
The Open Provenance Model
Core Specification (v1.1)

Luc Moreau (Editor)a,∗, Ben Cliffordb, Juliana Freirec, Joe Futrelled, Yolanda Gile, Paul Grothf, Natalia
Kwasnikowskag, Simon Milesh, Paolo Missieri, Jim Myersd, Beth Plalej, Yogesh Simmhank, Eric Stephanl, Jan Van den

Busscheg

aU. of Southampton
bNo Affiliation

cU. Utah
dNCSA

eInformation Sciences Institute, USC
fVU University of Amsterdam

gU. Hasselt and transnational U. Limburg
hKing’s College, London

iU. of Manchester
jIndiana University

kMicrosoft
lPacific Northwest National Laboratory

Abstract

The Open Provenance Model is a model of provenance that is designed to meet the following requirements: (1) To
allow provenance information to be exchanged between systems, by means of a compatibility layer based on a shared
provenance model. (2) To allow developers to build and share tools that operate on such a provenance model. (3) To
define provenance in a precise, technology-agnostic manner. (4) To support a digital representation of provenance for
any “thing”, whether produced by computer systems or not. (5) To allow multiple levels of description to coexist. (6)
To define a core set of rules that identify the valid inferences that can be made on provenance representation. This
document contains the specification of the Open Provenance Model (v1.1) resulting from a community effort to achieve
inter-operability in the Provenance Challenge series.

Keywords: provenance, representation, inter-operability

1. Introduction

Provenance is well understood in the context of art or
digital libraries, where it respectively refers to the docu-
mented history of an art object, or the documentation of
processes in a digital object’s life cycle [1]. Interest for
provenance in the “e-science community” [2] is also grow-
ing, since provenance is perceived as a crucial component
of workflow systems [3] that can help scientists ensure re-
producibility of their scientific analyses and processes.

Against this background, the International Provenance
and Annotation Workshop (IPAW’06), held in Chicago, in
May 2006, involved some 50 participants interested in the
issues of data provenance, process documentation, data
derivation, and data annotation [4, 5]. During a session on
provenance standardization, a consensus began to emerge,
whereby the provenance research community needed to un-
derstand better the capabilities of the different systems,
the representations they used for provenance, their simi-

∗Corresponding author

larities, their differences, and the rationale that motivated
their designs.

Hence, the first Provenance Challenge was born, and
from the outset, the challenge was set up to be informative
rather than competitive. The first Provenance Challenge
aimed to provide a forum for the community to understand
the capabilities of different provenance systems and the ex-
pressiveness of their provenance representations. Partici-
pants simulated or ran a Functional Magnetic Resonance
Imaging workflow, from which they implemented and exe-
cuted a pre-identified set of “provenance queries”. Sixteen
teams responded to the challenge, and reported their ex-
perience in a journal special issue [6].

The first Provenance Challenge was followed by the
second Provenance Challenge, aiming at establishing inter-
operability of systems, by exchanging provenance informa-
tion. Thirteen teams [7] responded to this second chal-
lenge. Discussions indicated that there was substantial
agreement on a core representation of provenance. As a
result, following a workshop in Salt Lake City, in August
2007, a data model was crafted and released as the Open
Provenance Model (v1.00) [8].

Preprint submitted to Future Generation Computer Systems July 27, 2010



The starting point of this work is the community agree-
ment summarized by Miles [9]. We assume that prove-
nance of objects (whether digital or not) is represented by
an annotated causality graph, which is a directed acyclic
graph, enriched with annotations capturing further infor-
mation pertaining to execution. For the purpose of this
paper, a provenance graph is defined to be a record of a
past execution (or current execution), and not a descrip-
tion of something that could happen in the future.

In June 2008, twenty participants attended the first
OPM workshop [10] to discuss the OPM specification v1.00.
Minutes of the workshop and recommendations [11] were
published, and led to version v1.01 of the Open Provenance
Model [12], which was actively used during the Third Prove-
nance Challenge, which aimed at exchanging provenance
information encoded in OPM and answering precise prove-
nance queries. Some 15 teams participated in this third
challenge, and decided to adopt an open-source model for
the governance[13] of OPM. A series of proposals were put
forward, publicly reviewed, and put to vote [14]; the re-
sult of which is version 1.1 of the Open Provenance Model,
which we present in this paper.

2. Requirements

The Open Provenance Model (OPM) is a model of
provenance that is designed to meet the following require-
ments:

• To allow provenance information to be exchanged
between systems, by means of a compatibility layer
based on a shared provenance model.

• To allow developers to build and share tools that
operate on such provenance model.

• To define provenance in a precise, technology-agnostic
manner.

• To support a digital representation of provenance for
any “thing”, whether produced by computer systems
or not.

• To allow multiple levels of description to coexist.

• To define a core set of rules that identify the valid
inferences that can be made on provenance represen-
tation.

While specifying this model, we also have some non-requi-
rements:

• It is not the purpose of this document to specify the
internal representations that systems have to adopt
to store and manipulate provenance internally; sys-
tems remain free to choose internal representations
that are fit for their purpose.

• It is not the purpose of this document to define
a computer-parsable syntax for this model; realisa-
tions of OPM in XML, RDF or others are being spec-
ified in separate documents.

• We do not specify protocols to store such provenance
information in provenance repositories.

• We do not specify protocols to query provenance
repositories.

3. Basics

The Open Provenance Model allows us to characterize
what caused “things” to be, i.e., how “things” depended
on others and resulted in specific states. In essence, it
consists of a directed graph expressing such dependencies.
We introduce here the constituents of such a graph.

3.1. Nodes
Our primary concern is to be able to represent how

“things”, whether digital data such as simulation results,
physical objects such as cars, or immaterial entities such
as decisions, came out to be in a given state, with a given
set of characteristics, at a given moment. It is recognized
that many of such “things” can be stateful: a car may be
at various locations, it can contain different passengers,
and it can have a tank full or empty; likewise, a file can
contain different data at different moments of its existence.
Hence, from the perspective of provenance, we introduce
the concept of an artifact as an immutable1 piece of state;
likewise, we introduce the concept of a process as actions
resulting in new artifacts.

A process usually takes place in some context, which
enables or facilitates its execution: examples of such con-
texts are varied and include a place where the process ex-
ecutes, an individual controlling the process, or an insti-
tution sponsoring the process. These entities are being
referred to as Agents. Agents, as we shall see when we
discuss causality dependencies, are a cause (similar to a
catalyst) of a process taking place.

The Open Provenance Model is based on these three
kinds of nodes, which we now define.

Definition 1 (Artifact). Immutable piece of state, which
may have a physical embodiment in a physical object, or a
digital representation in a computer system.

Definition 2 (Process). Action or series of actions per-
formed on or caused by artifacts, and resulting in new ar-
tifacts.

1In the presence of streams, we consider an artifact to be a slice
of stream in time, i.e. the stream content at a specific instant in
the computation. A future version of OPM will refine the model to
accommodate streams fully as they are recognized to be crucial in
many applications.

2



Definition 3 (Agent). Contextual entity acting as a cat-
alyst of a process, enabling, facilitating, controlling, or af-
fecting its execution.

The Open Provenance Model is a model of artifacts
in the past , explaining how they were derived. Likewise,
processes also occurred in the past, i.e. they have already
completed their execution; in addition, processes can still
be currently running (i.e., they may have not completed
their execution yet). In no case is OPM intended to de-
scribe the state of future artifacts and the activities of
future processes.

To facilitate understanding and promote a shared vi-
sual representation, we introduce a graphical notation for
provenance graphs. Specifically, artifacts are represented
by ellipses; processes are represented graphically by rect-
angles; finally, agents are represented by octagons.

3.2. Dependencies
The Open Provenance Model aims to capture the causal

dependencies between the artifacts, processes, and agents.
Therefore, a provenance graph is defined as a directed
graph, whose nodes are artifacts, processes and agents,
and whose edges belong to one of the following categories
depicted in Figure 1. An edge represents a causal depen-
dency, between its source, denoting the effect, and its des-
tination, denoting the cause.

