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Existing Approaches

Nonlinear optimisation approach: optimise all parameters
of nonlinear model together

Very “sparse” (small size), but all problems associated with
nonlinear optimisation

Linear optimisation approach: adopt fixed bases and seek
a “linear” subset model

Orthogonal least squares forward selection: sparse and
efficient construction; need to specify RBF variance (via
cross validation)
Sparse kernel modelling methods: not as sparse as OLS;
need to specify kernel variance and other hyperparameters
(via cross validation)
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Early Orthogonal Least Squares

Orthogonal least squares methods and their
application to non-linear system
identification - S. Chen, S. A. Billings and

W. Luo - International Journal of Control,
1989
Google scholar citations: 494 ISI citations: 369
(September 2009)

Orthogonal least squares learning algorithm
for radial basis function networks - S.

Chen, C. F. N. Cowan and P. M. Grant - IEEE
Transactions on Neural Networks, 1991
Google scholar citations: 1747 ISI citations: 1174
(September 2009)
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Previous State-of-the-Art

Optimal experimental design assisted orthogonal least
squares

S. Chen, X. Hong and C.J. Harris, “Sparse kernel regression modelling
using combined locally regularized orthogonal least squares and
D-optimality experimental design,” IEEE Trans. Automatic Control, Vol.48,
No.6, pp.1029–1036, 2003

Local regularisation assisted orthogonal least squares
based on leave-one-out mean square error (LROLS-LOO)

S. Chen, X. Hong, C.J. Harris and P.M. Sharkey, “Sparse modelling using
orthogonal forward regression with PRESS statistic and regularization,”
IEEE Trans. Systems, Man and Cybernetics, Part B, Vol.34, No.2,
pp.898–911, 2004
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Combined Linear/Nonlinear Optimisation

Retain advantage of linear optimisation → Use orthogonal
forward regression to add bases one by one

Have tunable bases for enhanced modelling capability →
Use nonlinear optimisation

Each stage of OFR, optimise one tunable base, i.e.
determine base’s nonlinear parameters

How efficient this combined model construction approach?

Particle swarm optimisation aided OFR for tunable-node RBF models
produces smaller model, better generalisation and more efficient
model construction over the state-of-the-art LROLS-LOO for
constructing fixed-node RBF models
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NARX System

We consider NARX system

yk = fs(yk−1, · · · , yk−my , uk−1, · · · , uk−mu)+ek = fs(xk )+ek

uk and yk : system input and output variables; mu and my :
known lags for uk and yk ; ek : zero-mean uncorrelated
noise; fs(•): unknown system mapping, and system input
vector of known dimension m = my + mu:

xk = [x1,k x2,k · · · xm,k ]T = [yk−1 · · · yk−my uk−1 · · ·uk−mu ]
T

The technique can be extended to the NARMAX system
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Tunable RBF Modelling

Given training set DK = {xk , yk}K
k=1, construct M-node

RBF model

ŷ (M)
k =

M∑
i=1

θipi(xk ) = pT
M(k)θM

θi are linear weights, and generic RBF node

pi(x) = ϕ

(√
(x− µi)

T Σ−1
i (x− µi)

)
µi and Σi = diag{σ2

i,1, · · · , σi,m} are i th centre vector and
diagonal covariance matrix; ϕ(•) is chosen basis function

Regression model on training set DK

y = PMθM + ε(M)
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Orthogonal Decomposition

Orthogonal decomposition of regression matrix:
PM = WMAM with

AM =


1 α1,2 · · · α1,M

0 1
. . .

...
...

. . . . . . αM−1,M
0 · · · 0 1


WM = [w1 · · ·wM ] is orthogonal, AMθM = gM and
equivalent model

y = WMgM + ε(M)

After nth stage of OFR, n bases Wn = [w1 · · ·wn] are
constructed with related An

Denote k th row of Wn as [w1(k) · · ·wn(k)]
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Leave-One-Out Cross Validation

Leave-one-out error
ε
(n,−k)
k = ε

(n)
k /η

(n)
k

Modelling error of n-term model

ε
(n)
k = ε

(n−1)
k − gnwn(k)

Leave-one-out error weighting

η
(n)
k = η

(n−1)
k − w2

n (k)/
(
wT

n wn + λ
)

λ being a regularisation parameter

A generalisation measure is LOO mean square error

Jn =
1
K

K∑
k=1

(
ε
(n,−k)
k

)2
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Nonlinear Optimisation in OFR

At nth stage of OFR, determine nth RBF node by solving
nonlinear optimisation(

µn,Σn
)

= arg min
µ,Σ

Jn(µ,Σ)

There exists an “optimal” model size M such that, for
n ≤ M Jn decreases as model size n increases while

JM ≤ JM+1

Thus OFR construction process is automatically
terminated, yielding an M-node RBF model

We use particle swarm optimisation: a population based
stochastic optimisation method (Swarm Intelligence)

inspired by social behaviour of bird flocks or fish schools
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Particle Swarm Optimisation

Solving generic optimisation

uopt = arg min
u∈

Qm′
j=1 Pj

F (u)

u = [u1 · · ·um′ ]T is parameter
vector to be optimised, F (•) is
cost, and search space

m
′∏

j=1

Uj =
m

′∏
j=1

[Uj,min, Uj,max]

A swarm of particles, {u(l)
i }S

i=1,
are evolved in search space,
where S is swarm size and l
denotes iteration index

Update velocities

i

Modify
velocity

Velocity
approaches zero
or out of limits?

