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1 Overview

This is a Deliverable of the Personal Information Navigator Adapting Through Viewing,
PinView, project, funded by the European Community’s Seventh Framework Programme
under Grant Agreement n°® 216529.

The report constitutes the last output of the Work Package 6 Semantic sub-categorisation
features which aims at improving the state-of-the-art in visual categorisation performance.
The main research outcomes of Task 6.3 Sub-categorisation with limited data are described
here.

According to the description of work (DoW), task 6.3 of PinView concerns the limited data
available for sub-categorisation. Tautologically, sub-categories are associated with fewer data
than categories, and rare sub-categories with fewer still. To overcome the lack of training data
for a given category, a natural solution is to make use of data from other categories, especially
from related ones. This requires some sort of joint learning of sub-categories. Hence, we first
propose hierarchies of classes to grasp the inter-dependencies that the individual learners
may not have properly captured. We will show however that, although the learned semantic
hierarchies are very reasonable from the perspective of a human, they do not lead to an
increase in classification accuracy and may even incur a loss. This part of the work will be
continued in WP 5.3 (feature selection) and the results will be delivered in the corresponding
deliverable.

The DoW of Task 6.3 of PinView also points that parts and sub-parts of objects (and
images) may have very different mean appearances. This indicates that there is a need for
a method which learns the relationship between parts and sub-parts of objects. Hence, in a
second part, we propose to learn a model of parts hierachies. We will show that it can lead
to a significant increase in image region labeling accuracy.
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2 Introduction

The art of multilabel classification lies in reliably detecting and exploiting interdependencies
between classes. A base classifier that is trained on enough examples will also learn these
interdependencies. However, in the common case where the training set is not sufficiently
large, a base learner e.g. for cars may not fully grasp the interdependency between cars and
roads. This defect can be corrected by having a base learner for roads that will be able to
learn roads from more training examples than just those where also cars appear. That way,
combining the road classifier with the car classifier in a suitable way will also improve the
performance for classification of cars.

Following this principle, in the section 3 we present a simple method for multilabel learning
based on the combination of binary base classifiers. The main idea is to train binary classifiers
and then feed the confidence scores of these base learners into a support vector machine (SVM)
in order to improve prediction accuracy. The idea behind this is that in contrast to stacking
approaches where the combination of base learners is learnt explicitely, here the meta-level
learner grasps also inter-dependencies that the base learners have not properly captured.

The DoW of Task 6.3 of PinView also points that parts and sub-parts of objects (and
images) may have very different mean appearances. This indicates that there is a need for a
method which learns the relation between parts and sub-parts. In the second part of this de-
liverable 4, we propose therefore a method for image and sub-image categorisation which can
benefit from a hierarchy of categories that is analogous to the notion of inheritance in object-
oriented programming. More general categories are more likely to occupy larger portions
of an image or even the whole image, whereas more specific sub-categories are topologically
contained in categories. We encoded this type of relationship in a graphical model in which
sub-parts always correspond to lower levels than parts. We employed structured learning to
learn the relationship between the appearance of parts and sub-parts (even though we may
not not necessarily assign different labels to parts/sub-parts). This enables a structured de-
scription of images which can be used to label its regions, an essential step towards semantic
image segmentation.

3 Learning Meta Classifiers and Meta Classes

In multilabel classification problems there are usually interdependencies between classes. For
example, when labeling images it is rather unlikely that an image containing a sheep also
shows an aeroplane. On the other hand, images containing cars will usually also contain
roads. The art of multilabel classification lies in reliably detecting and exploiting these
interdependencies. A base classifier that is trained on enough examples will also learn these
interdependencies. However, in the common case where the training set is not sufficiently
large, a base learner for cars may not fully grasp the interdependency between cars and roads.
This defect can be corrected by having a base learner for roads that will be able to learn roads
from more training examples than just those where also cars appear. That way, combining
the road classifier with the car classifier in a suitable way will also improve the performance
for classification of cars.

In this section, we present a simple method for multilabel learning based on the combi-
nation of binary base classifiers. That is, we propose to train for each label a binary base
classifier. Then we feed the output (i.e., the confidence scores) of these binary base learners
into a support vector machine (SVM) in order to improve prediction accuracy.

The basic concept underlying this simple approach resembles stacking [45] methods: In the
stacking framework the output of several (distinct) base classifiers is combined by a meta-level
learner to give an improvement in (binary or multiclass) classification. In the multiclass case
usually multiclass classifiers are used as base learners and as meta-level learners (cf. [8, 34]).
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Figure 1: Fig. 1(a) shows the two layer architecture for learning the interdependencies between
the individual classes and Fig. 1(b) the two layer architecture with additional meta-classes
classifiers (marked yellow).

While the idea behind stacking is that the metalearner shall be able to combine the base
learners in a more sophisticated way than doing simple voting or cross-validation [45], in our
method the meta-level learner shall grasp interdependencies between the single classes that
the base learners have not properly captured.

3.1 Learning Meta Classifiers

Our algorithm uses binary base classifiers h(*)(z) that are trained to recognize single classes
C). In order to better capture interdependencies between the individual classes we propose
combining the confidence scores of the different base classifiers by simply feeding them into a
support vector machine (SVM). The two layer approach is shown in Fig. 1(a). We consider the
following multilabel problem: Given is a set of training examples {z1,...,x,} C X together
with labels for N different classes {C1,...,Cn} (where each Cy C X). That is, for each
training instance x; and each class C} the respective label is

k) +1 ifx; € Cy
Vi —1 otherwise.