Figure 1: Edges in the Open Provenance Model: sources are effects,
and destinations causes

The first two edges express that a process used an arti-
fact and that an artifact was generated by a process. Since
a process may have used several artifacts, it is important
to identify the roles under which these artifacts were used.
(Roles are denoted by letter ‘R’ in Figure 1.) Likewise,
a process may have generated many artifacts, and each
would have a specific role. For instance, the division pro-
cess uses two numbers, with roles dividend and divisor,
and produces two numbers, with roles quotient and rest.

Hence, roles are similar to parameters of a function, ex-
cept that they are used to distinguish inputs and outputs.
Consequently, roles are meaningful only in the context of
the process where they are defined. The meaning of roles
is not defined by OPM but by application domains; OPM
only uses roles syntactically (as “tags”) to distinguish the
involvement of artifacts in processes.

A process is caused by an agent, essentially acting as a
catalyst or controller: this causal dependency is expressed
by the was controlled by edge. Given that a process may
have been controlled by several agents, we also identify
their roles as controllers. We note that the dependency
between an agent and a process represents a control re-
lationship, and not a data derivation relationship. It is
introduced in the model to express easily how a user (or
institution) controlled a process.

Even though an artifact A2 may have been generated
by a process that used some artifacts, this does not tell
us which artifact A2 actually depends upon. Hence, to
make this dependency explicit, it is required to assert that
artifact A2 was derived from another artifact A1. This
edge gives us a dataflow oriented view of provenance.

It is also recognized that we may not be aware of the
exact artifact that a process P2 used, but that there was
some artifact generated by another process P1. Process P2

is then said to have been triggered by P1. In contrast to
edge was derived from, a was triggered by edge allows for
a process oriented view of past executions to be adopted.
(Since these edges summarize some activities for which all
details are not being exposed, it was felt that it was not
necessary to associate a role with them.)

As far as conventions are concerned, we note that causal-
ity edges use past tense to indicate that they refer to past
execution. Causal relationships are defined as follows.

Definition 4 (Causal Relationship). A causal relation-
ship is represented by an arc and denotes the presence of a
causal dependency between the source of the arc (the effect)
and the destination of the arc (the cause).

Five causal relationships are recognized: a process used an
artifact, an artifact was generated by a process, a process
was triggered by a process, an artifact was derived from
an artifact, and a process was controlled by an agent. By
means of annotations (see Section 8), we allow edges to be
further subtyped from these five categories.

Multiple notions of causal dependencies were consid-
ered for OPM. A very strong notion of causal dependency
would express that a set of entities was necessary and suffi-
cient to explain the existence of another entity. It was felt
that such a notion was not practical, since, with an open
world assumption, one could always argue that additional
factors may have influenced an outcome (e.g. electricity
was used, temperature range allowed computer to work,
etc). It was felt that weaker notions, only expressing neces-
sary dependencies, were more appropriate. However, even
then, one can distinguish data dependencies (e.g. where

3



a quotient is clearly dependent on the dividend and divi-
sor) from a control dependency where the mere presence
of some artifact or the beginning of a process can explain
the presence of another entity. A number of factors have
influenced us to adopt a weak notion of causal dependency
for OPM.

• Expressibility. It is anticipated that systems will pro-
duce descriptions of what their components are do-
ing, without having intimate knowledge of the exact
internal data and control dependencies. Weak no-
tions of dependency are necessary for such systems
to be able to use OPM in practice.

• Composability. We shall see how OPM supports
multi-level descriptions (Section 4). In a system con-
sisting of the parallel composition of two subcompo-
nents, the high-level summary of the system requires
a weaker notion of dependency than the low-level de-
scriptions of its subcomponents.

Hence, we adopt the following causal dependencies in OPM.
We anticipate that subclasses of these dependencies, cap-
turing stronger notions of causality, may be defined in spe-
cific systems, and over time, may be incorporated in OPM.

Definition 5 (Artifact Used by a Process). A “used”
edge from process to an artifact is a causal relationship in-
tended to indicate that the process required the availability
of the artifact to be able to complete its execution. When
several artifacts are connected to a same process by multi-
ple “used” edges, all of them were required for the process
to complete.

Alternatively, a stronger interpretation of the used edge
could have required the artifact to be available for the
process to be able to start. (Such an interpretation corre-
sponds to a call-by-value procedure invocation where the
arguments are required for the procedure to be invoked.)
It is believed that such a notion may be useful in some cir-
cumstances, and it may be defined as a subtype of used .
We note that both interpretations of used coincide, when
processes are modelled as instantaneous. However, such a
stronger notion is not compositional: an artifact A may
have been required to begin execution of P1, but it does
not mean that A was required to begin P2, a super-process
of P1.

Definition 6 (Artifacts Generated by Processes). A
“was generated by” edge from an artifact to a process is a
causal relationship intended to mean that the process was
required to initiate its execution for the artifact to have
been generated. When several artifacts are connected to
a same process by multiple “was generated by” edges, the
process had to have begun, for all of them to be generated.

A stronger interpretation is that the process had to
complete for the artifact to be generated. This alternative
interpretation was rejected because it made it difficult to
model pipelined processes exchanging artifacts.

Definition 7 (Process Triggered by Process). An edge
“was triggered by” from a process P2 to a process P1 is a
causal dependency that indicates that the start of process
P1 was required for P2 to be able to complete.

We note that the relationship P2 was triggered by P1

(like the other causality relationships we describe in this
section) only expresses a necessary condition: P1 was re-
quired to have started for P2 to be able to complete. This
interpretation is weaker than the common sense definition
of “trigger”, which tends to express a sufficient condition
for an event to take place.

Definition 8 (Artifact Derived from Artifact). An edge
“was derived from” from artifact A2 to artifact A1 is a
causal relationship that indicates that artifact A1 needs to
have been generated for A2 to be generated. The piece of
state associated with A2 is dependent on the presence of
A1 or on the piece of state associated with A1.

Definition 9 (Process Controlled by Agent). An edge
“was controlled by” from a process P to an agent Ag is a
causal dependency that indicates that the start and end of
process P was controlled by agent Ag.

3.3. Roles
Roles are constituents of “used”, “was generated by”,

and “was controlled by” edges, aimed at distinguishing
the nature of the dependency when multiple such edges
are connected to a same process.

Definition 10 (Role). A role designates an artifact’s or
agent’s function in a process.

A role is used to differentiate among several use, genera-
tion, or controlling relations.

1. A process may use (resp, generate) more than one
artifact. Each “used” (resp, “was generated by”)
relation may be distinguished by a role with respect
to that process. For example, a process may use
several files, reading parameters from one (role =
“parameters”), and reading data from another (role
= “data”).

2. An artifact might be used by more than one pro-
cess, possibly for different purposes. In this case,
the “used” relations can be distinguished by their
associated roles. For example, a dictionary might be
used by one process to look up the spelling of “prove-
nance”, (role = “look up provenance”), while an-
other process uses the same dictionary to hold open
the door (role = “doorstop”).

3. An agent may control more than one process. In this
case, the different processes may be distinguished by
the role associated with the “was controlled by” re-
lation. For example, a gardener may control the dig-
ging process (role = “dig the bed”), as well as plant-
ing a rose bush (role = “plant”) and watering the
bush (role = “irrigating”).

4



4. A process may be controlled by more than one agent.
In this case, each agent might have a distinct control-
ling function, which would be distinguished by roles
associated with the “was controlled by” relations.
For example, boarding the train may be controlled
by the ticket agent (role = “sell ticket”), the gate
agent (role = “take ticket”) and the steward (role =
“guide to seat”).

From an OPM’s perspective, roles have a syntactic na-
ture and are scoped by the process which they are related
to. A role has meaning only within the context of a given
process (and/or agent). For a given process, each “used”,
“was generated by” or “was controlled by” relation has a
role specific to the process, though the roles may have no
meaning outside that process. OPM does not mandate the
uniqueness of roles for a given process. For example, bak-
ing a cake with two eggs, may define each egg as a separate
artifact, and the two used edges might have the identical
role, say, egg. (In such a case, there is nothing that distin-
guishes the involvement of one egg from the other in this
process. )

Roles should always be specified. For inter-operability,
communities should define standard sets of roles with agreed
meanings (by means of profiles, defined in Section 9). In
addition, a reserved value is defined for “undefined”, which
should be used when the role is not known or omitted.

