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Bio-Inspired Algorithms

Bio-inspired computational intelligence has found
wide-ranging applications in all walks of engineering

Examples of bio-inspired computational intelligence
algorithms

Evolutionary methods, such as genetic algorithms

Bio-inspired ant colony optimisation

Swarm intelligence, such as particle swarm optimisation

Many many more
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Communication Applications

What critical to a communication signal processing
application are: performance and complexity

A bio-inspired algorithm must offer near optimal solution
with affordable cost

Communication Research Group at Southampton has a
long and successful record in applying

genetic algorithms and ant colony optimisation

to multiuser receiver designs

Our new contribution: Particle swarm optimisation aided
multiuser transmission for MIMO communication
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PSO Flowchart

Solving generic optimisation

Uopt = arg min
U∈UN×M

F (U)

U is an N ×M complex-valued
parameter matrix to be
optimised, F (•) is cost, and
search space UN×M defined by

U =
[
−Umax, Umax

]
+j

[
−Umax, Umax

]
A swarm of particles, {U(l)

i }S
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denotes iteration index
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PSO Algorithm Adopted

PSO: A population based stochastic optimisation method
inspired by social behaviour of bird flocks or fish schools

Each particle remembers its best position visited =⇒
cognitive information, Pb(l)

i , 1 ≤ i ≤ S

Every particle knows best position visited among entire
swarm =⇒ social information, Gb(l)

Each particle has a velocity V(l)
i ∈ VN×M to direct its

“flying”, and velocity space is defined by

V =
[
− Vmax, Vmax

]
+ j

[
− Vmax, Vmax

]
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PSO Procedure

a) Initialisation: Set iteration index l = 0 and randomly generate
{U(l)

i }S
i=1 in search space UN×M

b) Evaluation: Particle U(l)
i has cost F (U(l)

i ), based on which
Pb(l)

i , 1 ≤ i ≤ S, and Gb(l) are updated

c) Update: Velocities and positions are updated

V(l+1)
i = ξ ∗ V(l)

i + c1 ∗ ϕ1 ∗ (Pb(l)
i − U(l)

i ) + c2 ∗ ϕ2 ∗ (Gb(l) − U(l)
i )

U(l+1)
i = U(l)

i + V(l+1)
i

where ϕ1 = rand() and ϕ2 = rand()

d) Termination: If maximum number of iterations Imax is reached,
terminate with solution Gb(Imax); otherwise, l = l + 1 and goto b)
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PSO Algorithmic Parameters

Inertial weight: ξ = rand(), ξ = 0 or a small positive constant

Time varying acceleration coefficients

c1 = (0.5− 2.5) ∗ l/Imax + 2.5, c2 = (2.5− 0.5) ∗ l/Imax + 0.5

Initially, large cognitive component and small social
component help particles to exploit better search space
Later, small cognitive component and large social
component help particles to converge quickly to a minimum

For our application, typically, S in range of 20 to 40, and Imax in
range of 25 to 40

Search space, Umax, is specified by problem, and related velocity
space, Vmax, can be determined empirically
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Computational Complexity

Let complexity of evaluating cost function once be Csingle

Since number of cost function evaluations is

Ntotal = S × Imax,

complexity of the algorithm is

CPSO = Ntotal × Csingle = Imax × S × Csingle

Choice of S and Imax should ensure achieving optimal
solution with minimum complexity

Attraction of PSO is that the algorithm can be easily tuned
to attain optimum with small Ntotal
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Linear MUT

Base station employs N transmit antennas to communicate with
K single-receive-antenna mobile stations, i.e. downlink

MSs unable to perform multiuser detection =⇒ Do multiuser
transmission at BS instead to combat multiuser interference

The scheme is “linear” as BS uses linear precoding to
preprocess transmitted signals
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System Model

Linear MUT system model

y = HT P x + α−1n

x = [x1 x2 · · · xK ]T , xk : transmitted 4-QAM symbol to k th MS

N × K complex-valued precoder matrix P = [p1 p2 · · ·pK ]

Complex-valued MIMO channel matrix H = [h1 h2 · · ·hK ]

