
Language and Tool Support for Class and State
Machine Refinement in UML-B�

Mar Yah Said, Michael Butler, and Colin Snook

ECS, University of Southampton, Southampton, SO17 1BJ, UK
(mys05r,mjb,cfs)@ecs.soton.ac.uk

Abstract. UML-B is a ’UML-like’ graphical front end for Event-B that provides
support for object-oriented modelling concepts. In particular, UML-B supports
class diagrams and state machines, concepts that are not explicitly supported in
plain Event-B. In Event-B, refinement is used to relate system models at different
abstraction levels. The same abstraction-refinement concepts can also be applied
in UML-B. This paper introduces the notions of refined classes and refined state
machines to enable refinement of classes and state machines in UML-B. Together
with these notions, a technique for moving an event between classes to facilitate
abstraction is also introduced. Our work makes explicit the structures of class
and state machine refinement in UML-B. The UML-B drawing tool and Event-B
translator are extended to support the new refinement concepts. A case study of
an auto teller machine (ATM) is presented to demonstrate application and effec-
tiveness of refined classes and refined state machines.

Keywords: Visual modelling languages, Formal specification, UML, Event-B,
Refinement.

1 Introduction

UML-B [1] is a graphical formal modelling notation that has some resemblance with
UML [2,3] and is based on Event-B [4] which is a new variant of classical B [8]. UML-
B supports class diagrams and state machines, concepts that are not explicitly supported
in plain Event-B. The UML-B notation is supported by the UML-B tool which is a plug-
in feature for the Rodin Event-B verification tool [6,11]. The UML-B tool generates
Event-B models corresponding to a UML-B development and the Rodin tool is then
used to discharge proof obligations associated with the generated Event-B models. As
detailed in [12], our motivations for developing UML-B are twofold. Firstly, in our
experience industrial users find the UML-like language and tool appealing. Secondly,
UML-B provides additional complementary structuring of Event-B models in the form
of classes and state machines.

A development in classical B or Event-B is performed through refinement. Refine-
ment [8,9] is a technique which is used to relate the abstract model of a software system
to another model that is more concrete while maintaining the properties of the abstract

� This work has been presented at the IM FMT 2009 workshop of the IFM2009 conference,
Dusseldorf, Germany on 16 February 2009.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 579–595, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

580 M.Y. Said, M. Butler, and C. Snook

model. Refinement is an important technique for managing the complexity of a system
being developed.

At the most abstract level of a refinement-based development, it is usual to spec-
ify invariants that define the properties of the system being modelled. These invariants
must be preserved by all the events of the model. Each refinement step will add fur-
ther invariants relating the abstract model and the refined model (gluing invariants). In
Event-B, both state and events may be refined. This is achieved by extending the list
of state variables (possibly suppressing some of them) and by replacing each abstract
event by corresponding concrete events.

There are two main differences between Event-B and classical B with regards to re-
finement of events. In Event-B, several events may refine an abstract event whereas in
classical B, only one event can refine an abstract event. The other difference is that in
Event-B, we may have new events that refine skip whereas in classical B, this is not
allowed. Another difference between classical B and Event-B is that Event-B distin-
guishes between contexts and machines. A context contains definitions and properties
of types and constants. A machine contains state variables, invariants and events that
update the variables. A machine may see several contexts.

UML-B incorporates the Event-B machine construct and a single UML-B machine
may contain multiple classes and multiple state machines. Previously, UML-B sup-
ported machine refinement (a refinement relationship between UML-B machines) but
had no support for refinement of classes or state machines (which are nested within
UML-B machines). The work reported here enriches UML-B to support class and state
machine refinement. The main contributions of our work are introducing notions of re-
fined classes and inherited attributes which are described in Section 3 and notions of
refined state machines and refined states which are described in Section 4. The other
contribution is introducing a technique of event movement in Section 5. A further con-
tribution is that we have implemented the UML-B extensions in the UML-B tool. In
this work we focus on safety-preserving refinement and do not deal with liveness.

Section 3 describes class refinement using the notion of refined classes and inherited
attributes which includes techniques for adding new classes and adding new attributes
and associations to refined classes in a refinement. Section 4 describes state machine
refinement and a technique for elaborating refined states into sub-states and the transi-
tions elaboration technique. Section 5 describes a technique for moving class events of
an abstract machine to a refined class or a new class in a refinement.

Before the technical details of the contributions are describes, we give some back-
ground on UML-B and the generated Event-B in Section 2 that outlines the existing
relevant features of UML-B. Section 6 presents the ATM case study using the refine-
ment techniques describes in Sections 3, 4 and 5. Section 7 concludes the paper.