3.4. Examples
An example illustrating all the concepts and a few of

the causal dependencies is displayed in Figure 2. The con-
text of Figure 2 is the first Provenance Challenge [6], where
an fMRI workflow operated on a series of images and head-
ers, and produced an average image according to different
axes. Figure 2 displays a subset of the provenance for one
of the outputs “Atlas X Graphic”, which was generated
by an execution of First Provenance Challenge workflow
using several inputs; the User who controlled this process
was John Doe. Edges of type “used”, “was generated by”,
and “was controlled by” are represented by dotted lines,
annotated with their role in bracket. Data derivations are
explicitly represented by “was derived from” edges, repre-
sented by plain lines. We note that the fact that a process
used an artifact and generated another does not imply the
latter was derived from the former; such relationship needs
to be asserted explicitly.

OPM is in no way limited to digital artifacts and pro-
cesses. In Figure 3, a provenance graph expresses that
John baked a cake with ingredients butter, eggs, sugar
and flour.

While graphs can be constructed by incrementally con-
necting artifacts, processes, and agents with individual
edges, the meaning of the causality relations can be under-
stood in the context of all the used (or wasGeneratedBy)
edges, for each process. By connecting a process to several
artifacts by used edges, we are not just stating the indi-
vidual inputs to the process. We are asserting a causal de-

PC1 Worflow

Anatomy Image 1

(img1)

Anatomy Header 1

(hdr1)

Reference Image

(imgRef)

Reference Header

(hdrRef)

John Doe

(user)

Atlas X Graphic

(x)

Figure 2: Provenance of “Atlas X Graphic” in First Provenance Chal-
lenge Workflow

bake

100g butter

(butte r)

two eggs

(egg)

100g sugar

(sugar)

100g flour

(flour)

John

(baker)

cake

(cake)

Figure 3: Victoria Sponge Cake Provenance

pendency expressing that the process could take place and
complete only because all these artifacts were available.
Likewise, when we express that several artifacts were gen-
erated by a process, we mean that these artifacts would not
have existed if the process had not begun its execution; fur-
thermore, all of them were generated by the process; one
could not have been generated without the others. The
implication is that any single generated artifact is caused
by the process, which itself is caused by the presence of all
the artifacts it used. We will investigate transitive closures
of causality relations in Section 6.

We can see here the crucial difference between arti-
facts and the data they represent. For instance, the data
may have existed, but the particular artifact did not. For
example, a BLAST search can be given a DNA sequence
and return a set of “similar” DNA sequences; however,
these returned sequences all existed prior to the process
(BLAST) invocation, but the artifacts are novel.

As illustrated by the two examples above, the enti-
ties and edges introduced in Figure 1 allow us to capture
many of the use cases we have come across in the prove-
nance literature. However, they do not allow us to provide
descriptions at multiple level of abstractions, or from dif-
ferent view points. To support these, we allow multiple
descriptions of a same execution to coexist.

4. Overlapping and Hierarchichal Descriptions

Figure 4 shows two examples of provenance graphs de-
scribing what led the list (3,7) to being as it is. According
to the left-hand graph, the list was generated by a pro-

5



cess that added one to all constituents of the list (2,6).
According to the right-hand graph, the derivation process
of (3,7) required the list to be created from values 3 and
7, respectively obtained by adding one to 2 and 6, them-
selves being the data products obtained by accessing the
contents of the original list (2,6). To facilitate the under-
standing of these figures, edges of the type “was derived
from” are subtyped, and their subtype made explicit as
a label to the edge. (We will come back to the notion of
subtyping in Section 8.)

add1ToAll

(2,6)

accessor

+1

2

+1

6

constructor

3 7

plus2

minus1

minus1

plus2

(3,7)

add1

contained contained

first second

add1 add1

add1ToAll

(2,6)

accessor

+1

2

+1

6

constructor

3 7

plus2

minus1

minus1

plus2

(3,7)

add1

contained contained

first second

add1 add1

Figure 4: Examples of Provenance Graph

Assuming these two graphs refer to the same lists (2,6)
and (3,7), they provide two different explanations of how
(3,7) was derived from (2,6): these explanations would of-
fer different levels of details about the same derivation.
The requirement of providing details at different levels
of abstraction or from different viewpoints is common for
provenance systems, and hence, we would expect both ac-
counts to be integrated in a single graph. In Figure 5, we
see how the two provenance graphs of Figure 4 were inte-
grated, by selecting different colors for nodes and edges.
The lighter (red) part belonged to the left graph of Figure
4, whereas the darker (black) part is the alternate descrip-
tion from the right graph of Figure 4. (Graphs in this pa-
per are better viewed in color.) The darker and lighter sub-
graphs are two different overlapping accounts of the same
past execution, offering different levels of explanation for
such execution. Such subgraphs are said to be overlapping
accounts because they share some common nodes (2,6) and
(3,7). Furthermore, the darker part (black) provides more
details than the lighter subgraph (red): the darker part is
said to be a refinement of the lighter graph. (The term
‘refinement’ is to be understood as a more complete de-
scription of execution, and is inspired by the concept of
specification refinement in formal methods [15].)

Observing Figure 5, it becomes crucial to contrast the
edges “was generated by” originating from artifact (3,7)
with the edges “used” originating from the constructor
process. Indeed, the edges “used” out of the constructor
process mean that both artifacts 3 and 7 were required for

add1ToAll

(2,6)

accessor

+1

2

+1

6

constructor

3 7

plus2

minus1

minus1

plus2

(3,7)

add1

contained contained

first second

add1 add1

Figure 5: Overlapping and Hierarchical Accounts in a Provenance
Graph

the process to take place. On the other hand, since the
edges “was generated by” from artifact (3,7) are colored
differently, they indicate that alternate explanations exist
for the process that led to such artifact being as it is.

It is possible to use refinements repeatedly to create a
hierarchy of accounts, as illustrated in Figure 6. We see
that a third account (blue) is introduced, to explain how
one of the +1 processes was performed.

add1ToAll

(2,6)

accessor

+1

2

+1

6

constructor

3 7

plus2

minus1

minus1

plus2

(3,7)

add1

contained contained

first second

add1 add1

Figure 6: Hierarchy of Accounts in a Provenance Graph

By combining several accounts, we can obtain cycles,
as illustrated by Figure 7 (left). Here, in the first account
(darker, black), a description of two processes p1a and p1b
is presented, and their dependencies on artifacts a0, a1, a2
and a3. In the second account (lighter, red), it is stated
that the two processes p1a and p1b constitute a single
process operating on inputs a0 and a2, and producing a1
and a3. If we combine the two views, a cycle of “used”
and “was generated by” edges has been created: a2 → p2
→ a1 → p1 → a2. In the right-hand side of Figure 7,
we make data derivations explicit: in this example, we
observe that no cycle of “was derived from” is created,
since the two accounts are compatible (since one provides

6



more details than the other). In the most general case,
where accounts may be conflicting, we can anticipate cycle
of “was derived from” edges to be resulting from the union
of several accounts.

p1

a0

a2

p1a

p1b

p2

a1

a3

p1

a0

a2

p1a

p1b

p2

a1

a3

Figure 7: Multiple Accounts Creating Cycle: without (left) and with
(right) “was derived from” edges

While overlapping accounts are intended to allow vari-
ous descriptions of a same execution, it is recognized that
these accounts may differ in their description’s seman-
tics. In general, such semantic differences may not be
expressed by structural properties we can set constraints
on in the model (beyond the constraints identified in this
document).

5. Temporal Constraints and Observation Time

The Open Provenance Model allows for causality graphs
to be decorated with time information. In this model, time
is not intended to be used for deriving causality: if causal
dependencies exist, they need to be made explicit with the
appropriate edges. OPM is compatible with causality in
distributed systems [16]: when an effect event is caused
by a cause event, then the cause “happened before” the
effect (where “happened before” is Lamport’s partial or-
dering [16]). Furthermore, given that time may have been
observed by an observer, we would expect such time in-
formation to be compatible with causal dependencies. If a
same clock is used to measure time for both the effect and
cause, then the time of an effect should be greater than
the time of its cause. Hence, time is useful in validating
causality claims.

In the Open Provenance Model, time may be associated
to instantaneous occurrences in a process. We currently
recognize four instantaneous occurrences, which have a
reasonable shared understanding in real life and computer
systems. Two of them pertain to artifacts, whereas the
other two relate to processes. For artifacts, we consider
the occurrences of creation and use, whereas for processes,
we consider their starting and ending .

