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Abstract—In this contribution, we investigate a class of packet dropouts are modelled as switched systems. Because
observer-based discrete-time networked control systems (N&3)  of its importance to control system analysis and synthesis,
with random packet dropouts occurring independently in both  genaration principle has been studied for some special NCSs
the sensor-to-controller (S/C) and controller-to-actuator (C/A . . . . .
channels. We first propose and prove a separation principle for with nominal plant. For example, the se.paratlon princigle i
the genera| class of NCSs where packet dropouts in the C/A knOWn to h0|d fOI‘ the NCSs Under TCP'“ke pl’OtOCO|S, Where
and S/C channels are governed by two independent Markov packet dropouts in each communication channel can be
chains, respectively. We then derive necessary and sufficient modelled as a Bernoulli process [5]. In [7], the authors prov
conditions, in terms of linear matrix inequalities, for synthesis 4,4 separation principle for the system with nominal plant,

of stabilisation control of a class of NCSs where the C/A channel . .
is driven by a Markov chain while the S/C channel is driven where the network is only located in the sensor-to-corgroll

by a Bernoulli process. A numerical example is provided to (S/C) channel. In [17], the author derives the separation
illustrate the effectiveness of our proposed method. principle for the time-varying sampled data system under
the assumption that when the plant output is available at the
controller, the actuator also receives the related newrgbnt
An important concept in control theory is the separatiojata as well. In reality, however, the packets may be lost
principle [1]. When the separation principle holds, the conindependently in the S/C and controller-to-actuator (C/A)
troller and the observer in an observer-based control probl channels.
can be designed separately. The separation principle fe@s be Tg the best of our knowledge, no work to date has
widely used in optimal control and estimation problemshsucproposed the separation principle for NCSs where packet
as the linear quadratic gaussian (LQG) optimal control [2ropouts are driven by two independent Markov chains in
For nonlinear observer-based control problem, the séparat the S/C and C/A channels. Hence, the focus of the present
principle is also proposed for example by developping @ork is to investigate the separation principle for such
high gain observer approach [3]. Networked control system§css. Our contributions are two-fold. Firstly, we preserd a
(NCSS) haVe draWn mUCh attention in the Contl’Ol Communitﬁrove a Separation princip'e for Observer_based d|3¢m_
recently [4]-[7]. An NCS is a control system in which thenCSs where packet dropouts occur independently in both
control loop is closed via a shared communication networkhe S/C and C/A channels. We formulate this generic class
Compared to the point-to-point system connection, the usg NCSs as the Markovain jump linear system by modelling
of an NCS has advantages of low installation cost, reducinge pehaviours of packet dropouts as independent Markov
system wiring, simple system diagnosis and easy maintghains in both the S/C and C/A channels. Secondly, we
nance. However, some inherent shortcomings of NCSs, sugBrive necessary and sufficient conditions for synthegisin
as bandwidth constraints, packet dropouts and packetslelaytapilisation controller for a class of NCSs where packet
will degrade performance of NCSs or even cause instabilitnropouts in the C/A and S/C channels are governed by a
Packet dropouts, which can randomly occur due to nod@arkov chain and a Bernoulli process, respectively. These
failures or network congestion, impose one of the mos{ecessary and sufficient conditions are formulated in terms
critical problems in NCSs. Stochastic approaches based gfi linear matrix inequalities (LMIs) [18]. An illustrative
the mean square stability [8], [9] are usually adopted td degxample is provided to demonstrate our proposed approach.
with packet dropout. Under such a stochastic approach, the
packet-dropout process is typically modelled as a Bernoull
process [5], [6], [10], [11] or a Markov chain [6], [12], [13]
and the system can be viewed as a special case of jump lineairyg f4j10wing notational conventions are adopted through-

system. In some other works [14]-{16], NCSs with arbitrary, ;s the discussiorR stands for the set of real numbers and
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where E[-] denotes the expectation. Lé§, be the set of Network packet dropouts occur in both the S/C and C/A
rs with ||r||2s < oco. For positive integetV/, further define channels. Denote the binary s&t = {0, 1}. Further define
M={0,1,--- M —1}. 0s(k) € N andé,(k) € N as the indicators of the packet
Consider the following stochastic system, denoted’as dropouts in the S/C and C/A channels, respectively, where a
~ - ~ - ~ value 0 indicates that the packet is dropped while a value
{ ’f(k +1) = Af(k)x(lir Bfo)“(k)’ keN (2) indicates thatthe packet s transmitted successfully. \deem
y(k) = CoryX(k) + Doryu(k), the following generic assumption for these two binary-ealu
wherex(k) € R7, @(k) € R™ andy(k) € R7 are the state, discrete-time random variables.