2 Background of UML-B and Generated Event-B

UML-B provides four kind of diagrams. They are package, context, class and state ma-
chine diagrams. A package diagram is a top-level diagram that shows the structure and
relationships between components (machines and contexts) in a project. A context is
described in a context diagram which is similar to a class diagram but has only constant

Language and Tool Support for Class and State Machine Refinement in UML-B 581

data and structured types. A machine is specified by a class diagram and state machine
diagram(s) representing data structures that may be changed by events or transitions.
Events may be attached to classes in a class diagram. Events can also be represented by
the transitions in a state machine diagram. Further descriptions focus on the class and
state machine diagrams as the rest of the sections mostly concerns these. The semantics
of a UML-B model is given by the Event-B generated by the UML-B tool according to
a set of translation rules.

A class diagram may contain classes. Each class may have attributes, associations,
events and state machines. An attribute defines a data value of an instance of a class.
An association is a special case of an attribute that defines a relationships between two
classes. Events and state machines may modify some or all the attributes of any class.
Each UML-B context gives rise to an Event-B context (i.e., the UML-B tool generates
a corresponding Event-B context). Each UML-B machine gives rise to both an implicit
Event-B context and an Event-B machine. The implicit context is used to define types
for the classes and states in the UML-B machine. In the generated Event-B machine,
classes, class attributes and associations become variables. Events and transitions in
classes and state machines become events in the generated Event-B machine.

Fig. 1 contains screenshots from the UML-B tool showing an example of a package
diagram that contains machine M1 (a) which has a class diagram (b) containing classes

Fig. 1. Package diagram and the UML-B specification of the Abstract Machine M1

582 M.Y. Said, M. Butler, and C. Snook

CA and CB. These classes give rise to the sets CA SET and CB SET in the generated
Event-B implicit context. In the generated Event-B machine the classes CA and CB
give rise to variables. The class CA consists of the attribute x of type N and also the
association a b of type CB. The multiplicity property for the association a b shown in
Fig. 1(c) specifies a many-to-one relationship (i.e., total function). A full explanation
of association multiplicity may be found in [12]. The attributes x and a b give rise to
variables in the generated Event-B machine.

For each class, attribute and association, a type invariant will be generated in the
Event-B machine. For example, the class CA corresponds to the type invariant which
specifies that CA is a subset of CA SET (CA ∈ P (CA SET)). Attribute x corresponds
to the type invariant x ∈ CA → N that specifies x is defined for all CA. Each class has
a self name property with a default value self, i.e., the default identifier that represents
an instance of a class (which may be changed by the modeller). The self name property
of the class CA is shown in Fig. 1(d). A class may have events and for each event, its
parameters, guards and actions can be defined explicitly as properties. µB (micro B)
notation [12] that borrows from the Event-B notation is used for textual guards and
actions. µB uses an object-oriented style dot notation to show ownership of entities,
i.e., attributes and associations, by classes. Variables used in an expression can represent
owned features using the dot notation. For example, i.x refers to the value of the variable
x which belongs to instance i. Another example of this will be presented later (Fig. 5).

Attached to the class CA is its state machine, SM, listing its four transitions t1, t2, t3
and t4. The state machine SM in Fig. 1(e) shows its two states, A and B and the transi-
tions. The solid circle is the initial state, whereas, the solid circle with an outer circle is
the final state. The translation to Event-B for a state machine can either be a disjoint sets
representation or state function representation. These two styles are introduced in [10]
and they are supported in the UML-B tool. UML-B allows modellers to switch between
these two representations.

For a disjoint sets representation, a disjoint sets of CA are introduced as variables as
follows:

A ∈ P(CA)
B ∈ P(CA)
A ∩ B = ∅

That is, variable A represents the set of instances of CA that are in the state A and
similarly for B. For a state function representation, a variable SM (i.e., the state ma-
chine belonging to the class CA) is introduced representing a function mapping CA to
an enumerated set of states, SM STATES as follows:

SM STATES = {A,B}
SM ∈ CA −→ SM STATES

That is, SM maps each instance of CA to its state. In this paper, the translation to Event-
B is described using the disjoint sets representation. The generated Event-B machine for
M1 is shown in the Rodin screenshot of Fig. 2. Each Event-B statement is preceded by
its label which describes its purpose. For example, CA.type is a label for the Event-
B statement CA ∈ P (CA SET). The states A and B of SM state machine represent
variables of type CA (i.e., the state machine owner). An instance of CA changes its
state when a transition fires. For the states, an additional invariant stating that they