Complex-valued Gaussian white noise vector n = [n1 n2 · · ·nK ]T

α =
√

ET/‖Px‖2 for fullfilling power constraint

y = [y1 y2 · · · yK ]T , yk : k th MS’s received signal

Given H, x and statistics of n, design P =⇒ k th MS can use received
yk directly as sufficient statistics to detect transmitted symbol xk
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Linear MBER MUT Design

Minimum mean square error design PMMSE has appealing
simplicity but is not optimal

Optimal minimum bit error rate design

PMBER,x = arg min
P

Pe,x(P)

s.t. ‖Px‖2 = ET

Bit error rate for 4-QAM symbol vector x

Pe,x(P) =
(
PeI ,x(P) + PeQ ,x(P)

)
/2

PeI ,x =
1
K

KX
k=1

Q

 
sgn(<[xk ])<[hT

k Px]

σn

!
PeQ ,x =

1
K

KX
k=1

Q

 
sgn(=[xk ])=[hT

k Px]

σn

!

Q(•) is Gaussian error function, and σ2
n noise variance
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Low-Complexity PSO Aided Solution

MBER design is typically solved by sequential quadratic
programming (SQP) algorithm =⇒ high complexity

Low-complexity alternative: using PSO to solve

PMBER,x = arg min
P∈UN×K

F (P)

by defining cost F (P) = Pe,x(P) + Gx(P) with penalty function

Gx(P) =

{
0, ‖Px‖2 − ET ≤ 0

λ(‖Px‖2 − ET), ‖Px‖2 − ET > 0

Empirical PSO algorithmic parameter tuning:

One of the initial particles set to PMMSE
Search limit Umax = 1 while velocity limit Vmax = 1
Remove previous velocity’s influence with ξ = 0
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Experimental Results

BER performance of PSO-aided linear MBER-MUT design for the
4× 4 MIMO system, in comparison with MMSE-MUT benchmark

MIMO system employed N = 4
transmit antennas at BS to
communicate with K = 4 MSs

All the simulation results were
obtained by averaging over
100 channel realisations

Appropriate swarm size
S = 20 was found empirically

Maximum number of iterations,
Imax, was in range of 20 to 30,
depending on channel SNR
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Convergence versus Swarm Size

Convergence of PSO aided linear MBER-MUT design with different
swarm sizes for the 4× 4 MIMO system given SNR= 15 dB
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Swarm Size versus Complexity

Complexity (Flops) of PSO aided design with different swarm
sizes for the 4× 4 MIMO system given SNR= 15 dB

Swarm size S 20 30 40
Iterations Imax 30 25 20
CPSO (Flops) 402,840 503, 450 536, 960

S = 10 insufficient for PSO to attain optimal solution

PSO with S = 20, 30 and 40 converged to optimal solution
after Imax = 30, 25 and 20, respectively

S = 20 optimal in terms of complexity
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Convergence Comparison

Convergence performance of PSO and SQP based MBER-MUT
schemes for the 4× 4 MIMO system given two SNR values
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Complexity Comparison

Complexity (Flops) and run time (s) of PSO and SQP aided designs
for the 4× 4 MIMO system given two SNR values

(SNR= 10 dB) SQP PSO
Iterations 70 20
Complexity (Flops) 3, 180, 170 268, 560
Run time (s) 7412.1 664.9
(SNR= 15 dB) SQP PSO
Iterations 80 30
Complexity (Flops) 3, 634, 480 402, 840
Run time (s) 8457.3 957.4

PSO-aided design imposed approximately twelve times lower
complexity than SQP counterpart at SNR= 10 dB

PSO-aided design imposed approximately nine times lower
complexity than SQP counterpart at SNR= 15 dB
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Nonlinear MUT

Base station employs N transmit antennas to communicate with
K single-receive-antenna mobile stations, i.e. downlink

The scheme is “nonlinear” as BS uses vector precoding to
preprocess Tx signals, and each MS has a modulo device

Capable of outperforming linear MUT, particularly in
rank-deficient case of N < K , at cost of higher complexity
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Conventional Design

Given N × K channel matrix H and K -element symbol vector x,
MMSE VP generates N-element effective symbol vector

d = P(x + ω)

according to MMSE criterion, to mitigate multiuser interference
P is N × K precoding matrix
ω is K -element discrete-valued perturbation vector

