∈ X̃m, define

υ̃(X) 4= sup
0≤β∈R

{β | αKθ
(2(X, β)) < 1}, (46)
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which obviously is a lower bound of υ(X) and can also be viewed
as an FWL performance measure. ForKθ given in (37), the related
positive definite matrix set

ERKθ

4
=

E

∣∣∣∣∣∣∣∣∣
E = diag(E1, e1, . . . , eN , E2, . . . , Eb+1,
η1Ipb+1 , . . . , ηdIpb+d , ηd+1In2)
0 < E1 ∈ R(n+m)×(n+m)

∀i ∈ {1, . . . , b}, 0 < Ei+1 ∈ Rpi×pi

0 < e1, . . . , eN , η1, . . . , ηd+1 ∈ R


is defined. It is interesting to see that 2(X, β) andKθ satisfy the
condition of Corollary 1 and hence υ̃(X) is computable by solving
the following optimisation problem

υ̃(X) = sup
0≤β∈R

β, (47)

s.t. E > 2T(X, β)E2(X, β),
E ∈ ERKθ

,

based on the combined Linear Matrix Inequality (LMI) technique
and bisection search.

4. Robust FWL controller design

With the tractable FWL performance measure υ̃(X), the pro-
posed robust FWL controller design problem can now be sum-
marised. Given P̂g(w), τ , ξ , m and assuming a nonempty X̃m, find
a controller Xopt ∈ X̃m that achieves

γ = sup
X∈X̃m

υ̃(X). (48)

It is seen easily that our design objective is to make the FWL tol-
erance as large as possible, while satisfying a suboptimal robust
control requirement. A large FWL tolerance means that the result-
ing controller can be implemented with a processor of short word
length. Combining (23), (27), (29), (30), (36), (47) and (48), the
above design problem can also be expressed as

γ = sup
0≤β∈R

β, (49)

s.t. E > (Yβ + Y1XY2)TE(Yβ + Y1XY2),
E ∈ ERKθ

,

X ∈ R(s+m)×(t+m),

where

Yβ
4
=


M0 Bu Bv Bw
βCu 0 0 0
τCh 0 τD1,1 τD1,2
1
ξ
Cz 0

1
ξ
D2,1

1
ξ
D2,2

 , (50)

Y1
4
=

[
MT1 0

1
ξ
NT1

]T
∈ R(n+m+N+n1+n2)×(s+m), (51)

Y2
4
=
[
M2 0 N2

]
∈ R(t+m)×(n+m+N+n1+n2). (52)

The optimisation problem (49) contains a Bilinear Matrix In-
equality (BMI) (Kanev, Scherer, Verhaegen, & De Schutter, 2004;
VanAntwerp & Braatz, 2000) whose size is 2(n+m+N+n1+n2).
In thework Yang et al. (2001), an FWLH2 controller design problem
is studied which is also formulated as a BMI optimisation problem.
However, as the method proposed in Yang et al. (2001) examines
each vertice of the FWLperturbation hypercubeDβ , the related op-
timisation problem contains at least 2N BMIs of a size no less than
4n. Considering a design example with n = 6,m = 2, s = 1, t = 1,
n1 = 1 and n2 = 1, for instance, the optimisation problem for-
mulated in this paper has only one BMI of size 38, while the corre-
sponding optimisation problem proposed in Yang et al. (2001) has
over 512 BMIs of size 24. Undoubtedly, our proposed method has
significant computational advantages over the method proposed
in Yang et al. (2001).
Next,we discuss how to solve the BMI problem (49). The follow-

ing result (Iwasaki, 1993, 1999) is useful in solving the nonconvex
optimisation problem (49).

Lemma 5. Suppose that YT1Y1 > 0 and Y2Y
T
2 > 0. Give a 0 < ω ∈ R

and a 0 ≤ β ∈ R. If and only if there exist 0 < E ∈ ERKθ
,

J ∈ R(s+m)×(n+m+N+n1+n2) and L ∈ R(n+m+N+n1+n2)×(t+m) such that{
ωE > (Yβ + Y1J)TE(Yβ + Y1J),
ωE > (Yβ + LY2)TE(Yβ + LY2),

(53)

then there exists X ∈ R(s+m)×(t+m) such that

ωE > (Yβ + Y1XY2)TE(Yβ + Y1XY2). (54)

The above lemma shows that (54) can be transformed into
(53). It is easy to see that (53) actually is an LMI when J is given.
Moreover, (53) is equivalent to{
ωE−1 > (Yβ + Y1J)E−1(Yβ + Y1J)T,
ωE−1 > (Yβ + LY2)E−1(Yβ + LY2)T.

