
8. COUPLED PROBLEMS: (a) moving boundary problems 

Abstract — Multidimensional field diffusion problems with 
front-type behaviour, moving boundaries and non-linear 
material properties are analysed by a finite volume front fixing 
method. Advantages and implementation challenges of the 
method are discussed with special attention given to conservation 
properties of the algorithm and achieving accurate solutions close 
to the moving boundaries. The technique is validated using 
analytical solutions of diffusion problems with cylindrical 
symmetry.  

I. INTRODUCTION 
Design and development of modern devices based on High 

Temperature Superconductors (HTS) requires numerical 
modelling since electromagnetic and thermal parts of the 
problem are coupled together via high sensitivity of HTS 
material properties to temperature [1, 2]. Both field variation 
and heat flow can be formulated in terms of diffusion. This 
allows utilising a standard modelling approach on fixed grids 
and thus simplifying the equipment design. But such approach 
often fails to deliver appropriate balance between accuracy 
and efficiency, especially when modelling pulse events or 
shallow field penetration. Special methods, such as adaptive 
meshes, front fixing and level sets methods [3], offer 
advantages in such applications but they have to be assessed 
and probably adapted for each particular problem. The paper 
focuses on the analysis of the front fixing technique [3] since 
it requires only a small modification of the computational 
algorithm in comparison with models based on fixed grids [4, 
5]. The major challenges are an implementation of 
conservation laws and achieving accurate solutions close to 
the moving curved boundaries. The paper uses analytical 
solutions of common front type problems to evaluate the 
performance of the numerical method. Two types of the 
problem are considered, namely a current pulse and an 
imposed external magnetic flux. 

II. PROBLEM FORMULATION 

A. Governing equation and material properties 
It is possible to describe the problem in terms of either 

magnetic or electric field diffusion [6, 7]. The electric field 
formulation is preferred for HTS materials with non-linear 
properties as it provides much more stable solutions [7]. The 
governing equation takes the diffusion-like form 
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expressed in terms of the electric field E and current density J. 
HTS materials exhibit strong flux creep E-J behaviour often 

described by Rhyner’s power law [6], 1 1( )c cE E J J− − α= , 
where the critical current density Jc ≈ 109 A m−2 corresponds 
to a critical electric field Ec ≈ 10−4 V m−1. For practical HTS 
materials the power exponent α could be as high as 20. 
Substitution of the material properties into (1) results in a 
formulation of the problem in terms of the electric field only. 

B. Boundary and initial conditions 
A HTS wire with a round cross section of radius R is 

considered. For the first test, a pulse 0 0( , ) ( ) ( )zI r t I r t t= δ δ −  
of current is applied along the z axis at an instant t=t0. The 
second test case assumes an external magnetic flux Bz to be 
switched suddenly in the centre of the wire and maintained at 
a constant value afterwards. 

C. Analytical solutions 
The existence of an axi-symmetric analytical solution 

provides an opportunity to evaluate the performance of the 
algorithm on curved boundaries using the Cartesian 
coordinate system. The dimensionless solution for (1) in the 
case of cylindrical symmetry under the conditions of the 
current pulse can be derived as shown in [8] 
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The electric field and the current gradually spread from the 
centre of the wire towards the edges and there is a sharp 
interface between the region with a non-zero field and the 
outside part of the wire. A similar solution exists for the 
second test case of the applied external magnetic flux [9]. 

III. THE FRONT FIXING METHOD 

The spatial transformation uses new positional variables 
[3] adjusted to the front position and, generally, introduces a 
co-ordinate system in which all of the spatial boundaries are 
fixed to 0 or 1. As a result, the new computational domains 
remain the same with an additional advection term in diffusion 
equation plus an implicit non-linear equation for the boundary 
motion. This allows treating the nodes close to the interface as 
being independent of the motion, which gives higher accuracy 
for the same number of nodes used [4, 5]. In practical 
applications it is often sufficient to apply the transformation in 
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only one direction, resulting in additional simplification [3]. 
Equation (4) is an example of the transformed (1) in notations 
(3) for the case of cylindrical symmetry:  
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with a boundary at s(t) and a new coordinate u=ρ / s(t). A 
divergent form of (4) ensures that there are no artificial energy 
sources [5]. 
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Fig. 1. Analytical and numerical predictions for a wire with I0 = 2A, R=0.5mm 

and α=6: mesh size effects.  
Dimensionless electric field Ez(r) at t = 0.01s (time step 0.1ms). 
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Fig. 2. Front-fixing method predictions of electric field inside the HTS wire 
after different times. Modelling conditions are similar to those in Fig. 1.  

IV. COMPARISON OF COMPUTATIONAL TECHNIQUES 

Predictions from fixed grid calculations and the front-
fixing method are summarized in Figs. 1-3. Fixed nodes 
cannot adequately describe the field profile in the case of a 
shallow penetration (Fig. 1). At least 4 nodes per penetration 
depth are required, which could be computationally expensive 
for large devices. Placing nodes close to the boundary does 
not always solve the problem because the front propagates 
further into the material at later stages of the process. In 
contrast, the front fixing automatically adjusts the nodes 
towards the front boundary, Fig.2, and good accuracy is 
achieved even by only 10 nodes in total. The particular 

advantage of using a front-fixing method for modelling of 
superconductivity phenomena is that the high accuracy can be 
obtained with a small number of grid points. The interface 
motion can also be accurately predicted on a coarse moving 
mesh, Fig. 3. 
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Fig. 3. Interface position as a function of time. Modelling conditions are 

similar to those on Fig. 1.  

V. CONCLUSIONS 
The application of a front-fixing method for modelling of 

shallow field penetration into HTS materials is demonstrated 
for 2D geometry cases. Efficient techniques for incorporating 
conservation laws are suggested and potential problems with 
complex boundary conditions are considered. It is shown that 
high accuracy can be achieved on a coarse mesh since the 
interface is fixed in new coordinates. The analysis of errors 
and further implementation details will be given in the 
extended version of the paper. The finite volume method has 
been utilised in the paper as an example; the finite element 
scheme can also be used for successful discretisation of space 
and time in the transformed equations. 
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