Yes

No
Update positions

(l)
i

out of bounds?
positionModify

position
Yes

No

Initialise particles
{ i } S

i=1

Evaluate costs {F(       )i }i=1
update{ }

Yes
Output solution gb

No

i=1

S

S

Terminate?
l=l+1 A new iteration

(l)
i and (l)

l=0

(0) (l)

(l)

u v

u

u
pb gb
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PSO Algorithm Adopted

Each particle remembers its best position visited –
cognitive information, pb(l)

i , 1 ≤ i ≤ S

Every particle knows best position visited among entire
swarm – social information, gb(l)

Each particle has a velocity v(l)
i to direct its “flying”, and

v(l)
i ∈

m
′∏

j=1

Vj =
m
′∏

j=1

[−Vj,max, Vj,max]

In our application, m
′
= 2m, each u(l)

i contains a candidate
solution for

(
µn,Σn

)
, and cost function F (u) = Jn(µ,Σ)



Motivations Problem Formulation Particle Swarm Optimisation Examples Conclusions

Outline

1 Motivations
Existing Approaches
Our Novelty

2 Problem Formulation
Nonlinear System Identification
Tunable RBF Model Construction

3 Particle Swarm Optimisation
PSO Algorithm
PSO Aided Tunable RBF Modelling

4 Examples
Engine Data Set
Nonlinear Liquid Level System

5 Conclusions



Motivations Problem Formulation Particle Swarm Optimisation Examples Conclusions

PSO Aided Tunable RBF Construction

a) Swarm initialisation: Set iteration index l = 0 and randomly

generate {u(l)
i }S

i=1 in search space
m

′∏
j=1

Uj ;

b) Swarm evaluation: Particle u(l)
i has cost F (u(l)

i ), based on
which pb(l)

i , 1 ≤ i ≤ S, and gb(l) are updated

c) Swarm update: Velocities and positions are updated

v(l+1)
i = wI∗v(l)

i +rand()∗c1∗(pb(l)
i −u(l)

i )+rand()∗c2∗(gb(l)−u(l)
i )

u(l+1)
i = u(l)

i + v(l+1)
i

d) Termination: If maximum number of iterations Imax is reached,
terminate with solution gb(Imax); otherwise, l = l + 1 and goto b)

Algorithm details can be found in the Proceeding
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PSO Algorithmic Parameters

Inertial weight wI = rand(), other alternative is wI = 0 or wI set
to a small positive constant

Time varying acceleration coefficients

c1 = (0.5− 2.5) ∗ l/Imax + 2.5, c2 = (2.5− 0.5) ∗ l/Imax + 0.5

Initially, large cognitive component and small social
component help particles to exploit better search space
Later, small cognitive component and large social
component help particles to converge quickly to a minimum

S = 10 to 20 appropriate for small to medium size problems, and
empirical results suggest Imax = 20 is often sufficient

Search space is specified by problem, velocity space can be
determined with Vj,max = 0.5 ∗ (Uj,max − Uj,min)
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Computational Complexity

Let complexity of evaluating cost function once be Csingle ⇒ total
complexity in determining one RBF node is

Ctotal = Imax × S × Csingle

Complexity of one LOO cost evaluation and associated
column orthogonalisation is order of K ⇒ Csingle = O(K )

Complexity of PSO-aided OFR in constructing M tunable-bases

CPSO−OFR = (M + 1)× Imax × S ×O(K )

Complexity of LROLS-LOO in selecting M
′

fixed-bases from
K -candidate set is

CLROLS =
(
M

′
+ 1

)
× K ×O(K )

PSO-aided OFR is generally simpler for large data set:
M < M

′
, typically Imax × S ≤ 400: when K ≥ 400, CPSO−OFR < CLROLS
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Engine Data

Data collected from a Leyland TL11 turbocharged, direct
injection diesel engine operated at low engine speed

System input uk is fuel rack position, and system output yk is
engine speed

First 210 data points for training, and last 200 data for testing
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Experiment Results

Training data {xk , yk}K
k=1 with K = 210 and

xk = [yk−1 uk−1 uk−2]
T

LROLS-LOO for fixed-node RBF model: every xk as RBF centre,
and RBF variance σ2 = 1.69 determined via cross validation

PSO aided OFR for tunable-node RBF model: S = 10 and
Imax = 20

algorithm model size training MSE test MSE complexity
LROLS 22 0.000453 0.000490 4830×O(210)

PSO OFR 15 0.000426 0.000466 3200×O(210)
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Liquid Level System Data

Nonlinear liquid level system consists of a DC water pump
feeding a conical flask which in turn feeds a square tank

System input uk is voltage to pump motor, and system output yk
is water level in conical flask

First 500 data points for training, and last 500 data for testing
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Experiment Results

Training data {xk , yk}K
k=1 with K = 500 and

xk = [yk−1 yk−2 yk−3 uk−1 uk−2 uk−3 uk−4]
T

LROLS-LOO for fixed-node RBF model: every xk as RBF centre,
and RBF variance σ2 = 2.0 determined via cross validation

PSO aided OFR for tunable-node RBF model: S = 10 and
Imax = 20

algorithm model size training MSE test MSE complexity
LROLS 30 0.001400 0.002532 15500×O(500)

PSO OFR 20 0.001461 0.002463 4200×O(500)
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Conclusions

We have developed a PSO aided OFR-LOO algorithm for
constructing tunable-node RBF models.

It combines advantages of linear and nonlinear learning.

Compared with the best algorithm for selecting subset model
from the full fixed-node candidate set,

it offers better test performance, smaller model size, and
lower complexity in model construction process.
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