Language and Tool Support for Class and State Machine Refinement in UML-B 583

Fig. 2. Generated Event-B specification of M1

are disjoint is generated (i.e., A ∩ B = ∅). For each transition there is a guard that
specifies an instance source state (labelled as .. isin ..) and actions that specify its target
state (labeled as .. enterState ..) and its departure from the current state (labelled as
.. leaveState ..). The parameter, self, indicates an instance of a class. A transition from
an initial state such as t1, defines a constructor for the class. The translation of t1 selects
an unused instance and adds it to the set of CA (labelled self.type). A transition to a final
state such as t4 is a destructor which removes an instance from current instances and
from the domain of all the class variables. The transition t3 is a self loop transition
which does not changes state. In the generated Event-B the event t3 has a guard that
specifies its source state but with a skip action i.e., not changing state. Invariants and
theorems (assertions requiring proofs) can be attached to classes or states and become
part of the Event-B machine. A full explanation and examples of these is in [1].

3 Refinement of Classes in UML-B

In this section, the refinement techniques concerning the notion of refined classes and
inherited attributes are described.

The motivation for refined classes and inherited attributes come from performing
refinement in Event-B. The notion of refined classes and inherited attributes in UML-B
reflect the refinement of variables in Event-B. A refined class is one that refines a more
abstract class and an inherited attribute is one that inherits an attribute of the abstract
class. A notion of refined classes is needed in UML-B because some elements of an
abstract UML-B model need to be retained by the refinement.

In Event-B refinement, a machine that refines a more abstract machine may keep
variables of an abstract machine, may drop some of the variables and may introduce new
variables. In UML-B refinement, a machine that refines a more abstract machine may

584 M.Y. Said, M. Butler, and C. Snook

contain refined classes where each refined class refines a class of its abstract machine
(i.e., keeps variables of its abstract machine). In UML-B refinement, a machine may
drop some of refined classes (i.e., drop some variables). Also in UML-B refinement, a
machine may introduce new classes (i.e., new variables) in a class diagram.

In UML-B refinement, a refined class may inherit attributes of its abstract class (i.e.,
keeps variables of its abstract machine). A refined class may drop some of the attributes
of its abstract class (i.e., drop some variables of its abstract machine) and a refined
class may introduce new attributes (i.e., new variables). The following schematic table
illustrates a refined class that inherits and drops abstract attributes and introduces new
attributes. The table lists the attributes for class C and a refined class C. Class C contains
attributes a1, a2 and a3. In refinement, the refined class C inherits attributes a1 and a2,
drops attribute a3 and has new attributes a4 and a5. In the generated Event-B machine,
both a class and a refined class give rise to variables. A type invariant is generated for an
abstract class i.e., Class C but not for a refined class because its type is already defined in
the abstract Event-B machine. Similarly both the inherited attributes and new attributes
give rise to variables and a type invariant is generated for each new attribute but not for
the inherited attributes.

Class C Refined Class C
a1 a1 (inherited)
a2 a2 (inherited)
a3 a4 (new)

a5 (new)
We describe here a simple example of performing refinement in UML-B using the

notion of refined classes and inherited attributes. Fig. 3(a) shows an example of a pack-
age diagram that manages a refinement relationship between machines. The package
diagram shows that machine M2 refines machine M1 (of Fig. 1). The class diagram
of M2 is shown in Fig. 3(b) where it consists of refined classes CA and CB refining
the classes CA and CB of M1 respectively. The refined class CA inherits attribute x and
association a b. The refined class CB has a new association cb cc. Machine M2 has a
new class, CC which gives rise to a new set (CC SET) in the generated Event-B implicit
context. In the generated Event-B machine for machine M2, the variables CA, CB, x
and a b are retained. The machine M2 has new variables CC and cb cc with their type
invariants CC ∈ P (CC SET) and cb cc ∈ CB → CC respectively.

Fig. 3. Package diagram and Class Diagram of Machine M2

Language and Tool Support for Class and State Machine Refinement in UML-B 585

In Event-B refinement, a machine must provide a refinement of each abstract event.
This can be either one or many event(s) refining one abstract event. New events may
be introduced in a refinement. Similarly, in UML-B refinement, at least one concrete
event must refine each abstract event and new events may be introduced. These concrete
events can either be attached to a refined (or a new) class or a state machine of a refined
(or a new) class. In UML-B refinement, we can also define additional invariants and
theorems by attaching them to refined classes and states that reflect adding invariants
and theorems in Event-B refinement.

4 Refinement of State Machines in UML-B

In this section, the refinement techniques concerning the notion of refined state ma-
chines and refined states are described. The motivation for refined state machines and

Fig. 4. Refinement of State machine (machine M2 refines machine M1)

refined states come from combining the state machine hierarchy in UML-B with refine-
ment in Event-B. The essential concept is that state machines are refined by elaborating
an abstract state with nested sub-states. A refined state machine is one that refines a
more abstract state machine and a refined state is one that refines a more abstract state.