The rationale for choosing instantaneous time for the
OPM model is the same as for adopting artifacts as im-
mutable pieces of state. At a specific time, an object we
consider was in a specific state, which we refer to as arti-
fact, and for which we can express the causality path that
led to the object being in such a state.

In some scenarios, occurrences of use or creation of ob-
jects and occurrences of starting or ending of processes
may not be instantaneous. To capture such scenarios, de-
tailed processes and artifacts, and their respective causal
dependencies, need to be made explicit, in order to be ex-
pressible in the OPM model. For instance, the starting
of a nuclear power plant or of a job scheduling activity
is not usefully modelled as an instantaneous occurrence,
when one tries to understand failures that occurred during
this activity; hence, this whole starting occurrence must
be modelled by one process (or possibly several), which in
turn have instantaneous beginnings and endings.

In the Open Provenance Model, time information is ex-
pected to be acquired by an observer’s observing a clock2

when an occurrence occurs. Given that time is observed,
time accuracy is limited by the granularity of the clock and
the granularity of the observer’s activities. Hence, while
the notion of time we consider is instantaneous, the model
allows for an interval of accuracy to support granularity
of clocks and observers. In the OPM model, an instanta-
neous occurrence happening at time t is specified in term
of two observation times tm, tM , such that the occurrence
is known to have occurred no later than tM and no earlier
than tm. Hence, t ∈ [tm, tM ].

Concretely, for an artifact, we will be able to state
that it was used (or generated by) no earlier than time
t1 and/or no later than time t2. For a process, we will be
able to state that it was started (or terminated), no earlier
than time t1 and/or no later than time t2.

In Figure 8, we revisit OPM entities indicating how
time information may be expressed in the model. We note
again that time information is optional in OPM and is
expressed as an observation time interval.

Edges “used” and “was generated by” can be extended
with an optional timestamp, indicating that the associated
artifact was known to be generated or used, at a given
time.

For a “was controlled by” edge, we allow two optional
timestamps marking when the process was known to be
started or terminated, respectively. In a given account, for
a process that is not source of a “was controlled by” edge,
we allow the process to be decorated by two timestamps
directly.

For a “was derived from” edge, one optional timestamp
is permitted, which indicates when the artifact was used.
Likewise, for “was triggered by” edge, we also allow one
optional timestamp that marks the time when the com-
municated artifact was used by the edge source.

2OPM assumes that all clocks are properly synchronized.

7



Figure 8: Time in the Provenance Model

The model of causality in OPM is essentially timeless
since time precedence does not imply causality: if a process
P1 “happened before” a process P2, in general, we cannot
infer that P1 caused P2 to happen. However, the converse
implication holds; furthermore, assuming time is measured
according to a single clock (or synchronized clocks), time
observations will be comparable.

T1 ≤ T3 (artifact A1 must exist before being used)
T2 ≤ T3 (process P must have started before using artifact A1)
T3 ≤ T5 (process P uses artifact A1 before it ends)
T2 ≤ T4 (process P must have started before generating artifact A2)
T4 ≤ T5 (process P generates artifact A2 before it ends)
T4 ≤ T6 (artifact A2 must exist before being used)
T2 ≤ T5 (process P must have started before ending)

no constraint between T3 and T4

Figure 9: Relation “Happened Before” in the Open Provenance
Model

Figure 9 displays the various “happened before” rela-
tionship that must be satisfied in OPM. We write T1 ≤ T3

to express that the event observed at time T1 happened
before the event observed at time T3. When the two time
observations are made with the same clock (or synchro-
nized clocks), then time observations can be compared.
According to Figure 9, an artifact must exist before it is
being used (T1 ≤ T3 and T4 ≤ T6). If an artifact is used
by a process, it will actually be used after the start of
the process (T2 ≤ T3) and before the end of the process
(T3 ≤ T5). A process generates artifacts before its end
(T4 ≤ T5), and a process starts precedes its generation of
artifacts (T2 ≤ T4) and its end (T2 ≤ T5).

6. Completion and Inferences

The Open Provenance Model has defined the notion of
OPM graph based on a set of syntactic rules and topo-
logical constraints. Provenance graphs are aimed at rep-
resenting causality graphs explaining how processes and
artifacts came out to be. It is expected that a variety of
reasoning algorithms will exploit this data model, in order
to provide novel and powerful functionality to users. It is
beyond the scope of this document to include an exten-
sive coverage of relevant reasoning algorithms. However,
provenance graphs, by means of edges, capture causal de-
pendencies, which can be summarized by means of tran-
sitive closure that we describe in this section. First, we
introduce completion rules, and then define multi-step in-
ferences.

6.1. Completion Rules
In Section 3, we have introduced the two causal de-

pendencies “was triggered by” and “was derived from” as
summary edges for a process view (where an intermediary
artifact was unknown) and a data view (where an interme-
diary process was unknown), respectively. Figures 10 and
11 describe completion rules, i.e. one-step transforms that
can be performed in the Open Provenance Model. A rule
explains how a subgraph can be converted into another
subgraph.

Figure 10: Completion: Artifact Introduction and Elimination

Figure 10 displays a bidirectional transformation. Ac-
cording to the forward transformation (referred to as ar-
tifact elimination), a “was triggered by” edge can be ob-
tained from the existence of “used” and “was generated
by” edges. We note that the novel “was triggered by”
edge belongs to the set of accounts given by the intersec-
tion3 of accounts of the “used” and “was generated by”
edges.

Figure 10 shows a bidirectional completion rule: ar-
tifact introduction allows us to establish that the “was
triggered by” edge is hiding the existence of some arti-
fact used by P2 and generated by P1. The novel edges

3 Taking the intersection of accounts ensures that the edges de-
rived by artifact elimination are meaningful in the account they are
declared to be member of. Furthemore, this ensures that completion
rules preserve the effective account membership of all nodes in the
graph.

8



“used” and “was generated by” are asserted in the same
account context as the original “was triggered by” edge.
The completion rule allows us to establish the existence of
some artifact but it does not tell us what their id is. This
is the consequence of using “was triggered by”, which is
a lossy summary of the composition of “used” and “was
generated by”.

Figure 11: Completion: Process Introduction

In Figure 11, there is only one completion rule, referred
to as process introduction: a “was derived from” edge hides
the presence of an intermediary process. Novel edges are
asserted with the same accounts as the original edge. The
converse rule does not hold however, since, without any
internal knowledge of P , it is impossible4 to ascertain there
is an actual dependency between A1 and A2.

6.2. Multi-Step Inferences
When users want to find out the causes of an artifact

or a process, they may not just be interested in direct
causes, but in indirect causes, as well, involving multiple
transitions. Hence, for the purpose of expressing queries or
expressing inferences about provenance graphs, we intro-
duce four new relationships, which are multi-step versions
of existing relationships. We first introduce the multi-step
“was derived from” relation, from which other versions are
obtained.

Definition 11 (Multi-Step WasDerivedFrom). An ar-
tifact a1 was derived from a2 (possibly using multiple steps),
written as a1 →∗ a2, if a1 “was derived from” an artifact
that was a2 or that was itself derived from a2 (possibly
using multiple steps). In other words, it is the transitive
closure of the edge “was derived from”. It expresses that
artifact a2 had an influence on artifact a1.

From Definition 11, we formulate convenience multi-step
relations as follows.

Definition 12 (Secondary Multi-Step Edges).

• Process p used artifact a (possibly using multiple steps),
written p →∗ a, if p used an artifact that was a or
was derived from a (possibly using multiple steps).

4It is suggested that a profile could offer an annotation indicating
that all outputs of a process are dependent on all its inputs. For
processes annotated in this way, the converse inference, i.e. process
elimination, would hold.

• Artifact a was generated by process p (possibly using
multiple steps), written a →∗ p, if a was an arti-
fact or was derived from an artifact (possibly using
multiple steps) that was generated by p.

• Process p1 was triggered by process p2 (possibly us-
ing multiple steps), written p1 →∗ p2, if p1 used an
artifact that was generated or was derived from an
artifact (possibly using multiple steps) that was itself
generated by p2.

