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Abstract. In an open Multi-Agent System, the goals of agents acting
on behalf of their owners often conflict with each other. Therefore, a
personal agent protecting the interest of a single user cannot always rely
on them. Consequently, such a personal agent needs to be able to rea-
son about trusting (information or services provided by) other agents.
Existing algorithms that perform such reasoning mainly focus on the im-
mediate utility of a trusting decision, but do not provide an explanation
of their actions to the user. This may hinder the acceptance of agent-
based technologies in sensitive applications where users need to rely on
their personal agents.

Against this background, we propose a new approach to trust based
on argumentation that aims to expose the rationale behind such trusting
decisions. Our solution features a separation of opponent modeling and
decision making. It uses possibilistic logic to model behavior of oppo-
nents, and we propose an extension of the argumentation framework by
Amgoud and Prade [I] to use the fuzzy rules within these models for
well-supported decisions.

1 Introduction

An open Multi-Agent System (MAS) is characterized by an agent’s freedom to
enter and exit the system as it pleases, and the lack of central regulation and con-
trol of behavior. In such a MAS, agents are often not only dependent upon each
other, as for example in Computer-Supported Cooperative Work (CSCW) [2],
web services [3], e-Business [4J5], and Human-Computer interaction [6], but their
goals may also be in conflict. As a consequence, agents in such a system are not
reliable or trustworthy by default, and an agent needs to take into account the
trustworthiness of other agents when planning how to satisfy its owner’s de-
mands.

Several algorithms have been devised to confront this problem of estimating
trustworthiness by capturing past experiences in one or two values to estimate
future behavior (e.g. see the survey by Dash et al. [7]). These algorithms, how-
ever, primarily focus on improving the immediate success of an agent. Less em-
phasis is laid on discovering patterns in the behavior of other agents, or—more
challenging—their incentives. Moreover, the rationale of a decision often eludes
the user: in most approaches it is ‘hidden’ in a large amount of numerical data, or
simply incomprehensible. At any rate, these approaches do not provide human-
readable information about these decisions, and were indeed not designed to do
this.
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The following example illustrates the importance of the rationale behind the
agent’s decision. Suppose a user instructs a personal agent to buy a painting
for his collection. When an interesting painting is offered, this agent estimates
its value by requesting the opinion from a number of experts. To obtain a good
estimate, it then assigns weights to the various received appraisals. When the
user plans to buy a very valuable painting, he is not just interested in the final
estimate of this agent, or in the retrieved estimates and their weights. When so
much is at stake, he wants to know where these weights come from. Why, for
example, is the weight for this famous expert so low? If the agent told him that
this is because this expert is known to misrepresent his estimate in cases where
he is interested in buying himself, and this may be such a case, would not this
agent be much more useful than an agent that simply assigns a number to the
trustworthiness of the expert?

The lack of such explanations can severely hamper the acceptance of agent-
based technology, especially in areas where users rely on agents to perform sensi-
tive tasks. Without the availability of these explanations, the user almost needs
to have blind faith in his agent’s ability to trust other agents. We believe that
the state of the art in dealing with trust in Multi-Agent Systems has not suf-
ficiently addressed this issue. Therefore, we are interested in an approach that
lays more emphasis on the rationale of trusting decisions, and in this paper we
work towards a proof-of-concept of such an approach.

Due to the uncertainty of information in Multi-Agent Systems, this setting
gives rise to some specific requirements of the opponent model an agent should
be able to build: (i) The model should be able to represent inherently uncertain,
ambiguous, and incomplete knowledge about other agents, and (ii) it should
support an argumentation framework capable of making decisions and explaining
them. This implies that the opponent model should support logical rules.

We put forward such a model in Section[2] where the core idea of our approach
is presented: a unique combination of a fuzzy rule opponent modeling technique
and a solid argumentation framework applied to the process of making trust
decisions. In this section we also explain how the argumentation framework by
Amgoud and Prade [I] can be extended to deal with situations with not only
possibilistic rules, but also where the rules themselves are not always fully ap-
plicable to a given situation. In Section[3 we show how this model can be applied
within the context of an art appraisal domain, as described in the Agent Rep-
utation and Trust (ART) testbed [§]. The final section summarizes the benefits
of an argumentation-based approach to explaining trusting decisions, discusses
related work, and gives some interesting ways of extending the ideas given in
this paper.

2 An Architecture for Fuzzy Argumentation

The goal of the approach presented in this paper is to capture uncertain knowl-
edge about other agents in logical rules, and to use this knowledge to derive not
only good decisions, but also arguments to support these decisions. In this section
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Fig. 1. The architecture for the Modeling Agent

we describe the global architecture of our approach, the formal argumentation
framework for making the decisions, and the opponent-modeling algorithm we
used in our proof of concept.