In UML-B refinement, a machine may contain refined state machines and refined
states. We describe first an example of performing refinement in UML-B using the
notion of refined state machines and refined states. We will then describe the general
rules. Fig. 4 shows an example of a state machine refinement. The refined class CA of
M2 (Fig. 3(b)) has a refined state machine SM (Fig. 4(b)) refining the state machine SM
of M1 (Fig. 4(a)). The states of refined state machine SM are refined state A and refined

586 M.Y. Said, M. Butler, and C. Snook

state B refining state A and state B of M1. The refined state machine SM contains the
transitions t1, t2a, t2b, t3 and t4 which refine the corresponding abstract transitions
of machine M1. In Fig. 4(b), the abstract transition t2 is replaced with transitions t2a
and t2b which refine the abstract transition t2 of machine M1. This refinement of a
state machine reflects refinement in Event-B where many events can refine one abstract
event. The transitions t2a and t2b have different source sub-states (i.e., representing
different guards in Event-B) which are defined in the nested state machine SM A.

The nested state machine SM A (Fig. 4(c)) elaborates the refined state A (Fig. 4(b)) of
M2. The nested state machine, SM A has three states A1, A2 and A3. The transitions t1,
t2a, t2b and t3 in the nested state machine SM A are labelled the same as the incoming
and outgoing transitions of the refined state A. The same labels indicates that the tran-
sition t1 of the state machine SM A is the transition t1 of the refined state machine SM
and similarly for t2a, t2b and t3. The transition t1 of the nested state machine SM A in
Fig. 4(c) elaborates the incoming transition t1 of the refined super-state A. This means,
in the refinement, the target state of the transition t1 is the sub-state A1. The transitions
t2a and t2b of the nested state machine SM A elaborate the outgoing transition t2a and
t2b of the refined super-state A. In Fig. 4(b) we do not see a distinction between transi-
tions t2a and t2b. In Fig. 4(c) we can see a distinction: t2a has sub-state A1 as a source
while t2b has A3 as a source. The transition t3 of the nested state machine SM A elab-
orates the self loop transition of the refined super-state A specifying its source state as
the state A1 and its target state as A2. In the nested state machine SM A, the transition
t5 is a new transition representing a new event in the generated Event-B machine.

In the generated Event-B machine, type invariants are created for all sub-states,
where their types are their super-state, for example A1 ∈ P (A) is a type invariant for
the state A1. An additional invariant is generated to specify that all sub-states constitute
their super-state. For example, A = A1 ∪ A2 ∪ A3. Other generated invariants are a
number of disjointness invariants specifying that all sub-states are disjoint.

In the next paragraphs, we give a general definition of state machine refinement
based on the example given above. A refined state machine refines a more abstract state
machine. The structure of a refined state machine is an elaboration of the structure of
its abstraction in two possible ways:

– Each transition is replaced by one or more transitions.
– An abstract state may be elaborated by a nested state machine (see below).

In the given example, we used the techniques of state elaboration and transition elab-
oration. In UML-B refinement, a refined state may be elaborated to sub-states con-
tained in a nested state machine forming a state machine hierarchy. State elaboration
enables more transitions to be added to a nested state machine. Some of these transi-
tions elaborate the incoming and outgoing transitions of the refined super-state. Some
of these transitions are new transitions (i.e, reflects introducing new events in Event-B
refinement).

In UML-B, nested state machines are modelled in separate state machine diagrams
from their parent state machine diagrams. Therefore, the transition elaboration tech-
nique is needed so that transitions in a nested state machine can elaborate the incoming
and outgoing transitions of the super-state. In a nested state machine, a transition with
an initial source state elaborates at most one incoming transition to the super-state and

Language and Tool Support for Class and State Machine Refinement in UML-B 587

a transition with a final target state elaborates at most one outgoing transition from the
super-state. Our experience is that having separate diagrams for nested state machines
scales better than embedding them directly in a single diagram. A single diagram can
result in scalability problems when there are many levels of state machine hierarchy
and a nested state machine has many states. On the other hand, it can be useful to see at
least one level of nesting in a single diagram. We will investigate this in future.

An abstract state may have a self loop transition. In UML-B refinement, while the
state is elaborated into sub-states, the self loop transition may be elaborated as one of the
transitions between any two of the sub-states. The elaborated transition defines the state
changes from a sub-state to another sub-state when the transition fires. When refining a
self loop transition, the occurrence of the transition can either be many times or can be
restricted to once. Restriction to once means removing looping behaviour and this is a
valid refinement since we focus on preserving safety, not liveness, in our current work.