(k)

As the problem is assumed to be multilabel but not necessarily multiclass, y; = 1 not

necessarily implies that y(e) =0 for { # k.

(2
We first train for each class Cj a corresponding (binary) base learner h(*) that shall be
able to predict the labels ygk) well. Each base classifier returns a confidence score sgk) (z;) for
each training example z;. In our case this will be a real value (the distance to the separating
hyperplane) that is positive if the classifier predicts that z; is in the target class and negative
otherwise. Let s*)(z) be the confidence score returned by base classifier h(*) for class Cj, on
training instance x. The collected confidence scores are then used by N metalearners, one

for each class Cj, where the training set consists of the vectors
Vi = (5(1)(%‘)’ 5 (zi)y- -, s(N_l)(xz% sV) (%)) (1)
(k)

for all training instances x;. The label of each v; is simply the label y;" of x; with respect

to class Cj.
3.2 Adding Meta-classes based learners

The idea of our second method is to use information of the meta-classes (group of classes)
to improve the performance of our two layer approach described in 3.1. This is done as
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Figure 2: Taxonomy tree of visual similarity of the classes on the VOC2006 dataset.

follows. In addition of the N base learners h(%), we train in addition M binary classifiers
R (), ... hM)(z;) one for each meta-class. The confidence scores from the N base learners
and the M meta-class base learners are concatenated to a new vector:

vi= (sV (@), .., s (@), s @), s (@), @

This vector is used for learning the SVM in the second stage (see Fig. 1(b)).

In which follows, we show that visual similarities between the classes can be used in data-
driven creation of a taxonomy of object classes and allow automatically building a meta-class
structure based on the similarity between classes.

3.3 Automated Construction of Meta-classes

Here we present our method to build a meta-class structure based on the similarity of classes.
To do this, first, we train for each class C}, a corresponding base learner h*) and then analyze
the performance of the binary base learners. The main idea is to group classes which are
difficult to separate in a so-called “new meta-class”.

For that purpose, we first calculate pairwise misclassification rates between all class pairs.
That is, we assessed the similarity of two classes by studying the difficulty of separating them.
For achieving optimal classification we used a k-nearest neighbor classifier with optimization
of the k value and sequential forward selection (SFS) of the used visual features. When the
two classes which were the most difficult to separate were found, we created a virtual joint
class of those two and re-calculated all pairwise misclassification rates. We repeated the
joining process until all classes were grouped.

Meta-classes on the VOC2006 Dataset. As an example, we show how this works in
the case of Pascal Visual Object Classes Challenge 2006 (VOC2006) dataset [12] (see details
in 3.4). For the experiments, we used the low-level features of the PicSOM image analysis
framework [24]. The joining process produced the unbalanced binary tree of the ten classes
shown in Figure 2. We argue that even though this visual class taxonomy has been created
purely from low-level visual feature data, it coincides to some extent with the corresponding
semantic class taxonomy one might come to by mental contemplation.

In the VOC data, there exist class pairs (motorbike, bicycle), (cat,dog) and (cow,sheep)
which tend to be misclassified and are therefore combined in the early stages of the taxonomy
tree formation process of Figure 2. Some of the later merges are, however, not as straight-
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forward to interpret. (One may actually state that such an iterative merging process which
only relies on local information is bound to be chaotic.)

The same principle can be used also to create a one-dimensional, non-hierarchical order-
ing of the classes where mutually similar ones reside near each other. In order to achieve
this, we again calculated the misclassification rates between all class pairs and regarded the
misclassification rate between each class and itself as 100%. For each class, all the classes
were then ordered in the order of descending misclassification rate. In this process, the ordi-
nal number 0 was always assigned to the class itself, number 1 to the class with the highest
misclassification rate, ie. the highest visual similarity, number 2 for the second highest mis-
classification rate, etc. This led to a square matrix where each row was associated with one
class and the numbers in the columns (ordered in the same order as the rows) displayed the
similarity rankings of that class with all classes. We then swapped the rows and columns
of the matrix so that the smallest numbers we forced to reside along the diagonal and the
first subdiagonals whereas the largest numbers were moved to the anti-diagonal corners. The
resulting ordering and ordered similarity matriz is shown in Table 1.

bus 03241567898
car 3024156798
motorbtke 4 5 0 1 2 3 6 7 9 8
bicycle 7610245389
person 76 13025498
horse 983 6103257
cat 8 954320157
dog 8 976 32105 4
cow 8 876 5 24301
sheep 9857436 210

Table 1: Ordered similarity matrix of the VOC2006 object classes.

It can be seen again that there exist obvious pairs (motorbike, bicycle), (cat,dog) and
(cow,sheep), but they are now aligned on a linear continuum between the two opposites, bus
and sheep.

Meta-classes on the VOC2009 Dataset. After the inspection of the visual taxonomy
tree for the VOC2006 dataset, we built the tree for the Pascal Visual Object Classes Challenge
2009 (VOC2009) dataset [11] (see details in 3.4). The tree structure for VOC2009 dataset is
shown in Fig. 3.

