
9. NUMERICAL TECHNIQUES 

Abstract —The paper offers a comparative study of numerical 
methods of analysis of electromagnetic fields. The focus is on the 
Finite Element Method (FEM) and Finite Integration Technique 
(FIT), but with the cell and equivalent network approaches also 
considered. It is shown how the approximate integrals describing 
coefficients of the FEM need to be derived for a mesh with 
parallelepiped elements to achieve consistency with FIT 
equations. The equivalence of FEM and FIT formulations for a 
triangular mesh in 2D is highlighted. The TEAM Workshops 
Problem No. 7 is used as an example for numerical comparisons. 
Edge values of magnetic vector potential A and nodal values of 
electric scalar potential V are used throughout. 

I. INTRODUCTION 
The finite element method (FEM) has established itself as 

the prime numerical technique for electromagnetic field 
computations, but some researchers prefer and promote the use 
of the finite integration technique (FIT) [1], the cell method 
(CM) [2] or the equivalent electric and magnetic networks 
(ENM) [3]. The similarities between CM, FIT and FEM were 
observed in [4, 5] and explored thoroughly in [6]. The main 
differences between the different approaches are related to the 
way in which space is discretised and equation coefficients set 
up, in particular the so-called ‘mass matrices’ of the FEM 
theory. [4]. The CM, FIT and ENM formulations rely on a 
discretisation which is equivalent to hexahedral FEM elements 
of 8 nodes and 12 edges (or curved rectangular parallelepipeds 
under cylindrical symmetry). The FEM mass matrices are non-
diagonal, unlike the ones arising in CM, FIT and ENM. The 
purpose of this paper is to extend and enhance the previous 
comparative analysis of the methods. It is demonstrated that 
the CM, FIT and ENM equations may be considered a special 
case of the FEM formulation. The derived approximate 
integration formulae yield the equations equivalent (identical). 

II. EQUATIONS OF FEM AND FIT 
Both nodal elements using scalar potentials Ω, V and edge 

elements in terms of vector potentials A, T are considered. The 
FEM equations for scalar potentials correspond to the nodal 
equations of the edge network with branches coinciding with 
element edges (Fig. 1a) [6]. The permeances, conductances 
and capacitances forming the mass matrix may be found from 
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where wei,j, wep,q are interpolation functions of an edge element 
for the edges PiPj and PpPq respectively, p=d/dt, and eV  is the 
volume of the element. The FEM equations for vector 
potentials, on the other hand, represent loop equations of the 

facet network, the branches of which cross the element facets. 
A portion of a network of a parallelepiped element is shown in 
Fig. 1b. The reluctances and impedances of the element model 
relate to the mass matrix elements and are described by 
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where wfi, wfq are interpolation functions of a facet element for 
the facets Si, Sq.[6]. 

The FEM mass matrices are non-diagonal; consequently so 
are the matrices of the equivalent network models. In the 
models of Fig. 1, the branches which are not perpendicular to 
each other will have a mutual coupling. Such couplings will 
also occur within the triangular 2D elements of Fig. 2. A 
model with mutual reluctances may be established using a 
facet model of a five sided prism [7].  

Equations arising from the CM, FIT and ENM formulations 
may appear to be similar to those obtained from the FEM, but 
there is an important difference that they do not contain mutual 
couplings and thus the mass matrices are diagonal, for example 
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where hy, hx, hz are dimensions as in Fig. 1.b. In the reluctance 
model of a triangle Rµi,i=hi/(µsi), with hi and si shown in Fig. 2. 
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Fig. 1. Edge (a) and facet (b) model of element 
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Fig. 2 Reluctance (facet) model of triangle 

III. DERIVING FEM EQUIVALENT TO FIT 
From circuit theory it is well known that a three branch star 

with mutual couplings may be converted into an equivalent 
one without any couplings, as demonstrated by Fig. 2. This 
may be achieved by exploiting the condition Σφi=0. It is 
therefore possible to start with different mass matrices for 
FEM and FIT and yet achieve identical matrix coefficients for 
both formulations. The above transposition, regrettably, does 
not apply to 3D systems. Notwithstanding, it is still possible to 
derive a FEM formulation which is equivalent to FIT by 
calculating the integrals (1) and (2) – required for setting up 
the mass matrix – using a simplified formula 
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which results in models free of mutual couplings, thus with 
coefficients the same as if obtained from FIT. Unfortunately, 
the procedure described by (4) is only successful – in terms of 
making the matrix diagonal – in the case of parallelepiped 
elements (it also works for curved rectangular parallelepipeds). 
The mass matrices of tetrahedral and five sided prism elements 
may be made diagonal only if complemented by additional 
assumptions regarding fluxes or currents; for example by 
imposing (or assuming) one of the facet flux or current 
densities in a tetrahedra to be negligibly small. 

IV. EXAMPLE 

The TEAM Workshops Problem No. 7 (Fig. 3) has been 
selected to illustrate the theoretical investigations [8]. The 
magnetic field and eddy current distributions have been 
calculated for a conducting plate with a hole, with the 
excitation provided by a multi-turn coil. An A-V formulation 
has been adopted with edge elements for the vector potential A 
and nodal elements for the scalar potential V. The bounded 
space has been subdivided into about 150 thousand elements, 
some 16 thousand of which were placed in the conducting 
region. The resultant system of equations corresponds to a 
reluctance-conductance network consisting of about half a 
million loop equations related to the magnetic network and 20 
thousand nodal equations of the electric network. The relevant 
parameters for the FEM model were derived using (1) and (2), 
thus creating mutual conductances and reluctances. A block 
relaxation method, combined with incomplete Cholesky 
decomposition, has been used to solve the final system of 
equations. Table I shows example values of the flux and cur-
rent densities at selected points P1 and P2 as marked in  Fig. 3.  
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Fig. 3 TEAM Workshops Problem No.7 

TABLE I 
COMPARISON BETWEEN FIT AND FEM RESULTS 

Method 
Quantity FIT FEM 

Flux density in  point P1 
Bx [T] -0.010689 -0.010747 
By [T] 0.003581 0.003583 
Bz [T] 0.008145 0.008165 

Current density in point P2 
Jx [A/m2] 83275.85 83196.15 
Jy [A/m2] 1713894.52 1710454.18 
Jz [A/m2] -39703.18 -39469.81 

The values are given for an instant of time when the coil current 
was at its maximum (a 50Hz supply has been assumed). 

For all points considered, the differences between the FIT and 
FEM results do not exceed 0.6% for flux density and 0.7% for 
current density, respectively. It appears therefore reasonable to 
conclude that the proposed approximation (4) – which leads to 
equations equivalent to the FIT method with a diagonal mass 
matrix – is perfectly acceptable without noticeable loss of 
accuracy. Moreover, the diagonal matrix is easy to invert, thus 
seeking edge values of A, representing loop fluxes in the model 
of Fig. 1b, may be conveniently replaced by an easier task of 
finding nodal potentials associated with element centres (nodes 
Qi). In the case of diffusion problems the additional advantage of 
making the mass matrix diagonal is a possibility of applying 
explicit numerical schemes [4]. 
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