5 Event Movement

This section describes the technique of moving a class event in UML-B refinement.
There are two methods of moving a class event in a refinement, these are (1) move
to a refined class as a transition of a state machine and (2) move to a new class in a
refinement either as a class event or a transition in a state machine. Method (1) does not
need any new UML-B language feature. However, method (2) creates a motivation for
the need to be able to change the default self name in UML-B.

We describe both methods by giving first an example of an abstract machine in which
a refinement is based upon. Figure 5(a) shows a class CA with attribute x and event ev1.
Figure 5(b) shows the properties of the event ev1 showing its parameter y, a guard and
an action. The action is defined using µB notation and uses a default identifier self,
i.e., the self name property which represents an instance of a class CA. The self name
property becomes a parameter of the ev1 event in the corresponding Event-B machine.

For method (1), in a refinement, the class event of the abstract machine may be
moved to a state machine of the refined class CA as a transition ev1 between the states
A1 and A2. In the generated Event-B machine for the event ev1, an additional guard
specifying the current state A1 for the event to take place (self ∈ A1) and also addi-
tional actions specifying an instance move to the state A2 (A2 := A2 ∪ {self}) and

Fig. 5. Example of the UML-B specification of an abstract machine

588 M.Y. Said, M. Butler, and C. Snook

an action specifying an instance leaves the current state A1 (A1 := A1 \ {self}) are
generated. The effect of this refinement is to constrain when the event occur.

For method (2), in a refinement, a class event may be moved to a new class as a
class event or as a transition in a state machine. We describe here the event movement
technique when a class event is move to a new class as a transition in a state machine.
Assume that the UML-B specification in Fig. 6 is a refinement of the abstract machine
in Fig. 5. In the refinement, a new class CC is introduced and event ev1 is moved to the
class CC (Fig. 6(a)). The event ev1 become a transition between the states C1 and C2
of state machine CCsm (Fig. 6(c)).

The self name property of the class CC is changed to selfCC from the default self (Fig-
ure 6(b)). This change is necessary to avoid conflicts with the default self name of the
refined class CA. In a class event or a transition refining an abstract class event, a pa-
rameter whose type is the abstract class is introduced to replace a self parameter of the
abstract class. For example, a parameter ca, of type CA is added to the ev1 transition
as shown in the property view in the Figure 6(d). A witness property is defined for
the transition ev1 which specifies that ca in the refinement level represents self of its
abstract level (i.e., ca = self).

The witness property is adapted from Event-B. In Event-B, a witness is used when
replacing a parameter of an abstract event with a different parameter in a concrete event
in the refinement. The witness is defined by a predicate involving the abstract parameter.

Section 6 of the ATM case study will demonstrate the usefulness of moving events
from one class to another in refinement. In the first refinement of the ATM case study,
the withdraw event of the Account class is moved to the ATM class as a transition in a
state machine of the class ATM.

Fig. 6. Example of the UML-B refinement for the second method

Language and Tool Support for Class and State Machine Refinement in UML-B 589

6 ATM Case Study

A case study based on an auto teller machine (ATM) was undertaken to validate the
extension of UML-B with regards to the notion of refined classes and refined state
machines. An ATM is a machine that allows bank customers to do some of the banking
transactions 24 hours per day. It allows bank customers to perform a range of functions,
including withdraw cash, check account balance and print mini-statements. In order to
perform these functions through an ATM, bank customers need to use their ATM cards
which are provided to them by the bank. The case study focused on the requirements
for the cash withdrawal and check balance functions. There are seven levels for the
ATM UML-B development. These machines are linked by a refinement relationship.
We described in details the first three levels and described briefly the other four levels.
The summary for the first three machine level is as follows:

Abstract machine (ATM A): Models bank accounts and operations on accounts.
First Refinement (ATM R1): Introduces the ATMs and ATM cards.
Second Refinement (ATM R2): Introduces an explicit validation transition for cards

and splits withdrawal into a bank transition and an ATM transition.

The package diagram in Fig. 7 shows a refinement relationship between the machines.

Fig. 7. ATM Package Diagram

Fig. 8 shows a UML-B specification of the ATM abstract machine. The abstract ma-
chine consists of a class Account (8(a)) with its attribute bal and four events namely,
createAccount, deposit, withdraw and checkBalance. The Account class represents the
set of accounts that currently exist in the system. The attribute bal represents the bal-
ance of an account. The withdraw event has one added parameter, am of type natural
number. The parameter is shown in the property view in Fig. 8(b) including the guard
and action. self is the self name property defined for the class Account. The withdraw
event can only occur if the amount, am, is less than or equal to the balance in the ac-
count. The withdraw event will result in decreasing the balance of the account by am
amount.