It can be seen that the classes car, bus, and train are difficult to separate. Additionally,
the classes bicycle and motorbike are also difficult to classify and are grouped as a new meta-
class two-wheels. The classes aeroplane, boat, and tv/monitor are at the top of the tree,
which means they are not similar to other classes. The generated grouping looks plausible
and therefore we can assign meaningful class names for the meta-classes.

The tree for VOC2009 has M = 8 meta-classes (yellow ellipses), which are used to train
additional binary base learners h'(z;), ..., M (z;) in Equation (2).

3.4 Experiments

We conducted experiments on the image classification database taken from the Pascal Visual
Object Classes Challenges 2006 (VOC 2006) [12] and 2009 (VOC2009) [11]. The VOC 2006
dataset contains 10 classes in 5,304 images, on which a total of 9,507 annotated objects can
be found. The VOC 2009 dataset contains 20 classes in 9,963 images with 24,640 annotated
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Figure 3: VOC2009 tree structure generated by merging similar object classes based on the
similarity matrix. The yellow ellipses are new meta-classes.

objects. Both are multilabel datasets. These datasets are split into a fixed training, valida-
tion, and test set. In the VOC 2006 database the training set contains 1,277 images. The
validation set has 1,341 images and the test set 2,686 images. The VOC2009 database has
3,473 training images, 3,581 validation images, and 6,650 test images. From the datasets we
extracted various visual features for learning. A list of the extracted features can be found
in Tab. 2.

fi ... texture statistics of segments [15]

fo ... subsampled grayvalues

fs ... subsampled grayvalues (intensity normalized)
f1 ... basic moments

f5 ... basic moments (intensity normalized)

fe ... moment invariants [16]

f7 ... moment invariants (intensity normalized)

fs ... SIFTs [29]
fo ... PCA-SIFTs [20]
fio ... Color-SIFTs [43]

Table 2: Feature types for the experiments

The training of the base learners was done on the training dataset using the independent
validation set for parameter selection. For learning the second stage of the architecture,
the selection of the kernel and the parameters was done using 5-fold cross-validation on the
validation data. After that, we learned the combined classifiers using the validation data. All
reported results are from the evaluation on the test data.

Classification Experiments without using Meta-class Information. We compare
our results with a simple one-vs-all classifier architecture. Each one-vs-all classifier was
trained using the training and validation set together and the parameter selection was done
with using 5-fold cross-validation. As evaluation criterion we use the the average precision
(AP).

All results for the VOC2006 can be found in Tab. 3. We used for that experiment a linear
kernel for the SVM. The original one-vs-all classifier is outperformed by our algorithm by
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9.53%.

original | combination | impr.

class one-vs-all linear
bicycle 61.12 61.36 0.24
bus 27.32 51.66 24.34
car 70.92 74.03 3.11
cat 24.41 37.13 12.72
cow 18.92 23.41 4.49
dog 25.88 32.16 6.28
horse 12.12 22.44 10.32
motorbike 33.19 47.09 13.90
person 35.16 42.55 7.39
sheep 29.39 41.87 12.48
| avg 33.84 43.37 [ 9.53 |

Table 3: Comparison of the classifier using a one-vs-all architecture, and our approach with a
linear kernel on the VOC 2006 dataset. Results are in percentage using the average precision
measure.

For the VOC2009 we used a linear, polynomial, and RBF kernel. We chose the best kernel
per class using cross-validation. The results for the VOC2009 are shown in Tab. 4. The mean
average precision of our combination of the base classifiers is 53.09%, which compared to our
base line means a performance increase of 2.95%.

Classification Experiments using Meta-class Information. We conducted initial
experiments using automatically obtained meta-class for VOC2009 as described in 3.3 and
adding these meta-class information as additional input in the Equation (2) of Section 3.2.
The combination with additional meta-class information has a performance of 51.10%. The
one-vs-all classifiers has a performance of 50.14%, therefore our method increases the per-
formance by 0.96%. However, the simple combination (meta learners without meta-class
information) method as described in Section 3.1 has a performance of 53.09%, which is our
best result for the VOC2009 dataset. Our first experiments show that using additional clas-
sifiers from meta-classes give a performance loss of 1.99%. Additional experiments have to
be done to investigate this outcome and also the effect of different tree structures on the
performance. The reason for the decreased performance might be overfitting.

3.5 Conclusions and Open Questions

Our method of combining classifiers for multilabel classification is appealingly simple and
works quite well. Our two layer approach can learn relevant interdependencies between
classes. Therefore we got mean performance improvements of 9.53% (VOC2006) and 2.05%
(VOC2009). We also showed that our automated construction of taxonomy trees based only
on low-level features gives interpretable meta-classes. The main open question is whether
the performance can be improved using meta-class information, but our results so far are
negative.
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class one-vs-all | combination ‘ impr. ‘
aeroplane 77.0 79.5 2.5
bicycle 48.5 52.1 3.6
bird 53.3 57.2 3.9
boat 57.0 59.9 2.9
bottle 28.9 29.3 0.4
bus 63.9 63.5 -0.4
car 51.9 55.1 3.2
cat 52.1 53.9 1.8
chair 48.5 51.1 3.0
CcoOw 30.8 31.3 0.5
diningtable 31.1 42.9 11.8
dog 43.6 44.1 0.5
horse 54.7 54.8 0.1
motorbike 55.5 58.4 2.9
person 77.2 81.1 3.9
pottedplant 19.8 30.0 10.2
sheep 36.0 40.2 4.2
sofa 46.3 44.2 -2.1
train 71.7 74.9 3.2
tv/monitor 54.9 58.2 3.3
| avg 50.14 53.09 | 2.95 |

Table 4: Comparison of the classifier using a one-vs-all architecture, and our approach on
the VOC 2009 dataset. Results are in percentage using the average precision measure.