Intuitively, multi-step edges can be inferred from single-
step edges, by “eliminating” artifacts that occur in chains
of dependencies (Note that inferences do not allow process
elimination.)

The four relationships, and associated inferences, are
illustrated in Figure 12. In this figure, plain edges repre-
sent single-step dependencies, whereas dashed edges rep-
resent multi-step dependencies. For instance, from p2 →
a3 → a2 we can infer p2 →∗ a3 →∗ a2 and p2 →∗ a2, by
“eliminating” a3.

p1

p2

a1

a2

a3

Single-Step Edges (plain)
GeneratedBy : a1→ p1

Used : p2→ a3
DerivedFrom : a3→ a2, a2→ a1

Inferrable Multi-Step Edges (dashed)
GeneratedBy∗ : a1→∗ p1, a2→∗ p1, a3→∗ p1

Used∗ : p2→∗ a3, p2→∗ a2, p2→∗ a1
DerivedFrom∗ : a3→∗ a2, a3→∗ a1, a2→∗ a1
TriggeredBy∗ : p2→∗ p1

Figure 12: Inference: Multi-Step Edges

7. Provenance Graph Definition

We assume the existence of a few primitive sets: iden-
tifiers for processes, artifacts and agents, roles, and ac-
counts. These sets of identifiers provide identities to the
corresponding entities within the scope of a given prove-
nance graph. A given serialization will standardize on
these sets, and provide concrete representations for them.

It is important to stress that the purpose of identifiers
is to define the structure of graphs: they are not meant to

9



define identities that are persistent and reliably resolvable
over time.

The open provenance model is defined according to the
following rules.

1. An OPM entity can be a node, an edge, a role, an
account, or a graph.

2. Accounts are identified by unique identifiers. An ac-
count represents a description at some level of detail
as provided by one or more observers. Two accounts
are equal if and only if they have the same identifier.

3. Artifacts are identified by unique identifiers. Arti-
facts are entities that represent an application in-
stantaneous piece of state. Two artifacts are equal
if and only if they have the same identifier (irrespec-
tive of the state they represent5). Artifacts can op-
tionally belong to accounts: account membership is
declared by listing the accounts an artifact belongs
to.

4. Processes are identified by unique identifiers. Pro-
cesses represent applications activities. Two pro-
cesses are equal if and only if they have the same
identifier. Processes can optionally belong to ac-
counts: account membership is declared by listing
the accounts a process belongs to.

5. Agents are identified by unique identifiers. Agents
represent contextual entities controlling processes.
Two agents are equal if and only if they have the
same identifier. Agents can optionally belong to ac-
counts: account membership is declared by listing
the accounts an agent belongs to.

6. Edges are identified by their source, destination, and
role (for those that include a role). Edges represent
causal dependencies between their source (the effect)
and their destination (the cause). The source and
destination consist of identifiers for artifacts, pro-
cesses, or agents, according to Figure 1. Edges can
also optionally belong to accounts: account mem-
bership is defined by listing the accounts an edge
belongs to. Structural equality applies to edges: two
edges of type “used” (resp. “was generated by”, or
“was controlled by”) are equal if they have the same
source, the same destination, the same role, and the
same accounts; two edges of type “was derived from”
(resp. “was triggered by”) are equal if they have the
same source, the same destination, and the same ac-
counts. The meaning of roles is not defined by OPM
but by application domains; OPM only uses roles
syntactically (as “tags”) to distinguish the involve-
ment of artifacts and agents in processes.

5In the Open Provenance Model, artifact identifiers are the only
way to distinguish artifacts in the graph structure. Two artifacts
differ if they have different ids, even though they may refer to a
same application data product. Two different artifacts are there-
fore separate nodes in a provenance graph: they have two different
computational histories.

7. Roles are mandatory in edges “used”, “was gener-
ated by”, and “was controlled by”. The meaning
of a role is defined by the semantics of the process
they relate to. Role semantics is beyond the scope
of OPM.

8. To ensure that edges establish a causal connection
between actual causes and effects, the model assumes
that if an edge belongs to an account, then its source
and destination also belong to this account. In other
words, the effective account membership of an arti-
fact/process/agent is its declared account member-
ship and the account membership of the edges it is
adjacent to (i.e., it is source and destination of).

9. An OPM graph consists of artifacts, processes, agents,
edges, and accounts, as specified above. OPM graphs
may be disconnected. OPM graphs can be compared
by using structural equality. The empty set is an
OPM graph. A singleton containing an artifact, a
process or an agent is an OPM graph. The set of
OPM graphs is closed under the intersection and
union operations6, i.e. the intersection of two OPM
graphs is an OPM graph (and likewise for union).
We note at this stage that syntactically valid OPM
graphs may not necessarily make sense from a prove-
nance viewpoint.

10. A view of an OPM graph according to one account,
referred to as account view , consists of elements whose
effective account membership for artifacts, processes,
and agents, and account membership for edges con-
tain the account.

11. While cycles can be expressed in the syntax of OPM,
an account view is legal if it is free of cycle of “was
derived from” edges and if it contains at most one
“was generated by” edge per artifact. This ensures
that within one account, an OPM graph captures
proper causal dependencies, and that a single expla-
nation of the origin of an artifact is given.

12. Hence, a legal OPM graph is one for which all ac-
count views are legal.

13. Legal account views are OPM graphs. The union of
two legal account views is an OPM graph (it is not
necessarily a legal view since it may contain cycles).
The intersection of two legal account views is a legal
account view.

14. A provenance graph is not required to contain time
information.

15. Edges can optionally be decorated with time infor-
mation (as per Figure 9). In a given account, a
Process without “was controlled by” edge can also
optionally be decorated with time information.

16. Within an account, time information must be con-
sistent with causality. To this end, the definition of

6Equality, union and intersection of OPM graphs require a predi-
cate to be provided allowing nodes and edges to be compared across
graphs. For instance, such a predicate can make use of the global,
persistent name (pname) introduced in Section 8.2.

10



legality of an account view is extended with an extra
condition requiring that causation is time-monotonic,
as displayed in Figure 9 (for identical or synchronized
clocks) .
All observed times are pairs of instantaneous time
values. For T1 = (tm1 , tM1 ), with tm1 ≤ tM1 , and
T2 = (tm2 , tM2 ), with tm2 ≤ tM2 inequality is defined
as follows: T1 ≤ T2 if tm1 ≤ tM1 ≤ tm2 ≤ tM2 .

17. Two account views are said to be overlapping if the
views have some artifact, process or agent in com-
mon7.

18. An account view v1 is a refinement of another ac-
count view v2 if the set of multi-step dependencies
that can inferred in v1 after application of comple-
tion rules is a superset of multi-steps dependencies
that can be inferred in v2 after application of com-
pletion rules.

19. In an OPM graph, relations between accounts (over-
lap, refinement, and any other) may be asserted. Ac-
count relation assertions are legal if two account as-
serted to be in relationship satisfy this relationship’s
definition.

8. Annotations

Practical experience with the third Provenance Chal-
lenge has shown the need for “extra information” to be
added to OPM entities. Such extra information is typically
required for inter-operability purpose, to allow meaningful
exchange of provenance information. Examples include
subtyping of edges, descriptions of processes, and refer-
ence to values of artifacts. To accommodate “extra infor-
mation” in an extensible manner, the Open Provenance
Model allows for all its entities to be annotated, by means
of the OPM annotation framework, which we describe be-
low.

8.1. The OPM Annotation Framework
The OPM annotation framework is defined according

to the following rules.

1. OPM annotations are also OPM entities, forming a
class of objects distinct from the other OPM entities.

2. An annotable entity can be an OPM graph8, an OPM
node, an OPM edge, an OPM account, an OPM role,
or an OPM annotation.

3. An annotated entity is an annotable entity associated
with one or more instances of annotations.

7Whilst one could infer whether two graphs actually overlap, this
would typically require the graphs to be parsed fully in order to make
such an inference; instead, explicit declarations of such overlapping
properties can be considered to facilitate the processing and traversal
of graphs.

8OPM is intended to be technology agnostic. However, there is
an acknowledgement that annotating a graph may present challenges
with some technologies such as RDF. The implications of such capa-
bility are currently under investigation.