The first refinement of the ATM model introduces two new classes which are ATM
and Card which represent the sets of ATMs and ATM cards respectively. The UML-
B specification is shown in Fig. 9. The class diagram (Fig. 9(a)) of ATM R1 contains
the new classes and a refined class Account refining the Account class of ATM A.
The class ATM has an association atm card with the class Card. The class Card has an
association card account with the refined class Account. The refined class inherits the
bal attribute and refines the two events, namely, createAccount and deposit of ATM A.
The other two events namely, withdraw and checkBalance are moved to the new class
ATM in this refinement level as transitions in the state machine ATM SM of the class
ATM. At the abstract level (Fig. 8), we specify the effect of a withdrawal on the account

590 M.Y. Said, M. Butler, and C. Snook

Fig. 8. UML-B specification of ATM abstract machine

balance. In the refinement (Fig. 9), we further specify that the withdrawal takes place
via an ATM. At the abstract level it is natural to specify the withdrawal as an event of
the Account class while in the refinement it is natural to specify it as an event of the
ATM class.

The state machine ATM SM in Fig. 9(b) partitions the behaviour of an ATM into ei-
ther an idle state, (i.e., not being used/not active) or active atm state (i.e., is being used).
An ATM changes its state when it is triggered by a transition. The create transition cre-
ates a new instance of an ATM and sets its state as idle. The insertCard transition can
occur when an ATM is in the idle state and the card inserted is a valid ATM card. When
it occurs it changes an ATM state from idle to active atm. The ejectCard transition
changes an ATM state from active atm to idle. While an ATM is in active atm state,
an ATM user can use it for withdrawal or checking an account balance (i.e., check-
Balance transition). The withdrawOK transition represents a successful withdrawal
transaction, whereas, the withdrawFail transition represents a failure possibly because
the withdrawal amount exceeds the account balance. The transitions withdrawOK and
checkBalance refine the abstract event withdraw and checkBalance respectively. The
transitions insertCard, ejectCard and withdrawFail are new events.

Fig. 9(c) shows the properties of the withdrawOK transition with the parameters, wit-
ness, guards and action. The witness specifies that the parameter ac represents the self
parameter of the abstract withdraw event. In this refinement, the guards are strength-
ened so that the withdrawOK transition can only occur when an ATM card is inserted
(selfATM ∈ dom(atm card)) and the card in the ATM is a valid card for the account
whose balance is being modified (selfATM.atm card = c and c.card account =
ac). Fig. 9(d) shows the refines property of the withdrawOK transition.

The second refinement models an explicit validation transition for cards and splits
withdrawal and balance check into a bank transition and an ATM transition. This is
achieved by elaborating the active atm state into sub-states. The class diagram of ma-
chine ATM R2 contains three refined classes refining the classes Account, ATM and
Card of ATM R1. An attribute atm cash, which represents the amount of cash stored
in an ATM is added to the refined class ATM. A new class Pin is introduced which rep-
resents a set of ATM PIN numbers. The refined class Card has an association card pin

Language and Tool Support for Class and State Machine Refinement in UML-B 591

Fig. 9. UML-B specification of ATM First Refinement

with the class Pin.The refined class ATM contains refined state machine ATM SMwhich
contains two refined states refining the states idle and active atm of ATM R1 (Fig.
10(a)). The transitions ejectCard1, ejectCard2, ejectCard3 and ejectCard4 refine the
abstract transition ejectCard. The transitions insertCard, withdrawOK, withdrawFail
and checkBalance refine their corresponding abstract transitions in ATM R1.

A new state machine named active atm SM is added to the refined state ac-
tive atm of ATM R2 and it contains five sub-states, namely, validating, invalidCard,
transOption, performedTrans and endTrans (Fig. 10(b)). The state machine has a tran-
sition insertCard which elaborates the incoming transition to the refined super-state
active atm. The outgoing transitions ejectCard1, ejectCard2, ejectCard3 and eject-
Card4 from the states invalidCard, transOption, performedBankTrans and endTrans
respectively elaborate the outgoing transitions of the refined super-state active atm.
The transitions withdrawOK, withdrawFail and checkBalance elaborate the self loop
transitions of the refined super-state active atm. The transitions validateCardOK, vali-
dateCardFail, withdrawATM and checkBalATM are new transitions.