4 Hierarchical Image-Region Labeling via Structured Learn-
ing

When classifying and segmenting images, some classes will be possible to identify based
on global properties of the image, whereas others will depend on highly local information;
many approaches deal with this problem by extracting features at multiple scales. However,
segmentation based on local information can be highly noisy unless smoothness constraints are
enforced. These two facts present a problem from a learning perspective: while it is possible
to learn a first-order classifier which incorporates information from multiple scales, learning
a classifier which enforces smoothness constraints is an example of structured learning, which
appears to have made very little progress in this area due to the NP-hardness of many
smoothness-enforcing algorithms.

In this section, therefore we will present a tree-structured graphical model that can be used
to enforce smoothness constraints, while incorporating image features extracted at multiple
scales. The tractability of this model will render it easily amenable to structured learning,
which we believe is novel in this kind of segmentation scenario. We will define a loss based on
approximate segmentations of an image (such as bounding boxes), allowing us to exploit the
large amount of information in datasets such as VOC2007 and VOC2008 [9, 10]. We will use
visual features from [6], which appear to exhibit state-of-the-art performance in classification
problems, and show that their patch-level classification performance can be improved by
structured learning.

The main contributions of this section are as follows: firstly, in contrast to many patch-
level segmentation schemes, inference in our model is efficient and exact, allowing us to
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circumvent the problems encountered when performing structured learning with approximate
algorithms. Secondly, instead of parametrizing our model using image features directly, our
model is parametrized using the outputs of a series of first-order classifiers, and can therefore
easily extend and combine existing first-order classification approaches.

4.1 Related literature

The idea of partitioning an image into regions at multiple scales is certainly not novel [17,
25]. However, these papers are solely concerned with global categorization, whereas we also
consider the problem of local region labeling. Furthermore, we shall not use the features
of the image regions themselves, but rather our features are probability scores generated by
existing first-order models, such as those from [6].

The approach of using tree-structured graphical models to incorporate global data into
local segmentation problems (or simply to circumvent the problems associated with grid-
structured models) is also not new; see for example [18]. However, to our knowledge, our
approach is the first to apply structured-learning in this scenario, in order to improve the
classification results of first-order classifiers. Similarly, others use information at an image-
level to guide segmentation at the patch-level [37]. Other papers using similar approaches
(though for different applications) include [33, 13, 39].

Many papers use lattice-structured Markov Random Fields (MRFs) to deal with the
problem of patch-level segmentation. The unary and pairwise terms in such models may be
similar to ours, i.e., the pairwise energy typically denotes a smoothness constraint. Energy
minimization in such a model is NP-hard in the general case, so approximate forms of inference
must be used [46]. There are many examples in this framework, though some important
papers include [3] (a-ezpansion, af-swap), [36] (normalized cuts), and [26] (log-cut). [40]
presents a comparative study of these ideas. We avoid such models as the need to perform
approximate inference is of major concern from a learning perspective.’

Other authors also use grid structured models, but restrict their potential functions such
that the energy minimization problem can be solved exactly. Examples include boolean-
submodular functions [22, 2], lattice-submodular functions [21], and convex functions [19].
However, the energy functions we wish to use certainly do not fall into any of these categories.

4.2 Overview of the proposed graphical model M

The nodes (X) in our graphical model (M) are similar to the regions used in [17, 25] (though
in those papers, they do not form a graph); these nodes are depicted in Figure 4, and will
be indexed by x; (; jy where [ is the node’s level in the graphical model, and (i, j) is its grid
position. In fact, a similar graphical model has been suggested for binary segmentation in
[27].

In words, a node on level k is connected to a node on level k 4 1, if and only if the regions
corresponding to these nodes overlap. More formally,

Ty (i) 18 connected t0  {Tk i1 (22)) Tht1,(20,2j41) Tho 1,204 1,2)) Tht 120112541 ) (3)

(equivalently, zy, (; ;) is connected to xy_; (;/2/2)). Note that the graphical model is undi-
rected. It is worth noting that there are no connections between nodes at a given level, and
as such we are not enforcing neighborhood constraints per se. Neighborhood constraints will
only be enforced indirectly, due to the fact that neighbors are connected via their parents.?
Such a formulation is preferable because it results in a tractable graphical model (it forms

!Some papers make an exception to this rule, such as [5] and [35]. Recently, some theoretical results have
been obtained regarding the performance of structured learning in such cases [14].
2In other words, we assume that two neighbors are conditionally independent, given their parents.
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Figure 4: Nodes on the first four levels of our model. Nodes are indexed by z; (; ;) where [ is
the node’s level in the graphical model, and (i, j) is its grid position.

a quadtree), whereas enforcing neighborhood constraints directly typically requires that we
resort to approximate forms of belief propagation.