4. Every annotated entity must be uniquely identifiable
in the context of an OPM graph by means of an
identifier.

5. An annotation instance is an object of the class OPM
Annotation and consists of the following:

• a subject: an annotable entity (identified by its
identifier) to which the annotation is attached;

• a non-empty set of property-value pairs:

– the property includes a namespace to rep-
resent its scope,

– the value must be typed;

• a list of accounts, which must be a subset of the
effective accounts of the annotated entity.

The intended meaning of a property-value pair is
that the annotated entity (i.e. the subject) is pro-
vided with additional descriptions, each consisting of
a property of the subject and the value of this prop-
erty for the subject, in the context of some accounts.
Multiple property-value pairs are allowed within an
annotation instance. It is legal for a same property
to occur multiple times with different values.

6. Annotations can themselves be annotated and sub-
typed.

Figure 13 illustrates how annotations have been added
to Figure 3. We have two9 annotations represented as a
“post-it”, with property “quality” and value “yummy” for
the cake, and property “type” and value “raising” from
flour. Also the edges “was derived from” were subtyped,
and their type added as a label.

bake

100g butter

(butte r)

two eggs

(egg)

100g sugar

(sugar)

100g flour

(flour)

John

(baker)

type: raising

cake

(cake)

hasIngredient hasIngredienthasIngredient hasIngredient

quality: yummy

Figure 13: Annotation in the Victoria Sponge Cake Provenance

8.2. Common OPM Properties
For inter-operability purpose, OPM defines a set of

common properties. We identify each property by a unique
URI; we define the expected type of subjects and values
associated with such property. Finally, we state the in-
tended meaning of the property.

9In fact, all nodes and edges are annotated because they all have a
label. We did not make the “label” annotation explicit in the graph-
ical representation of annotations since the label is already displayed
in nodes and along side edges.

11



type subject: an annotable entity
property: http://openprovenance.org/property#type
value: a URI
meaning: Denotes the subtype of an OPM entity.

Such subtypes are represented by a URI.
pname subject: an annotable entity

property: http://openprovenance.org/property#pname
value: a URI
meaning: Denotes a persistent name that can be used

by OPM graph queriers to compare OPM
entities across graphs. The scope of this
name is intended to be global.

label subject: an annotable entity
property: http://openprovenance.org/property#label
value: a String
meaning: This property provides a human-readable

version of an OPM entity.
value subject an artifact

property: http://openprovenance.org/property#value
value: a typed value
meaning: Denotes a serialization of an application

value associated with an OPM entity. Such
serialization should have a type (expressed
in a type system suitable for the serial-
ization). Serialization technologies include
XML, JSON, and ntriples.

encoding subject: an artifact or an OPM graph
property: http://openprovenance.org/property#encoding
value: a URI
meaning: Denotes how a serialization was con-

structed. For instance, using the Java bean
serializer to create an XML document, by
applying a specified transformation to the
application data, e.g. anonymisation, by
passing a reference to the actual value, or
by creating a set of RDF triples.

profile subject: an OPM graph
property: http://openprovenance.org/property#profile
value: a URI
meaning: This property applies to an OPM graph and

denotes a profile that is supported by that
graph

9. OPM Profiles

OPM is a top-level representation framework for prove-
nance, and we recognize that some communities will de-
velop their own best practice and usage guidelines. To en-
courage such a notion of best practice or usage guideline,
we formalize it by means of the concept of an OPM profile.
For instance, a set of conventions is currently emerging to
represent “collections” in OPM; it is suggested that all
these conventions can be expressed in a “collection pro-
file” [17]. Whenever an OPM graph adopts these conven-
tions, it can be annotated with this profile so that queriers
may exploit this declaration in order to process the graph.

An OPM profile is intended to define a specialisation of
OPM, and therefore must remain compatible with the se-
mantics of OPM described in this document. Concretely,
this means that a profile-compliant OPM graph is an OPM
graph, whose semantics is described in this document.
This implies that all inferences specified by this document
remain valid in a profile-compliant OPM graph. For the
avoidance of doubt, any extension of OPM that does not
preserve the OPM semantics must not be defined as a pro-
file, and must not be referred to as OPM. Profiles are spec-
ified in separate documents that are independent of this
core specification.

An OPM profile consists of the following elements:

1. A mandatory unique global identifier for the profile.

Such a profile identifier must be used as the value
of the profile property in an annotation to the OPM
graph that supports such a profile.

2. An optional controlled vocabulary for annotations.
In this context, a controlled vocabulary for annota-
tions is a specification of the properties, its permitted
subjects, and its permitted values (such as types or
enumerated values). Such a controlled vocabulary
may be used for some of the following:
(a) Subtyping edges and nodes in OPM graphs by

means of the type property;
(b) Defining application-specific properties: for in-

stance, a position property attached to nodes
can be exploited by a visualization tool to ren-
der OPM graphs.

3. Optional general guidance to express OPM graphs.
There are typically many different ways in which
OPM can be used to describe an execution. For
inter-operability purpose, it is therefore good to pro-
vide some guidance on how to structure OPM graphs.
For instance, it may be useful to identify several
types of accounts (e.g., for high-level and low-level
descriptions) and to mandate that each account con-
tains edges of specific subtypes.
Likewise, common software engineering patterns in-
volved in the design and implementation of an ap-
plication may also be reflected in OPM graphs; for
instance, the publish/subscribe pattern of an appli-
cation can result in a set of OPM conventions to
express publisher and consumer processes and the
flow of information between them.

4. Optional profile expansion rules.
In some specific circumstances, it may not be nec-
essary to express all edges or nodes related to an
execution because they can be derived. Hence, pro-
files may contain rules, referred to as expansion rules
to convert a profile-compliant OPM graph into an-
other OPM graph. The process of applying profile
expansion rules to generate an OPM graph is called
profile expansion, and the resulting graph is said to
be profile-expanded . We draw the reader’s attention
to the terminology adopted here. Profile expansion
should be distinguished from the completion rules
and multi-step inferences defined in Section 6.
Profile expansion constructs a profile-expanded OPM
graph by adding new elements (and possibly remov-
ing some), satisfying the following constraints:
(a) A profile-compliant graph is an OPM graph;
(b) A profile-expanded graph is an OPM graph,
(c) The semantics of the profile-compliant graph

and of the profile-expanded graph are solely de-
fined by this document;

(d) Any multi-step edge that can be inferred be-
tween two nodes in a profile-compliant graph
must also be inferable in the profile-expanded

12



graph (but not vice-versa)10
(e) Provided that condition (4d) holds, the profile

expansion process is:
• node preserving: any node in the profile-

compliant graph also belongs to the profile-
expanded graph;
• single-step edge lossy: single-step edges in

the profile-compliant graph may not neces-
sarily belong to the profile-expanded graph;
• multip-step edge preserving: multi-step edges

that can be inferred in the profile-compliant
graph must also be inferrable in the profile-
expanded graph;
• annotation lossy: profile-specific annotations

in the profile-compliant graph may not nec-
essarily belong to the profile-expanded graph.

As a result, there is not need of knowing about a pro-
file to be able to analyse a profile-expanded graph.
From a reasoning perspective, an OPM reasoning en-
gine is only required to implement the inference rules
described in this document. Profile-compliant OPM
graphs can be translated into OPM graphs by the
profile expansion process. Alternatively, a reason-
ing engine may be profile aware, and may be able
to reason on profile-compliant OPM graphs without
requiring profile expansion to take place.

5. Optional serialization specific syntax.
A profile may introduce syntactic short-cuts for spe-
cific serializations. The serialization needs to ex-
plain how such short-cuts can be translated into core
OPM, and vice-versa.

We can envisage that controlled vocabularies, patterns
and inference rules may all be expressed in some declara-
tive language, which could be used to automatically check
whether an OPM graph is compliant with a profile, and to
perform profile expansion automatically. There is however
no off-the-shelf solution that we can reuse for this purpose.
Hence, our assumption is that profiles will be mostly spec-
ified in natural language, and that profile compliance and
profile expansion routines will have to be implemented by
hand. We welcome solutions to make these steps as auto-
matic as possible.