The third refinement models the request and response communication between the
ATMs and the bank. The fourth refinement models the send and receive events of the
request and response communication between ATMs and the bank. In third and fourth
refinement, nested state machines are added to the ATM state machine forming four

592 M.Y. Said, M. Butler, and C. Snook

Fig. 10. UML-B specification of ATM Second Refinement

levels of nested state state machines. The fifth refinement introduces a form of com-
munication between ATMs and the bank using message passing via two channels per
ATM. The sixth refinement merged the channel pairs into single channel.

The state machine refinement in the second, third and fourth refinements introduced
additional levels in the state machine nesting hierarchy. This supports a form of modular
reasoning, since refinement invariants are only required for the states that are being
elaborated, so it localizes proof effort.

All the models for the ATM development were constructed using the UML-B tool
and corresponding Event-B machines were generated. All the proof obligations (POs)
for the seven machines were generated and proved using the Rodin tool provers [6].
The total number of proof obligations (POs) is 962 in which all of them are proved
automatically. The POs for each machine are: ATM A:5, ATM R1:35, ATM R2:169,
ATM R3:156, ATM R4:186, ATM R5:358 and ATM R6:53.

Language and Tool Support for Class and State Machine Refinement in UML-B 593

7 Conclusions

We have introduced notions of refined class and refined state machine for UML-B. We
used these to described the following five refinement techniques:

– Add new attributes and associations to a refined class
– Add new classes in a refinement
– State elaboration
– Transition elaboration
– Move event to a refined class or a new class in a refinement

We extended the UML-B tool to support these new techniques.
UML-B enhances classical UML-B [12] which is a profile of UML that defines

a subset and specialisation of UML. Classical UML-B is based on classical B rather
than Event-B and it has restricted support for refinement. Some of the techniques used
here (state elaboration, transition elaboration) were previously introduced by Snook and
Walden [13] for classical UML-B. However, we provide a more precise definition of re-
fined state machine and we provide tool support based on UML-B giving a different
modeling visualization from the UML diagram symbols used in [13]. We also intro-
duce class refinement techniques, which are not with dealt in [13]. In [14], a process
for refinement involving the application of patterns that are based on the techniques
introduced in [13] is suggested.

The techniques of adding new attributes and associations to a class and adding new
classes to a class diagram have been introduced in informal way for refinement of UML
class diagram [16] but no formal notation nor formal refinement concept is used. Tem-
plates are introduced for attributes and associations to specify the translation of model
elements to low level design and implementation. Also, the technique of state elabora-
tion has been introduced in a refinement of UML state diagram [15] again without a
formal notion of refinement. Simons [21] has presented a theory of compatible object
refinement based on several proposed state-chart refinements that includes state elabo-
ration.

There is much work on combining UML with formal notations and we now out-
line some of this. However, unlike our work, none of this work supports refinement
in UML to the best of our knowledge. Lano, Clark and Androutsopoulos [17] present
the translation of UML-RSDS into classical B. The constraint language used is OCL
whereas we use µB. Idani, Ledru and Bert [18] have investigated the reverse in which
they proposed an approach and tool support for the construction of UML diagrams from
B specifications. Ledang and Souquiéres have introduced an approach for modelling the
communication between UML state charts in B in [23]. Other work on the integration
of UML and B are in [22,24] as outlined in [12]. Integration work of UML with Z has
been investigated in [20]. In this work, class diagrams, state machines and the UML-RT
structure diagrams are translated to CSP-OZ (an integrated formal method) specifica-
tions. In [19], a framework called UML + Z for building, analysing and refining models
based on UML and Z is introduced. In [25], a transformation rules from VDM++ into
UML class diagram and sequence diagram have been investigated.

We have presented the use of the above listed techniques in the ATM case study
which was modelled using the UML-B tool. The Rodin tool was used to generate and

594 M.Y. Said, M. Butler, and C. Snook

prove the proof obligations. The approach of elaborating states with sub-states in refine-
ment supports an incremental refinement approach. The hierarchical structure of nested
state machines also supports modular reasoning by localising the invariants required
for refinement proofs into the relevant state and its substates. An archive of UML-B
development for the ATM case study can be uploaded1. Currently, we are working on
the extensions to UML-B to support decomposition. We believe that the result of our
research will be a methodology of refinement in UML-B which will assists modelling
in UML-B.

Acknowledgements. This material is based upon work supported by the DEPLOY
Project, which is an FP7 Integrated Project supported by European Commission (Grant
N 214158). The first author is funded by the Malaysian Government, IPTA Academic
Training Scheme and University Putra Malaysia (UPM).