(55)

The inequality (55) is also an LMI when L is given. Based on the
equivalence relations among (53)–(55), the optimisation problem
(49) is solved in this paper using a two-stage procedure. The task
of the stage one is to obtain an Lin ∈ R(n+m+N+n1+n2)×(t+m) which
satisfies{
E−1 > (Y0 + Y1J)E−1(Y0 + Y1J)T,
E−1 > (Y0 + LinY2)E−1(Y0 + LinY2)T,

(56)

for some 0 < E ∈ ERKθ
and J ∈ R(s+m)×(n+m+N+n1+n2), where

Y0 is the value of Yβ at β = 0. In stage two, the problem (49) is
solved with the feasible starting point Lin. The details of the stage-
two algorithm are as follows.

Step (1) Let the iterative index be i = 0 and L(i) = Lin, and set Nit
to a sufficiently large integer.

Step (2) Solve

sup
0≤β∈R

β, (57)

s.t. E−1 > (Yβ + Y1J)E−1(Yβ + Y1J)T,

E−1 > (Yβ + L(i)Y2)E−1(Yβ + L(i)Y2)T,
0 < E ∈ ERKθ

,

J ∈ R(s+m)×(n+m+N+n1+n2),

by the combined LMI technique and bisection search. Let
a maximiser be J(i).

Step (3) Solve

βi+1 = sup
0≤β∈R

β, (58)

s.t. E > (Yβ + Y1J(i))
TE(Yβ + Y1J(i)),

E > (Yβ + LY2)TE(Yβ + LY2),
0 < E ∈ ERKθ

,

L ∈ R(n+m+N+n1+n2)×(t+m),

by the combined LMI technique and bisection search. Let
amaximiser be L(i+1), and denote E(i+1) the corresponding
positive definite matrix.

Step (4) Set i = i + 1. If i < Nit , go to Step(2); if i ≥ Nit , go to
Step(5).
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Fig. 1. System configuration of a robust finite-word-length control system design
example.

Step (5) Set Ed = E(i), denote Yd the value of Yβ at β = βi, and
calculate the optimal controller Xopt through solving (54)
with ω = 1, E = Ed and Yβ = Yd.

The algorithm in stage two can be modified to be used in stage
one, where the problem

inf
ω∈R

ω, (59)

s.t. ωE > (Y0 + Y1XY2)TE(Y0 + Y1XY2),
0 < E ∈ ERKθ

,

X ∈ R(s+m)×(t+m),

is solved until ω < 1.

5. Numerical design examples

The first example is shown in Fig. 1, where

P̂0(w)

=
3.3750× 10−3w + 1.3669× 10−2w2 + 3.4605× 10−3w3

1− 3.0488w + 3.1001w2 − 1.0513w3
,

Ŵ1(w) =
4.9875× 10−3w
1− 9.9501× 10−1w

,

Ŵ2(w) =
5.8512× 10−1w − 5.5933× 10−1w2

1− 1.3390w + 3.7908× 10−1w2
,

and the plant model uncertainty Û(w) ∈ Hτ with τ = 0.4. From
the given P̂0(w), Ŵ1(w) and Ŵ2(w), it was easy to obtain the
nominal plant model P̂g(w). For this example, the constant ξ that
bounds the closed-loop H∞ norm from w to z was set to ξ = 0.3,
and the controller orderwas chosen to bem = 2. The taskwas thus
to design a 2nd-order controller based on the robust FWL perfor-
mance measure υ̃ .
For this design example, the optimisation problem (49) was

formulated and the algorithm described in Section 4 was used to
find solutions of the optimal robust FWL design problem (49). The
resulting controller was