Received signal vector ŷ = [ŷ1 · · · ŷK ]T before modulo device is

ŷ = HT d + α−1n

Modulo operation is invoked for each ŷk

yk = modτ

(
ŷk

)
= ŷk − b

<[ŷk ] + τ
2

τ
cτ − j b

=[ŷk ] + τ
2

τ
cτ

b • c denotes integer floor operator
τ is a positive number determined by modulation scheme

k th MS uses yk to detect transmitted information symbol xk
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Generalised VP Design

We would like to directly design effective symbol vector d
according to MBER criterion

Signed decision variable, sk = sgn(<[xk ])<[ŷk ], has probability
density function

A decision error occurs when sk falls into intervals
[ 2m+1

2 τ, (m + 1)τ) for −∞ < m < ∞ (marked by −)

Accurate approximation for BER of the in-phase component
associated k th MS, PeI ,k (d), can readily be derived
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MBER VP Design

For 4-QAM case, average BER of in-phase component of y is

PeI ,x(d) =
1
K

K∑
k=1

PeI ,k (d)

Similarly, average BER for quadrature-phase component of y is

PeQ ,x(d) =
1
K

K∑
k=1

PeQ ,k (d)

Average BER of y is then

Pe,x(d) =
1
2

(PeI ,x(d) + PeQ ,x(d))

Optimal effective symbol vector dopt can be found by solving

dopt = arg min
d∈UN

Pe,x(d)
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Why PSO

MBER optimisation

dopt = arg min
d∈UN

Pe,x(d)

is a non-convex optimisation
with many local minima

PSO algorithm offers an
effective means to solve this
challenging problem

Umax = 1.2 and Vmax = 0.2

Inertia weight ξ = rand()

One of initial particles set to
improved MMSE-VP solution

BER surface as a function of effective symbol

vector d for 4-QAM system with N = 1 and

K = 1, given SNR= 16 dB

Mark ∗ is MBER generalied VP solution while

mark + is MMSE VP solution
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Experimental Results

Performance comparison of linear MBER-MUT, nonlinear MMSE-VP
and PSO-aided MBER generalised VP for 2× 4 MIMO system

MIMO system employed N = 2
transmit antennas at BS to
communicate with K = 4 MSs

All the simulation results were
obtained by averaging over
100 channel realisations

Appropriate swarm size
S = 20 was found empirically

Maximum number of iterations,
Imax, was in range of 20 to 45,
depending on channel SNR
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Convergence versus Swarm Size

Convergence of PSO aided MBER generalised VP design with
different swarm sizes for the 2× 4 MIMO system given SNR= 25 dB
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Swarm Size versus Complexity

Complexity of PSO aided MBER-VP design with different
swarm sizes for the 2× 4 MIMO system given SNR= 25 dB

Swarm size S 20 30 40
Iterations Imax 40 32 25

Complexity (Flops) 4,064,937 4, 149, 627 4, 174, 077

S = 10 insufficient for PSO to attain optimal MBER
generalised VP solution

PSO with S = 20, 30 and 40 converged to optimal solution
after Imax = 40, 32 and 25, respectively

S = 20 optimal in terms of complexity
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Complexity Comparison

Complexity (Flops) and run time (s) required by MMSE-VP design
and PSO-aided MBER-VP design for the 2× 4 MIMO system given
two SNR values

(SNR= 25 dB) MMSE-VP MBER-VP
Complexity (Flops) 2, 508, 638 4, 064, 937
Run time (s) 4787.3 8878.9
(SNR= 30 dB) MMSE-VP MBER-VP
Complexity (Flops) 2, 609, 600 4, 471, 060
Run time (s) 4981.9 9565.8

Complexity of PSO aided MBER-VP design is no more than
twice of MMSE-VP design

PSO aided MBER-VP design achieves significantly better
performance than MMSE-VP design
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Summary

PSO has been invoked for designing MUT schemes for
MIMO systems

PSO aided designs are capable of attaining global or near
global optimal solutions at affordable computational costs

PSO aided linear MBER MUT design imposes significantly
lower computational complexity than state-of-the-art
SQP-based linear MBER MUT design

PSO aided nonlinear MBER generalised VP design
outperforms powerful nonlinear MMSE VP solution
considerably, at cost of slightly increased complexity
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