References

1. Snook, C., Butler, M.: UML-B and Event-B: An Integration of Languages and Tools. In: The
IASTED International Conference on Software Engineering (2008)

2. Object Management Group. Introduction to OMG’s Unified Modelling Language (UML)
(2007) (Date Last Accessed: 25/1/08)

3. Rumbaugh, J., Booch, G., Jacobson, I.: The Unified Modelling Language User Guide. Addi-
son Wesley, Reading (1999)

4. Metayer, C., Abrial, J.R., Voisin, L.: Event-B Language. Technical Report Deliverable 3.2,
EU Project IST-511599 - RODIN (2005),
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
(Date Last Accessed: 25/1/08)

5. Rigorous Open Development Environment for Complex Systems (RODIN) - IST 511599,
http://rodin.cs.ncl.ac.uk/ (Date Last Accessed: 25/1/08)

6. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An Open Extensible Tool Environment
for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 588–605. Springer,
Heidelberg (2006)

7. Evans, N., Butler, M.: A Proposal For Records in Event-B. In: Misra, J., Nipkow, T., Sek-
erinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 221–235. Springer, Heidelberg (2006)

8. Abrial, J.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,
Cambridge (1996)

9. Abrial, R., Hallerstede, S.: Refinement, Decomposition and Instantiation of Discrete Models:
Application to Event-B. Journal Fundamentae Informatica 77, 1–28 (2007)

10. Butler, M., Yadav, D.: An Incremental Development of the Mondex System in Event-B.
Journal Formal Aspects of Computing 20(1), 61–77 (2008)

11. Butler, M., Hallerstede, S.: The Rodin Formal Modelling Tool. In: BCS-FACS Christmas
2007 Meeting, Formal Methods In Industry, London (2007)

12. Snook, C., Butler, M.: UML-B: Formal Modelling and Design Aided by UML. ACM Trans-
actions on Software Engineering and Methodology 15, 92–122 (2006)

13. Snook, C., Walden, M.: Refinement of Statemachines Using Event B Semantics. In: Julliand,
J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 171–185. Springer, Heidelberg
(2006)

1 http://deploy-eprints.ecs.soton.ac.uk/95/

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/

Language and Tool Support for Class and State Machine Refinement in UML-B 595

14. Plaska, M., Walden, M., Snook, C.: Documenting the Progress of the System Development.
In: Proc. of Workshop on Methods, Models and Tools for Fault Tolerance (2007)

15. OMG: UML 2.1.2 Superstructure Specification (2007),
http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

16. Bergner, K., Rausch, A., Sihling, M., Vilbig, A.: Structuring and Refinement of Class Dia-
grams. In: Proc. of the 32nd Annual Hawaii International Conference, vol. Track 6 (1999)

17. Lano, K., Clark, D., Androutsopoulos, K.: UML to B: Formal Verification of Object Oriented
Models. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp.
187–206. Springer, Heidelberg (2004)

18. Idani, A., Ledru, L., Bert, D.: Derivation of UML Class Diagrams as Static Views of Formal
B Developments. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 37–
51. Springer, Heidelberg (2005)

19. Amálio, N., Polack, F., Stepney, S.: UML + Z: Augmenting UML with Z. In: Frappier, M.,
Habrias, H. (eds.) Software Specification Methods: an Overview Using a Case Study, new
edn. Hermes Science Publishing (2006)

20. Moller, M., Olderog, E., Rasch, H., Wehrheim, H.: Linking CSP-OZ with UML and Java: A
Case Study. In: Boiten, E.A., Derrick, J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp.
267–286. Springer, Heidelberg (2004)

21. Simons, A.J.H.: A Theory of Regression Testing for Behaviourally Compatible Object Types:
Research Articles. Journal Softw. Test. Verif. Reliab. 16(3), 133–156 (2006)

22. Facon, P., Laleau, R., Nguyen, H.P.: Mapping Object Diagrams into B Specifications. In:
Methods Integration Workshop, Electronic Workshops in Computing (eWiC). Springer, Hei-
delberg (1996)

23. Ledang, H., Souquiéres, J.: Contributions for Modelling UML State-Charts in B. In: Butler,
M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 109–127. Springer, Heidelberg
(2002)

24. Sekerinski, E.: Graphical Design of Reactive systems. In: Bert, D. (ed.) B 1998. LNCS,
vol. 1393, pp. 182–197. Springer, Heidelberg (1998)

25. Lausdahl, K.G., Lintrup, H.K.A., Larsen, P.G.: Coupling Overture to MDA and UML. Master
Thesis (2008)

http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

	Language and Tool Support for Class and State Machine Refinement in UML-B
	Introduction
	Background of UML-B and Generated Event-B
	Refinement of Classes in UML-B
	Refinement of State Machines in UML-B
	Event Movement
	ATM Case Study
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