input and output vectors, respectively, WhAe; € RAXA Assumption 1:0,(k) andf(k) are driven by the two in-
Bo( o € R Ce () € R and De(k) c qum The dependenthomogeneous discrete-time Markov chains, which

stochastic proces@( ) is driven by an)M-valued discrete- take values in the binarysﬁfwith the transition probability

time Markov chain [19], which takes values from the f|n|tem"itk;icbelSA )\[ i.g] dandH éﬂffr] drebspectively. Here the
set M. The transition probabilities of(k) are given by probabilities; ; and, . are defined by

pi,; = Prob@(k +1) = j | 6(k) = ¢) with p; ; > 0 and Aij = Probf,(k + 1) = j | 04(k) = i) 4)
> jemPij = 1 for eachi € M. The following result from ’
[8], [13] defines the stochastic stability of. and

Definition 1: The systemF defined in (2) is said to be T = Prol(0s(k +1) = r | 0s(k) = t), (5)

hasticall leéf for u = X R7
itet)(c(:))aes;'[}\c/la %es;a:vgi 60 ;gu(k) 0, vx(0) € and respectively, with; ; > 0, m, > 0, > jen Nig =1 and

Lemma 1:The systemF' defined by (2) is stochastically Yren e =1 Vi g t,r €N. ) )
stable if and only if there exist matricés < P; € R**7 The controllerk, similar to the one in [7], is adopted as

such that x(k+1) = Ax(k)+ Bu(k)
_ +0,(k)L(Cx(k) — y(k)), k€N (6)
P, — AT< Z pi ;P )A >0, Vi e M. { ulk) = 0.(k)Kx(k),

Lemma 2:(The bounded real lemma [13].) If there existwhere the state feedback gain matkk € R™*" and the
0 < 8 € R and matrice®) < P; € R**™ such that observer gain matrixl. € R"*9. It can be seen that a
standard observer law is employed to estimafé) using

P, 10 A, B, T ZM_Blpi P, 0 %x(k) wheny (k) is available a¥, (k) = 1, while an imitation
0 —Ii | { C, D, } { = 0 I } law is employed to estimate(k) with x(k) wheny(k) is
B unavailable a¥);(k) = 0. Also if the packet is transmitted

successfully in the C/A channel &, (k) = 1, u(k) =
Kx(k). If however the packet is lost &,(k) = 0, the

. actuator does nothing and we hawé:) = 0.
then the systent’ of (2) is stochastically stable, and fur- | et us define the state of the NG, as

thermore forx(0) = 0, Va € £5* andVv0(0) € M, we have i B
[¥ll2s < l[0ll2s /5. X(k) =[x (k) e (K)]", @)
Lemma 3:(Schur complement [18].) Given constant ma- - . -
trices G, M, H of appropriate dimensions whete and H C:ffeegkgsa.ﬁgg l; x(k). From (3) and (6), the NCF
are symmetric, the#l > 0 andG + MTH~'M < 0 if and : y

only if |: o M ] N X(k + 1) = Aga(k)gs(k)x(k)7 Vk € N, (8)
M -—-H ’
. Actuator Sensor
or equivalently,
“H M u A y
ERIR e
The NCSPK, depicted in Fig. 1, consists of a discrete- |
time plant P and a discrete-time controlleK” with the l( 04 0 ‘A<
control loop closed via a shared communication network.
The plantP is described by the state-space equation fmomomooees SR ! |0
1 X 1
{ x(h+1) = Ax(R)+Bulk), | g LK Estimator f=—
y(k) = Cx(k), Kg | L
| ! K

wherex(k) € R"”, u(k) € R™ andy(k) € R? are the state,
input and output vectors, respectively, whie € R"*", A
B € R™*™ and C € R?*" are constant matrices. Fig. 1. Networked control systetfy .



with

— A O — A 0
AOO:|:O A:|aA01:|:0 A+LC:|7 (9)

According to Lemma land (11), the subsystem (15) is
stochastically stable. Hence, we obtaine ¢5,. From (7)
to (14), a subsystem fax can readily be obtained as

Xlo _ |: A n BK _BK :| X(k —+ 1) q)ga(k)x(k) + I‘ga(k)e(k), (16)
0 A ’ 10) where
N { A+BK -BK } ( I'y=0,T7 = -BK. a7)
ne 0 A+LC |-
Partitionx as
We can now make the following two observations regarding
our NCS model. x(k) = xa(k) + xs(k), (18)

Remark 1:We assume that packet dropouts in the C/A .
and S/C channels are governed by two independent randgw{
processes. This assumption is more realistic than the one
given in [17] where the connections for the C/A and S/C
channels are assumed to be on or off at the same time. y, ;. 4 1) = @4, 1yx5(E) + Lo, re(k), x5(0) = 0.