The number of levels in this graph will depend on the size of the images in question, as
well as how densely image patches are sampled. In practice, our graph is built to the maximal
depth such that every region contains at least one patch, meaning that the ‘regions’ on the
bottom level are essentially ‘patches’. Details are given in Section 4.5.

4.2.1 Modeling hierarchical constraints in M

When used in a classification scenario, this model will ensure that nodes on higher levels of
the hierarchy (i.e., nodes with smaller values of [) will always be assigned to at least as generic
a class as nodes on lower levels; this is precisely analogous to the notion of inheritance in
object-oriented programming. The simplest inheritance diagram (denoted H) that we may
use is depicted in Figure 5.

Note that in H, the class ‘background’ is actually a child of all specific classes; this is
done because our training data may only approximately segment the image (i.e., using a
bounding box). Thus an object that is classified as ‘cat’ on a higher level may be separated
into ‘cat’ and ‘background’ on the level below. In principle, we could add additional classes
to the hierarchy, representing ‘clusters’ of specific classes — for instance, tables and chairs
may only appear in indoor scenes, whereas sheep and horses may only appear outdoors. The
problem of learning such a visual hierarchy has been addressed in [38] (among others), and
incorporating such hierarchies is certainly an avenue for future work.

These requirements will be enforced as hard constraints in M (i.e., assignments which
disobey these constraints will have cost oo). We will use the notation a < b to indicate that
a class a is less specific than b.
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Figure 5: The simplest possible hierarchy; the most general possible assignment simply states
that an object may belong to any of multiple classes; the least general states that an object
does not belong to any class (| denotes ‘more general than’). Class labels are taken from
[9, 10], though any set of labels could be used.

4.3 Probability maximization in M
4.3.1 Unary potentials.

In the most general case, the unary potentials (i.e., first order probabilities) in M are defined
as follows (note that we have suppressed the subscript of the region x for brevity):

Blaiy) = (@'(z.9), 6™, 4

where y € H is the class label to which the region x is to be assigned, and 67°9 is a feature
vector parametrizing ®!(x, %) — the joint feature map of the node x and its assignment y.
In our specific case, we wish to ensure that the class label given to x was given a high
probability according to some first-order classifier (such as that defined in [6]). Specifically,
suppose that such a classifier returns a vector of probabilities P,; then our joint feature map
may be
®Hx,y) = (0,...,Ppy,...,0) . (5)

0 everywhere except the yt" entry

In words, if x is assigned the class y, then the probability given by the first-order model
should be high (weighted by 9;0(165).3

There are two straightforward generalizations of this model which may be desirable:
firstly, we may wish to learn a separate parametrization for each level of the hierarchy. In this
case, we would have a copy of ®!(x,y) for each level of the hierarchy, and use an indicator
function to ‘select’ the current level. The second generalization would be to parametrize
multiple first-order classifiers, which return probabilities P} --- PS¢ (for instance, features
based on histograms of orientations; features based on RGB statistics, etc.). In this case,
our joint feature map will simply be a concatenation of the individual feature maps defined
by each classifier (i.e., it will be nonzero in exactly C' locations). We will use both of these
generalizations in our experiments (see Section ?77?).

4.3.2 Pairwise potentials.

Similarly, we define pairwise potentials for nodes xy and x4 (suppressing the remainder of
the index):

E(Xky Tha 13 Yy Yhg1) = <‘I>2($k7«’13k+1;yk7yk+1)796dges> : (6)

This time the joint feature map ®2 should express two properties: firstly, the constraints
of our hierarchy should be strictly enforced; secondly, nodes assigned to the same class on

3To simplify, E(x;y) = P,,0,. The formulation in (eq. 5) is used simply to express this as a linear function
of #7°9°5. Also, we use log(Py,,) in practice, since we are maximizing a sum rather than a product.
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different levels should have similar probabilities (again using the probabilities Py, and P,
returned by our first-order classifier).
To achieve these goals, we define the indicator function H as

oo if yg = Yk,
H(yk,yp+1) =9 0 if yk < yr+1, (7)
1 otherwise (yx = Yg+1)-

Note that this indicator function enforces precisely the hierarchical constraints that we desire.
It also specifies that there is no cost associated to assigning a child node to a more specific
class — thus we are only parametrizing the cost when both class labels are the same. Our
joint feature map now takes the form

2
D (2k, T3 Yo Y1) = —H (Y, Y1) | Poy — Poprr |7 (8)

where [p| is the elementwise absolute value of p. Again we may make the same extensions to
this model as outlined in Section 4.3.1.

4.3.3 The potential function

The complete maximization function is now defined as

X) = 0,..., Pyuis), ..., 0), 0000
90(X) argglaxz<( (@) 0) )

+ Z <H(yk(xk)7yk+1($k+1))|ka_ka+1 2,9edges>, 9)

xk,mk+1€M

where 6 is simply the concatenation of our two feature vectors (6"°9¢s; 9°d8es) " and y(z) is

the assignment given to x under ) (the full set of labels). As the nodes in M form a tree,
this energy can be maximized using the Junction Tree Algorithm (see, for example [1]). The
running time of this procedure is in O(|M||H|?), where | M| is the number of nodes and |H|
is the number of classes.

4.3.4 Loss function

Our loss function specifies ‘how bad’ a given assignment X" is compared to the correct assign-
ment ). We desire that our loss function should decompose as a sum over nodes and edges
in M (for reasons shown in Section 4.3.5).