Xopt1 =

[
−103.44 −15.600 −1.4984
−16.070 −1.4261 0.25055
−19.469 −3.0400 0.37517

]
achieving υ̃(Xopt1) = 8.2842 × 10−3. This designed controller
achieves the required robust control performance and is also ro-
bust to FWL perturbation errors because, for any FWL perturba-
tion to Xopt1 smaller than 8.2842 × 10−3 and for any Û(w) ∈ Hτ

with τ = 0.4, the closed-loop system maintains stability and the
closed-loop H∞ norm fromw to z is always less than 0.3.
Using a fixed point processor of c-bit length to implement a

realization X, we can assign the c bits as: 1 bit for the sign, cint bits
for the integer part, and cfra bits for the fraction part. To provide a
sufficient dynamic range for X, at least cint = dlog2 ‖X‖me, where
dxe denotes the closest integer greater than or equal to x ∈ R. The
fraction bit length bounds the absolute values of the FWL errors
by 2−(cfra+1). Comparing this bound with the measure υ̃(X)within
which the closed-loop performance is maintained, it is known that
at least cfra = d− log2 υ̃(X)e − 1. Therefore, when implementing
Xwith fixed point processor, c̃(X) 4= dlog2 ‖X‖me+d− log2 υ̃(X)e
can be viewed as the minimal word length guaranteeing closed-
loop performance, estimated based on υ̃(X). In this example,
c̃(Xopt1) = 14.
The second example was from Yang et al. (2001). The original

example in Yang et al. (2001) was for the FWL H2 control
under plant parameter uncertainty. Since ‖8̂wz‖∞ ≥ ‖8̂wz‖2
and structured uncertainty includes parameter uncertainty, we
substituted ‖8̂wz‖∞ for ‖8̂wz‖2 and substituted plant structured
uncertainty for plant parameter uncertainty to obtain our problem
formulation. Thus the second example was provided as

AP =
[
0.5 0.1
0.2 0

]
, Bv =

[
1 0
0 1

]
, Bw =

[
1 0
1 0

]
,

BP =
[
1
0

]
, Ch =

[
1 0
1 1

]
, Cz =

[
1 1
0 1

]
,

D2,2 =
[
1 0
0 1

]
, D2,3 =

[
1
1

]
, CP =

[
0 −1

]
,

D3,2 =
[
1 1

]
, D1,1 = D1,2 = D2,1 =

[
0 0
0 0

]
,

Û(w) = ϕ(w)
[
1 0
0 1

]
∈ Hτ with ϕ(w) ∈ C, and τ = 0.13.

Set the constant ξ = 4.9676. We designed a 1st-order controller
by minimising υ̃ . The resulting controller was

Xopt2 =
[
1.0853 −0.36600
1.1031 −0.34734

]
with υ̃(Xopt2) = 0.0275, which can be implemented with a
processor of c̃(Xopt2) = 7 bits. As ‖8̂wz‖∞ ≥ ‖8̂wz‖2, the
system was guaranteed to be closed-loop stable and ‖8̂wz‖2 <
4.9676 when τ = 0.13 and the FWL bound was 0.0275. By direct
optimising ‖8̂wz‖2 under uncertainty, Yang et al. (2001) obtained
a controller achieving ‖8̂wz‖2 < 3.0822 when τ = 0.13 and the
FWL bound 0.0275. For this example, 32 BMIs of size 8were solved
in Yang et al. (2001) while one BMI of size 22 was solved using our
method.

6. Conclusions

A robust FWL controller design approach has been proposed
based on the mixedµ theory. We have defined a novel FWL robust
control performance measure which takes into account both the
standard robust control requirements and the FWL implementa-
tion considerations. This FWL robust control performancemeasure
can be computed conveniently using an LMI method. The corre-
sponding optimal FWL robust controller design problem has been
formulated naturally as amixedµ problemwhich can be solved by
means of BMI techniques.
As mentioned in Section 1, this paper investigates only the FWL

parameter representation errors while in fact the FWL arithmetic
rounding errors also occur in the digital controller. Therefore,
after obtaining Xopt and the corresponding word length c̃(Xopt),
the effect of rounding errors must be tested and we suggest to
simulate the designed closed-loop system with a range of the
expected working signals. In the simulation, the controller Xopt is
first implemented with c̃(Xopt) bits of fixed-point representation
and arithmetic. If there are no bounded limit cycles or unbounded
response occurring in the simulation process, the FWL rounding
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errors will not lead to instability (Miller, Mousa, & Michel,
1988) and hence c̃(Xopt) is sufficient. If bounded limit cycles
or unbounded response are observed, the bit length should be
increased until they disappear. Our future research will study how
to design robust controllers that simultaneously consider both the
two types of FWL errors.
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