In addition, the discrete-time system is more suitable for

modelling the NCS than the assumption of sampled-datrom Lemma land Definition 1, it is easy to showx, €
system in [17], due to the fact that data are transmitted iff,. If (13) is satisfied, then there exists a sufficiently small
the form of packets. constant) < p € R such that

Remark 2:We study the generic case where packet
dropouts occur in both the C/A and S/C channels indepen-
dently, while in the work of [7] the network is only located
in the S/C channel. Furthermore, necessary and sufficient
conditions for separation principle are derived in thisgrap

h

Xa(k +1) = @y, (1)Xa(k), x4(0) =x(0);

-1
. . 1 N
P, —® P;® — p’I- & P,T; (21 — FZPiri)
P

while the work [7] only provided sufficient results.

IIl. SEPARATION PRINCIPLE

for i € N, whereP; £ 3.\ ;P;. According to
Lemma 3 the algebraic inequality (19) is equivalent to the
following matrix inequality

In this section, we develop the separation principle for P, O & T.17[P o
the generic NCS with packet dropouts, which can then be o L1 |- { pf OZ ] { 01 I }
applied to analyse and design the state feedback gain matrix P2
and the observer gain matrix, separately. It is noted thet th &, T,
NCS Px defined in (8) is formulated as a Markovian jump X [ A0 } > 0. (20)
linear system, and we prove our separation principle in the
following theorem. This together withLemma 2yields
Theorem 1:The NCS Px (8) under Assumption lis 1
stochastically stable if and only if the following two con- %25 < ;||e||2s, (21)

ditions hold.
(i) there exist matrice€), > 0 andQ; > 0 such that

{ ég(WO,OQO + 7T0,1Q1)1§0 —Qu<0 (11)
Al (m1,0Qo0 +m1,1Q1)A1 — Q1 <0
where

Ag=A, A=A +LG (12)

(i) there exist matrice®, > 0 andP; > 0 such that

{ (I)g ()\O,OPO + /\0,1P1)¢0 — Py <0 (13)
(I)I ()\1’0P0 + )\111P1)(I)1 -P1 <0
where
d,=A, &, = A + BK. (14)
Proof: (If). From (7) to (12), a subsystem fer can

readily be obtained as

e(k+1) = Ay e(k), Vk € N. (15)

namely,x; € ¢5,. Thus,x € ¢5,. According toDefinition 1,
the NCS Py is stochastically stable.

(Only If). Because the NC® is stochastically stable,
from Definition 1 and the expression aok(k) in (7), it is
easy to showx € (5, ande € (3,. Thus, the subsystem
(15) for e is stochastically stable, and the condition (i) holds
according toLemma 1 Because’y is stochastically stable,
it is also clear that foe(0) = 0 andvx(0) € R", there exists
x € (3. On the other hand, for the subsystem (E8};) = 0
whene(0) = 0. In the case o&(0) = 0, the subsystem (16)
for x becomesx(k + 1) = ®4_(x)x(k) and is stochastically
stable. It is then obvious that the condition (ii) holds. hi
completes the proof. ]

It is noted that (11) only involved. while (13) only
involves K. Hence the state feedback control and observer
can be designed independently by assuring each separated
part be stochastically stable. This property is in accordan
with the separation principle.



IV. STABILISATION CONTROL FOR ACLASS OFNCSs (25) with diag{I, Q*l,Qfl} and applyingLemma 3 we

In this section, we study the separation principle for £an see that (25) is equivalent to (22). This completes the
class of NCSs where packet dropouts are driven by a Markdfoof according torheorem 2 u
chain in the C/A channel and a Bernoulli process in the S/C

channel, respectively. The synthesis of stabilisatiortrobis ] . -
derived for this class of NCSs in the form of LMIs. First, our 10 illustrate the effectiveness of the proposed stabibsat

assumption regarding this class of NCSs is formally made2PProach, we considered an unstaftle-order NCSPx (8)
Assumption 2:6, (k) is driven by a discrete-time Markov With the plant parameters