Firstly, we must specify how our training labels ) are produced using existing datasets.
One option is simply to assign the class ‘multiple’ to all regions with which multiple bounding
boxes intersect, to assign ‘background’ to all regions with which no bounding boxes intersect,
and to assign a specific class label to all others. Specifically, we will define a loss function of

the form
|X]

AX,Y) =" 6(wi, i) (10)
i=1

One such loss is the Hamming loss, which simply takes the value 0 when the region is cor-
rectly assigned, and 1/| M| otherwise, where | M| is the number of regions (or more formally
0(xi,yi) = ﬁ(l — Itz (i) In practice, we scale the loss so that each level of our graph-
ical model makes an equal contribution (i.e., a mistake on level k& makes four times the
contribution as a mistake on level k + 1).

4When multiple classes are observed in a single region (i.e., when the correct label is ‘multiple’), no penalty
is incurred if one of these specific classes is chosen.
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4.3.5 Structured learning in M

Here we present a brief overview of the Structured Learning framework described in [42], and
demonstrate that the current application can be expressed in this framework.

4.3.6 The risk functional

The risk functional that we would like to optimize (over the parameter vector 6) takes the
form
1
argmin| - > Algo(X™), V) +  AJ6J2 . (11)
0 n=1

regularization term

empirical risk

where ¢ is our (f-parametrized) function which classifies the training sample X", V" is the
correct class of X", and A(y*,y") is our loss function, encoding the cost of making the
classification y* when the correct class is y™.° These terms have all been defined for the
present application in Section 4.3.

In the case of an SVM, the loss function A would simply be a 0/1 loss (i.e. 0 if the
classification is correct, 1 if not). In the present case, we use the loss described in Section
4.3.4. This highlights a very important difference between the present model and an SVM:
note that for a binary classifier (in the separable case), the empirical risk can be decomposed
into a set of constraints which are linear in 6, resulting in a convex optimization problem (since
the regularization term is typically convex). However, in the case of structured classifiers,
the loss is piecewise constant in 6, and is certainly not convex. Thus we cannot hope to solve
(eq. 11) exactly in the structured case.

4.3.7 The soft-margin formulation

The soft-margin formulation of structured learning is again very similar to that of SVMs:

N

minimizeg ¢ % Z &n + AQ(0) (12a)
n=1

subject to (B(A™,J") — B(X™, ), w) > Ay, V") — &, (12b)

for all n and y € S,

where S is the space of all possible labellings for our training samples. Note that this is
equivalent to the soft-margin formulation of SVMs, but for two differences: firstly there is an
additional term ®(X™, V") (the ‘potential’ of choosing the correct assignment, as defined in
Section 4.3.3).% Secondly, the number of constraints in the optimization problem is greatly
increased: while there were only N constraints in the SVM formulation, there are now N|S|.
This is clearly a problem, since the space in which we are working may be exponentially large.
Also, given the piecewise constancy of A in the structured case, we are no longer minimizing
(eq. 11) exactly, but instead we are minimizing a convex upper bound on the risk.

4.3.8 Column generation

Since we are naturally unable to include all of the constraints in (eq. 12), we seek a procedure
which helps us choose the ‘best’ constraints; this procedure is known as column generation.

®N is the number of training samples; Q() is a regularization term (such as the [? norm of 6); the
hyperparameter A controls the importance of this term, and is in practice selected using our validation set.

S Actually, this term does appear in the SVM formulation, but it is factored into the terms denoted b and
¥ in [4].
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We wish to find the most violated constraints in (eq. 12), and add these to the optimiza-
tion problem. In order to do so, we need to solve (for each n)

In = argmax (X", ), w) + Ay, V)], (13)

as this is the term for which the constraint in (eq. 12b) is tightest (i.e. the constraint
that maximizes &,). Typically, in order for this problem to be tractable, we require that A
is decomposable so that this function can be optimized using the same procedure used to
optimize (eq. 9).”

Assuming these requirements are satisfied, the problem will now be solvable by standard
optimization procedures, which we will not cover here.

4.4 Structured Learning in the Present Framework

The framework described in [42] and above requires that we are able to solve (in addition to
(eq. 9) itself)

X) = 0,..., Pyuin), ..., 0), 0000
0(¥) = axgmax 3 (( Yays 5 0), 070 )

S (H@) s @) Poy = Pag[1095) + A, D), (14)

Th Lt 1 eM

As mentioned, this is possible as long as A(X,)) decomposes as a sum over the nodes and
edges in our model (which is certainly true of the Hamming loss).

4.5 Experiments

We used images from the VOC2007 and VOC2008 datasets to evaluate our model. Specif-
ically, we used VOC2008 for training and validation, and VOC2007 for testing (as testing
data for VOC2008 is not available). This presents a learning scenario in which there is a
realistic difference between the training and test sets. The training, validation, and test sets
contain 2113, 2227, and 4952 images respectively. The validation set is used to choose the
optimal value of the regularization constant .