10. Discussion, Related and Future Work

OPM addresses the requirements identified in Section 2.
Fourteen teams participating in the Third Provenance Chal-
lenge have demonstrated that OPM can be used to ex-
change provenance information. Common tools are emerg-
ing (see openprovenance.org), such as visualization and

10In fact, the profile expansion rules generate an OPM graph
that is a refinement of the original graph. Any node of the profile-
compliant graph is also a node of the profile-expanded graph (but
the latter may contain extra nodes). Any multi-step edge that can
be inferred in the profile-compliant graph can also be inferred in the
profile-expanded graph.

conversion, some of which were demonstrated in the Third
Provenance Challenge (see papers in this special issue).

This specification defines the Open Provenance Model
in a technology-agnostic manner, and is used to generate
the provenance of data products produced using multi-
ple technologies (e.g., C#, Java, Kepler, Taverna, PASS,
VisTrails). The specification also defines the kind of infer-
ences that are permitted; they can be classified in three
categories: completion (Section 6.1), multi-step inference
(Section 6.2) and profile expansion (Section 9). The con-
cept of account allows multiple descriptions to coexist. Fi-
nally, the cake example, though contrived, illustrates that
OPM can be applied to physical artifacts. OPM is de-
scribed as an abstract model, but serializations to XML
and RDF (and associated XML Schema and OWL ontol-
ogy) are being proposed (openprovenance.org) and have
actively been used in the Third Provenance Challenge.

Prior to the first OPM specification, multiple prove-
nance technologies had been developed, but none aimed
at defining a technology-agnostic provenance data model
for inter-operability purpose. For instance, PASOA [18]
offers a model that aimed at inter-operability between ex-
ecution technologies: it focuses on distribution (message-
passing systems) and its definition is bound to XML. So,
OPM is the first model to be purely technology agnos-
tic. A companion paper [19] defines its formal semantics.
Since the conception of OPM, other models have emerged.
Hartig [20] proposes the provenance vocabulary , which we
conjecture can be defined as a profile of OPM, to describe
the provenance of Linked Data over the Web. His model
accounts for the creation and access of RDF data, and is
strongly bound to RDF technology. Sahoo et al. [21] de-
fine a provenance ontology based on three entities similarly
to OPM, but their design is influenced by scientific ex-
periments; their analogous of artifact denotes potentially
stateful electronic data (including collections which OPM
defines in a separate profile). In addition, relationships
between entities are not all causal.

The Proof Markup Language (PML) [22], conceived in-
dependently in the context of the Semantic Web, includes
metadata such as authorship and authoritativeness of a
source, and a detailed trace of inference rules applied. Re-
lationships, which capture notions of Consequent and An-
tecedents to a proof step, the succession of which consists
of a proof, bear some strong similarity with OPM concepts.

The W3C Incubator on Provenance [24] has identified
use cases and requirements for provenance on the Web, and
is proposing a mapping of the above models of provenance
to OPM.

OPM is a language to describe dependencies between
artifacts, processes, and agents. Since the Third Prove-
nance Challenge did not test agents much, further guid-
ance is needed on how best to describe systems in the pres-
ence of agents. For instance, in the OPM 1.01 specifica-
tion [12], we identified alternate patterns by which agents
controlled processes, according to different accounts. Fur-
ther work is required to develop profiles, based on commu-

13



nity experience with these OPM constructs.
Scientists regularly manipulate sets of data as first-

class entities. While such sets, referred to as collections,
can be represented in OPM as artifacts, their provenance
is typically tightly linked to the provenance of their con-
stituents. However, no guidance is provided by OPM to
express such collections and their relation to their con-
stituents. To acknowledge the importance of collections, a
whole section on collections was introduced in OPM 1.01.
Since then, the concept of profile has been formulated,
and a collection profile has been drafted [17]. During the
design phase of OPM v1.1, a vote unanimously opted to
keep the collection profile separate from OPM core. Fur-
thermore, OPM considers artifacts as immutable pieces of
state; guidance is required to represent stateful objects in
OPM.

OPM does not provide any specific mechanism to assert
attribution of a provenance graph or portion thereof. It is
generally recognized that annotations are the mechanism
to do so; attribution could be attached, as an annotation,
to accounts or to the graph itself, for example. Work is
underway to define a Dublin Core profile for OPM [23],
which deals with some of these concepts.

11. Conclusion

The document has introduced the Open Provenance
Model, consisting of a technology-independent specifica-
tion and a graphical notation, to express causality graphs
representing past executions. Work is in progress to define
several useful profiles, such as the Dublin Core and the
Collections profiles, specify serialization formats to XML
and RDF, and formalize the OPM semantics. We will also
specify protocols by which provenance of entities can be
queried, and protocols for applications to record descrip-
tions of their execution.

12. Acknolwedgement

The authors of this document gratefully acknoledge
the contributions made by authors of previous versions
of the specification Roger Barga, Shawn Bowers, Tommy
Ellkvist, Carole Goble, Bertram Ludaescher, Robert E.
McGrath, and Patrick Paulson.
[1] P. W. Group, Data Dictionary for Preservation Metadata

— Final Report of the PREMIS Working Group, Tech.
Rep., Preservation Metadata: Implementation Strategies
(PREMIS), URL http://www.oclc.org/research/projects/

pmwg/premis-final.pdf, 2005.
[2] Y. Simmhan, B. Plale, D. Gannon, A survey of data

provenance in e-science, SIGMOD Record 34 (3) (2005)
31–36, URL http://www.sigmod.org/sigmod/record/issues/

0509/p31-special-sw-section-5.pdf.
[3] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,

D. Gannon, C. Goble, M. Livny, L. Moreau, J. Myers, Ex-
amining the Challenges of Scientific Workflows, IEEE Com-
puter 40 (12) (2007) 26–34, doi:http://doi.ieeecomputersociety.
org/10.1109/MC.2007.421, URL http://www.ecs.soton.ac.

uk/~lavm/papers/computer07.pdf.

[4] L. Moreau, I. Foster (Eds.), Provenance and Annota-
tion of Data — International Provenance and Annota-
tion Workshop, IPAW 2006, vol. 4145 of Lecture Notes
in Computer Science, Springer-Verlag, ISBN 3-540-46302-
X, URL http://www.springer.com/uk/home/generic/search/

results?SGWID=3-40109-22-173681711-0, 2006.
[5] R. Bose, I. Foster, L. Moreau, Report on the Interna-

tional Provenance and Annotation Workshop (IPAW06),
Sigmod Records 35 (3) (2006) 51–53, ISSN 0163-5808,
doi:http://doi.acm.org/10.1145/1168092.1168102, URL
http://www.sigmod.org/sigmod/record/issues/0609/

sigmod-record.september2006.pdf.
[6] L. Moreau, B. Ludäscher, I. Altintas, R. S. Barga, S. Bow-

ers, S. Callahan, G. Chin Jr., B. Clifford, S. Cohen, S. Cohen-
Boulakia, S. Davidson, E. Deelman, L. Digiampietri, I. Foster,
J. Freire, J. Frew, J. Futrelle, T. Gibson, Y. Gil, C. Goble,
J. Golbeck, P. Groth, D. A. Holland, S. Jiang, J. Kim, D. Koop,
A. Krenek, T. McPhillips, G. Mehta, S. Miles, D. Metzger,
S. Munroe, J. Myers, B. Plale, N. Podhorszki, V. Ratnakar,
E. Santos, C. Scheidegger, K. Schuchardt, M. Seltzer, Y. L.
Simmhan, C. Silva, P. Slaughter, E. Stephan, R. Stevens,
D. Turi, H. Vo, M. Wilde, J. Zhao, Y. Zhao, The First Prove-
nance Challenge, Concurrency and Computation: Practice and
Experience 20 (5) (2008) 409–418, ISSN 1532-0626, doi:DOI:
10.1002/cpe.1233, URL http://www.ecs.soton.ac.uk/~lavm/

papers/challenge-editorial.pdf.
[7] Second:Challenge, Second Challenge Team Contribu-

tions, URL http://twiki.ipaw.info/bin/view/Challenge/

ParticipatingTeams, 2007.
[8] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers,

P. Paulson, The Open Provenance Model (v1.00), Tech. Rep.,
University of Southampton, URL http://eprints.ecs.soton.

ac.uk/14979/1/opm.pdf, 2007.
[9] S. Miles, Technical Summary of the Second Prove-

nance Challenge Workshop, Tech. Rep., King’s Col-
lege, URL http://twiki.ipaw.info/bin/view/Challenge/

SecondWorkshopMinutes, 2007.
[10] First:OPM:Workshop, Open Provenance Model Workshop: To-

wards Provenance Challenge 3, URL http://twiki.ipaw.info/

bin/view/Challenge/OpenProvenanceModelWorkshop, 2008.
[11] P. Groth, First OPM Workshop Minutes, Tech. Rep., Infor-

mation Science Institute, USC, URL http://twiki.ipaw.info/

bin/view/Challenge/FirstOPMWorkshopMinutes, 2008.
[12] L. Moreau (Editor), B. Plale, S. Miles, C. Goble, P. Missier,

R. Barga, Y. Simmhan, J. Futrelle, R. McGrath, J. Myers,
P. Paulson, S. Bowers, B. Ludaescher, N. Kwasnikowska, J. Van
den Bussche, T. Ellkvist, J. Freire, P. Groth, The Open Prove-
nance Model (v1.01), Tech. Rep., University of Southamp-
ton, URL http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.