V. NUMERICAL EXAMPLE

chain, which takes values from the binary gétwith the 1.4 1 1 -11
transition probabilities\; ; defined in (4)4,(k) is driven by ~13 —-09 05 05
a Bernoulli process, which takes values from the binary set A= 03 —-02 -1 0 )
N with the two state probabilities, Prah (k) = 1) = « 05 —-03 -05 -1
and Prolgd,(k) =0) =1 — o
The Bernoulli proces#, (k) can be viewed as a special 07 -1
case of Markov chain, withrg; = 711 = o andm g = B— 0 -09
70,0 = 1 — a in (5). In this caseLemma 1 which presents 08 06 |’
the stability conditions of Markovian jump linear systeriss, 0.1 0
equivalent to the following lemma (See [9]). 1 06 —03 0
Lemma 4:1f 6,(k) is driven by a Bernoulli process with C= [ 0.5 0'5 Oﬁ 1 } .
Prol(f,(k) = 1) = « and Prol§f;(k) = 0) = 1 — «, then ' ‘ '

the subsystem (15) is stochastically stable if and onlyeéféh The eigenvalues of the plant were1783, —1.1818 and

exists a matrixQ > 0 such that —0.7482 4+ 0.5171 i. Assume tha¥, (k) was driven by the
A(A+LC)TQ(A+LC) + (1—a)ATQA - Q < 0. (22) Markov chain with the transition probability matrix
According to Theorem land Lemma 4 we have the A~ 0.6 04
following separation principle for the underlying NCS. 102 08 |

Theorem 2:The NCS Px (8) under Assumption 2is

stochastically stable if and only if the following two con-WhIIe 0. (k) was driven by a Bernoulli process with= 0.7,

By applying the Matlab LMI Control Toolbox to solve the

((ji;tlt?wr:asrehzlfiéts a matriQ > 0 such that (22) holds: LMIs (23) to (25) we obtained the following solution
(i) there exist matrice®, > 0 and P, > 0 such that (13) 5.3812 —6.5861 —0.2150 0.6313
holds. P.— —6.5861 17.6187 —5.0160 —0.9736
The synthesis of stabilisation control in the form of LMIs = %~ | —0.2150 —5.0160 4.1209 —0.3005 |’
for this class of NCSs is presented in the following theorem. 0.6313 —0.9736 —0.3005 0.6456
Theorem 3:The NCS Px (8) under Assumption 2is
stochastically stable if and only if there exist matrices: 10.7226  —12.6823  0.2978  —0.5937
ﬁO c Rnxn, 0 < ?1 c Rnxn, X € Rmxn' 0< Q c R7Xxn ﬁl _ —12.6823 26.2139 —6.0030 1.8370 ’
andY € R"™*? such that the following LMIs are satisfied 0.2978 —6.0030  16.7452  —6.2727
_ —0.5937 1.8370 —6.2727  4.1789
7P0 * *
v/ )\(),()AEO Py * <0, (23)
VA 1AP, 0 —Py
—?1 * *
VMo(AP; +BX) —-Py o« <0, (24)
1/ A171(A?1 + BX) 0 —?1
-Q * *

VA(QA+YC) -Q x| <0, (25)
Vv1—aQA 0 —-Q
where the notationx within a matrix denotes symmetric
entries. In this case, the state feedback and observer ga

are given byK = XP, ' andL = Q~'Y, respectively. —ah |
Proof: SetP, = fal, P, = f;l andX = KP;. By y

pre- and post- multiplying (23) and (24) wittiag{Po,I,1} -6 ‘ ‘ ‘ ‘ ‘

anddiag{P1,I,1}, respectively, and applyingemma 3we 0 5 10 15 20 25 30

obtain that (23) and (24) are equivalent to (13). Similarly, k A
setY = QL in (25). Then by pre- and post- multiplying Fig. 2. State trajectories of the plait



VI. CONCLUSIONS

25
—el In this contribution we have studied a class of NCSs where
2 ez random packet dropouts occur independently in both the S/C
1.5} o 22 1 and C/A channels. Our new contributions have been two-

fold. Firstly, we have established and proved a separation
principle for the generic NCS where packet dropouts are
driven by two independent Markov chains for the S/C and
C/A channels, respectively. According to this separation
principle, the state feedback controller and observerlier t
underlying NCS can be analysed and synthesised separately.
Secondly, we have presented the LMI solution that stakilise

a class of NCSs where packet dropouts in the C/A and S/C
channels are governed by a Markov chain and a Bernoulli

-2 : : : : : process, respectively. A numerical example has been in-
0 5 10 15 20 25 30 | : .
K cluded to illustrate our proposed design approach.
Fig. 3. Error trajectories between the state and the estmuditthe NCS REFERENCES
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