We extracted SIFT-like features for our model on uniform grids at 5 different scales [28].
We used the methodology of [6] based on Fisher vectors to extract a signature for each region.
A patch is considered to belong to a region if its centre belongs to that region, and its overlap
with the region is at least 25%. We used three different first-order classifiers, based on sparse
logistic regression: one which has been trained to classify the entire collection of features in
an image (the ‘image-level’ classifier), one which has been trained on bounding-boxes (the
‘mid-level’ classifier), and one which has been trained on individual patches (the ‘patch-level’
classifier). The baseline to which we compare our method is one which simply selects the
highest score using these individual classifiers (i.e., no consistency information is to be used).
This baseline is similar to what is reported in [6], though it is important to stress that their
method was not optimized to minimize the same loss that is presented here. We also report
the performance using the image prior defined in [6], which rejects labellings at the patch
level which are inconsistent with the probability scores at the image level.

Classification scores for the classes ‘background’ and ‘multiple’ were extracted automati-
cally from the first-order scores: the probability of belonging to the background is 1 minus the
highest probability of belonging to any other class; the probability of belonging to multiple

"To be completely precise, (eq. 13) must be solved at training time, whereas (eq. 9) must be solved only
at testing time.
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‘ Training ‘ Validation ‘ Testing ‘
Baseline (see [6]) 0.272 (0.004) | 0.273 (0.004) | 0.233 (0.003)
Baseline with image prior (see [6]) | 0.275 (0.005) | 0.276 (0.004) | 0.238 (0.003)
Non-learning 0.235 (0.006) | 0.224 (0.005) | 0.233 (0.004)
Learning 0.460 (0.006) | 0.456 (0.006) | 0.374 (0.004)

Table 5: Performance of our method during training, validation, and testing (for the optimal
value of \), compared to non-learning methods. The value reported is simply the proportion
of correctly labeled regions, with each level contributing equally (i.e., one minus the loss).
Values in parentheses indicate the standard error (across all images).

’ ‘ Level 0 ‘ Level 1 ‘ Level 2 ‘ Level 3 ‘

Baseline (see [6]) 0.342 0.214 0.232 0.163
Baseline with image prior (see [6]) | 0.342 0.217 | 0.242 0.169
Non-learning 0.426 0.272 0.137 0.112
Learning 0.413 0.307 | 0.349 0.444

Table 6: Performance on each level of the graph (on the test set).

classes is the twice the product of the two highest probabilities, capped at 1 (so that if two
classes have probabilities greater than 0.5, the product will be greater than 0.5 also).

Structured learning was performed using the ‘Bundle Methods for Risk Minimization’
code of [41]. This solver requires only that we specify our feature representation ®(X,)) (eq.
5, 8), our loss A(X,)) (eq. 10), and a column-generation procedure (eq. 14).

A performance comparison between the learning and non-learning versions of our ap-
proach, as well as the baseline is shown® in Table 5. Figure 6 shows” an example match from
our test set. Table 6 shows the contribution to the loss made by each level of the graphical
model and Figure 7 shows the weight vector learned by our method. Note that our model
exhibits a substantial improvement over the baseline, and non-learning approaches.

Further qualitative results are shown in Figures 8 and 9. In Figure 9 we have some
example cases in which our model performs poorly. We observed that much of our method’s
improvement comes as a result of decreasing the number of false-negatives in the ‘person’
class, but at the cost of increasing the number of false-positives; ultimately, this leads to a
reduction in the total loss, since the ‘person’ class is by far the most common in the datasets
being used [9, 10]. Consequently, objects which frequently co-occur with (or whose bounding
boxes overlap with) people are frequently misclassified as people (such as bicycles, bottles,
dining tables). It is important to stress that we could choose a different loss function to
avoid this behaviour: for instance, one which assigned a higher penalty to false-negatives
than false-positives, or one which assigned a smaller weight to the ‘person’ class. However,
in a dataset where people are by far the most common class, we believe that the observed
behaviour is sensible.

Comparison with other methods is certainly difficult, as our loss is neither equivalent to a
classification nor a segmentation error. Note however that in Table 6, we achieve an improve-
ment at both the segmentation and classification levels. Also, due to the class ‘multiple’, our
loss is not equivalent to the criteria normally used to measure performance on the VOC2007
and VOC2008 datasets.

It is difficult even to provide a fair comparison to the method of [6], as that model was

8The non-learning version of the approach just sets 6 = (1,1,...,1,1), though any constant value will do.
9Figures cited in this section can be found in the Appendix.
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‘ Level 0 | Level 1 | Level 2 | Level 3

Table 7: Comparison of the constant factor & by which the two highest probabilities are

Baseline with image prior (k = 2) 0.342 | 0.217 | 0.242 0.169
Baseline with image prior (k = 3/2) | 0.330 0.214 0.245 0.184
Baseline with image prior (k =4/3) | 0.324 0.211 0.246 | 0.185
Baseline with image prior (k = 1) 0.310 0.195 0.241 0.186

multiplied to produce the probability for the class ‘multiple’.

’ ‘ Training ‘ Validation ‘ Testing
Baseline (sce [6]) 0.293 (0.005) | 0.295 (0.005) | 0.248 (0.003)
Baseline with image prior (see [6]) | 0.299 (0.005) | 0.301 (0.005) | 0.254 (0.003)
Non-learning 0.238 (0.005) | 0.228 (0.005) | 0.231 (0.004)
Learning 0.473 (0.006) | 0.469 (0.006) | 0.382 (0.004)

Table 8: Performance of our method during training, validation, and testing (for the optimal
value of \), using 3x 3 branching. Note that the performance shown is not directly comparable
to that of 2 x 2 branching, as different regions are used to compute the loss.

not optimized to minimize the same loss, nor was it designed to deal with the ‘multiple’ class.
For this reason, the probability chosen for the class ‘multiple’ is very important reporting
the performance of their method. As mentioned in the previous section, this probability is
defined to be k X p; X ps was chosen, where p; and po were the two highest probabilities
amongst all individual classes. The constant £ = 2 was chosen in the previous section so
that whenever p; and po are greater than 0.5, the probability for ‘multiple’ will be above
0.5 also. In Table 7 and Figure 10 we show the effect of choosing different values for &
in this expression. Although the results are visually quite different, the difference in their
performance is small.