01.pdf, 2008.
[13] L. Moreau, J. Freire, J. Futrelle, J. Myers, P. Paulson, Gov-

ernance of the Open Provenance Model, URL http://twiki.

ipaw.info/pub/OPM/WebHome/governance.pdf, 2009.
[14] OPM:twiki, Open Provenance Model Wiki, URL http://

twiki.ipaw.info/bin/view/OPM/, 2009.
[15] J. Woodcock, J. Davies, Using Z. Specification, Refinement, and

Proof, Prentice Hall, ISBN 0139484728, 1996.
[16] L. Lamport, Time, Clocks, and the Ordering of Events in a

Distributed System, Communications of the ACM 21 (7) (1978)
558–565, doi:http://doi.acm.org/10.1145/359545.359563, URL
http://research.microsoft.com/en-us/um/people/lamport/

pubs/time-clocks.pdf.
[17] P. Groth, S. Miles, P. Missier, L. Moreau, A Pro-

posal for Handling Collections in the Open Provenance
Model, URL http://mailman.ecs.soton.ac.uk/pipermail/

provenance-challenge-ipaw-info/2009-June/000120.html,
2009.

[18] P. Groth, S. Miles, L. Moreau, A Model of Process Documen-
tation to Determine Provenance in Mash-ups, Transactions on
Internet Technology (TOIT) 9 (1) (2009) 1–31, ISSN 1533-5399,
doi:http://doi.acm.org/10.1145/1462159.1462162, URL http:

14

http://www.oclc.org/research/projects/pmwg/premis-final.pdf
http://www.oclc.org/research/projects/pmwg/premis-final.pdf
http://www.sigmod.org/sigmod/record/issues/0509/p31-special-sw-section-5.pdf
http://www.sigmod.org/sigmod/record/issues/0509/p31-special-sw-section-5.pdf
http://doi.ieeecomputersociety.org/10.1109/MC.2007.421
http://doi.ieeecomputersociety.org/10.1109/MC.2007.421
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/computer07.pdf
http://www.springer.com/uk/home/generic/search/results?SGWID=3-40109-22-173681711-0
http://www.springer.com/uk/home/generic/search/results?SGWID=3-40109-22-173681711-0
http://doi.acm.org/10.1145/1168092.1168102
http://www.sigmod.org/sigmod/record/issues/0609/sigmod-record.september2006.pdf
http://www.sigmod.org/sigmod/record/issues/0609/sigmod-record.september2006.pdf
DOI: 10.1002/cpe.1233
DOI: 10.1002/cpe.1233
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://www.ecs.soton.ac.uk/~lavm/papers/challenge-editorial.pdf
http://twiki.ipaw.info/bin/view/Challenge/ParticipatingTeams
http://twiki.ipaw.info/bin/view/Challenge/ParticipatingTeams
http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf
http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf
http://twiki.ipaw.info/bin/view/Challenge/SecondWorkshopMinutes
http://twiki.ipaw.info/bin/view/Challenge/SecondWorkshopMinutes
http://twiki.ipaw.info/bin/view/Challenge/OpenProvenanceModelWorkshop
http://twiki.ipaw.info/bin/view/Challenge/OpenProvenanceModelWorkshop
http://twiki.ipaw.info/bin/view/Challenge/FirstOPMWorkshopMinutes
http://twiki.ipaw.info/bin/view/Challenge/FirstOPMWorkshopMinutes
http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf
http://eprints.ecs.soton.ac.uk/16148/1/opm-v1.01.pdf
http://twiki.ipaw.info/pub/OPM/WebHome/governance.pdf
http://twiki.ipaw.info/pub/OPM/WebHome/governance.pdf
http://twiki.ipaw.info/bin/view/OPM/
http://twiki.ipaw.info/bin/view/OPM/
http://doi.acm.org/10.1145/359545.359563
http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf
http://mailman.ecs.soton.ac.uk/pipermail/provenance-challenge-ipaw-info/2009-June/000120.html
http://mailman.ecs.soton.ac.uk/pipermail/provenance-challenge-ipaw-info/2009-June/000120.html
http://doi.acm.org/10.1145/1462159.1462162
http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf


//www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf.
[19] L. Moreau, N. Kwasnikowska, J. Van den Bussche, The Foun-

dations of the Open Provenance Model, Tech. Rep., Univer-
sity of Southampton, URL http://eprints.ecs.soton.ac.uk/

17282/, 2009.
[20] O. Hartig, Provenance Information in the Web of Data,

in: Proceedings of the Linked Data on the Web Workshop
(LDOW’09), Madrid, Spain, URL http://events.linkeddata.

org/ldow2009/papers/ldow2009_paper18.pdf, 2009.
[21] S. S. Sahoo, A. Sheth, C. Henson, Semantic Provenance for

eScience: Managing the Deluge of Scientific Data, Internet
Computing, IEEE 12 (4) (2008) 46–54, ISSN 1089-7801, doi:
http://dx.doi.org/10.1109/MIC.2008.86.

[22] D. L. McGuinness, P. Pinheiro da Silva, Explaining answers
from the Semantic Web: the Inference Web approach, J.
Web Sem. 1 (4) (2004) 397–413, doi:http://dx.doi.org/10.
1016/j.websem.2004.06.002, URL http://ksl.stanford.edu/

KSL_Abstracts/KSL-04-03.html.
[23] S. Miles, L. Moreau, J. Futrelle, OPM Profile for Dublin

Core Terms (Draft), URL http://mailman.ecs.soton.ac.

uk/pipermail/provenance-challenge-ipaw-info/2009-June/

000124.html, 2009.
[24] xg-prov, W3C Provenance Incubator Group Wiki, http://www.

w3.org/2005/Incubator/prov/, 2010.

15

http://www.ecs.soton.ac.uk/~lavm/papers/toit09.pdf
http://eprints.ecs.soton.ac.uk/17282/
http://eprints.ecs.soton.ac.uk/17282/
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper18.pdf
http://dx.doi.org/10.1109/MIC.2008.86
http://dx.doi.org/10.1016/j.websem.2004.06.002
http://dx.doi.org/10.1016/j.websem.2004.06.002
http://ksl.stanford.edu/KSL_Abstracts/KSL-04-03.html
http://ksl.stanford.edu/KSL_Abstracts/KSL-04-03.html
http://mailman.ecs.soton.ac.uk/pipermail/provenance-challenge-ipaw-info/2009-June/000124.html
http://mailman.ecs.soton.ac.uk/pipermail/provenance-challenge-ipaw-info/2009-June/000124.html
http://mailman.ecs.soton.ac.uk/pipermail/provenance-challenge-ipaw-info/2009-June/000124.html
http://www.w3.org/2005/Incubator/prov/
http://www.w3.org/2005/Incubator/prov/

	Introduction
	Requirements
	Basics
	Nodes
	Dependencies
	Roles
	Examples

	Overlapping and Hierarchichal Descriptions
	Temporal Constraints and Observation Time
	Completion and Inferences
	Completion Rules
	Multi-Step Inferences

	Provenance Graph Definition
	Annotations
	The OPM Annotation Framework
	Common OPM Properties

	OPM Profiles
	Discussion, Related and Future Work
	Conclusion
	Acknolwedgement