4.6 Using 3 x 3 split in our model

One simple modification to our model is to split each region into a different number of
subregions at each level. In the previous section, each region was split into 2 x 2 subregions;
in Figure 11 we show that a 3 x 3 split is also possible, and give some results for comparison.

Tables 8 and 9 show the performance of this method compared to the baseline, and Figure
12 shows the weight vector that was learned. It is important to note that the values of the
loss shown here are not directly comparable to the values shown when using a 2 x 2 split,
as the image regions on which the loss is computed are different. Visually, the results of the
3 x 3 split appear to be inferior to those of the 2 x 2 split shown in the previous section.

4.7 Conclusion

We have presented a graphical model which efficiently performs patch-level, region-level,
and image-level labeling simultaneously. This model is useful in that it allows us to encode
smoothness constraints for patch-level classification, while still incorporating the important
information at higher levels. We have shown how to apply structured learning in this model,
which has traditionally been a problem for models incorporating smoothness constraints. We
have shown that our model improves in performance over existing models which use only
first-order information. Since our model is parametrized using the probability scores from
first-order approaches, it should be seen as complimentary to existing first-order techniques.
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‘ Level 0 Level 1 Level 2

Baseline (see [6]) 0.342 0.248 0.186
Baseline with image prior (see [6]) | 0.342 0.255 0.196
Non-learning 0.426 0.173 0.123
Learning 0.410 0.314 0.452

Table 9: Performance on each level of the graph using 3 x 3 branching (on the test set). Note
that the graph is generally less deep when using 3 x 3 branching, and was never more than
three levels deep in our training set (hence only three levels are shown).

The experiments wer done on a relatively small dataset (PASCAL VOC2008/2007), which
are relatively small for the envisaged application scenarios. However, these are recent bench-
mark datasets which have been explored by state-of-the-art methods (see [6] and the seg-
mentation results present in [10]). These datasets are in fact unique in terms of the number
of labelled bounding boxes provided and the consistency of the labels. Since the proposed
method is inductive, it is easily scalable to large datasets (in terms of number of images).
In terms of number of categories, the scalability depends on the scalability of the first order
classifiers. We use linear sparse logistic regression [23] as first order classifiers, meaning that
the training set size has no impact on the computational cost for inference. The hierarchical
constraints proposed here should reduce the impact of the number of classes in the accuracy
of region classification. To learn the structure weights, an increase in the number of classes
implies in an O(c?) increase in training time. For inference, the computational cost is linear
(O(c)) in the number of classes.
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Figure 6: An example match comparing our technique to non-learning methods. The top
sequence contains the ‘correct’ labeling, as extracted from the VOC2007 dataset (Image
000127; the correct labeling incurs zero loss by definition). The second sequence uses only
first order features (i.e., the most likely assignment is chosen for each region independently);
the image-level classifier is used at the top level, the mid-level classifier is used at the second
and third levels, and the patch-level classifier is used at the bottom level; the fact that many
of regions at the bottom level are incorrectly labeled demonstrates the need for consistency
constraints. The third sequence shows our method without learning (i.e., assigning equal
weight to all features); the low quality of this match demonstrates that the weights are
poorly tuned without learning. Finally, the fourth sequence shows the performance of our
method, which appears to address both of these issues. A key for the labels used is also
shown.
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Figure 7: The complete weight-vector for our model. A separate vector of 22 (= |H|) weights
is learned for each image level, and for each type of classifier being used (the dashed line
corresponds to zero). This vector has several interesting properties: note that the image-level
classifier is given higher importance at the top levels, whereas the patch-level classifier is given
higher importance at the bottom levels (which is consistent with our expectations). Also,
note that there is a lot of variance between weights of different classes (especially ‘multiple’,
‘background’, and ‘person’), indicating that certain classes are easier to identify at different
scales. Finally, note that the edge weights have both large positive and negative scores: for
instance, the high weight given to ‘dog’ for the image-level classifier at level 0/1 indicates
that the features between these two levels should be very similar, whereas the negative weight
given to ‘cat’ (at the same level) indicates that the features between the two levels should be
very different.
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Figure 8: Some additional results using our method. Results are from the test set.
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Image 002789:

Figure 9: Some ‘failure cases’ of our method. Much of our method’s improvement comes
from decreasing the number of false-negatives in the ‘person’ class; as a result, our method
seems to increase the number of false-positives for this class.
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Figure 10: Comparison of the constant factor k. Note that it is still possible to observe the
class multiple even when k = 1, due to the presence of the image prior.
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Image 000127: Using 3 x 3 branching (1—-A=0.794):
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Image 001511 (1 — A = 0.724):

Figure 11: Some further results using 3 x 3 branching.
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