2.1 High-level Architecture

Figure[llshows the architecture of our proposed approach, and introduces some of
the terminology used throughout the rest of the paper. The two main components
of our framework are opponent modeling and decision making. The opponent
modeling component is responsible for modeling the behavior of other agents,
based on past experiences with these agents. Data from these past experiences
are stored in a transaction database. From this data a knowledge base of rules
is induced that models the behavior of each agent. The details of opponent
modeling are discussed in Section

The decision making component (details in Section 23)) is responsible for
making the actual decisions. Decisions may be supported by arguments. An ar-
gument relates to a prediction of future behavior of opponents, and is obtained
using the opponent models. The extent to which an argument supports a decision
is expressed in terms of its strength. The strength of an argument is composed
of the argument’s weight, which defines the desirability of the predicted result
of this decision, and of its level, which is the amount of confidence in the ac-
curacy of the prediction. After having executed the decision that is supported
by the strongest argument, the actual outcomes are observed and recorded in
the transaction database. These new results are subsequently used to refine the
model of the opposing agents once again, completing the circle.

2.2 Opponent Modeling

In order to explain an argument for trust to a user, the agent first needs to
possess knowledge about other agents. The format in which the knowledge is
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expressed should be capable of capturing the inherent vagueness and ambigu-
ousness of information in a trust domain. Fuzzy (or possibilistic) logic [9] is an
adequate tool to tackle this modeling problem, because it provides a natural way
of translating back and forth between logical rules describing the expected (or
learned) behavior of other agents, and uncertain numerical data.

For brevity and clarity, we omit the details of the specific variety of fuzzy logic
used in the knowledge bases of our agent, and instead focus on the intuition and
the ideas behind our approach. Therefore, it is sufficient to know that a fuzzy
proposition is a statement of the form “property x is high”, meaning that = is
a member of the fuzzy set “high”. A formula in our fuzzy language £ can be
composed of such elementary statements using the fuzzy logic operators that
intuitively extend the semantics of standard propositional logic to the fuzzy
domain.

Now, the knowledge base to model the other agents consists of such fuzzy
formulas that each describe a specific aspect of another agent’s behavior. How-
ever, since such knowledge is constructed based on past interactions with other
agents, not all of these learned formulas will have the same status; the inherent
unreliability and unpredictability of other agents might cause our agent to add
imprecise or even incorrect rules to its knowledge base. Therefore, we also add a
confidence value to each formula in the knowledge base to represent the certainty
with which the formula has been learned.

Definition 1. A knowledge base K is a set of tuples (k;, p;) where k; € L is a
fuzzy formula, and p; € [0,1] is the confidence the agent has in k;.

The valuation of a fuzzy formula depends on a given state of the world w.
Such a state w is a description of the current state of the environment by a set
of propositions. In our application, a world state represent the actions of our
agent towards other agents in the past, which might influence their behavior in
future interactions. Given a world state, the extent to which a fuzzy formula is
valid can be determined using a valuation function, which assigns a measure of
applicability to each formula.

Definition 2. Given a world state w, the valuation function v, : £ — [0, 1]
gives the applicability of a fuzzy formula in the world w.

In most situations, the knowledge base consists of fuzzy rules, i.e. a material
implication from an observation (condition) to an expected/learned effect (con-
clusion). Such a rule can be partially applicable in a particular world state,
instead of just being fully applicable or not at all. If k; is a fuzzy rule, we say
that v, (k;) is the match strength of k;. Consider the following example of such
a fuzzy rule.

Ezample 1. Suppose we own a (possibly) very valuable painting, and we would
like to have it appraised by taking a weighted average over a set of appraisal
agents. Each of these agents not only gives the appraisal itself, but also a claim
on its certainty about this appraisal. To know which agents to trust, we look at
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their behavior in the past. Such previous interactions have led us to believe that
the following rule k; accurately describes one of the agent’s (a) behavior: “if a
says it is certain with level cpiqn (very certain) then agent a’s appraisal error
aejow (low)”. This rule should be interpreted as follows: if agent a’s certainty is
a member of the fuzzy set cpiqn, which contains all high values of certainty, its
appraisal error will be a member of the fuzzy set aejoy,, containing all low values
of appraisal error. So, if this agent claims it is very certain about its appraisal,
we conclude that its appraisal error is low, and we will base our own estimate
strongly on this agent’s appraisal.

As hinted above, membership of a fuzzy set is not just true or false, but can take
on a range of values between 0 and 1. Suppose that in a certain world w agent a’s
certainty c is not exactly cpign, but slightly lower. In that case ¢’s membership of
Chigh is less than 1. Rule k; still applies, but its match strength vy, (k1) will also
be less than one. In this case, we say the rule fires partially, and consequently
we cannot predict that the appraisal error will be exactly aejow. To be more
precise, the membership of the actual appraisal error in aejy,, is less than 1. In
plain English, this implies that we should expect an appraisal error that is not
low, but slightly higher.

At this point, it is important to note the difference between the confidence
pi in a rule k;, and its match strength v,,(k;) for a certain world state w. The
former represents the validity of the rule in describing a certain system or agent,
and the latter represents the applicability of a rule to the system or agent in
a particular state of the world. In the previous example, rule k1 might not be
valid at all for describing a’s behavior. Put differently, the rule could be wrong,
in which case the confidence p; should be close to 0. On the other hand, given
a certain scenario (for example, in which certainty equals ¢), rule k; could be
used to predict the behavior of the agent, provided that c is a member of cp;gp.
Otherwise, the preconditions of the rule are not met, and the rule does not apply
to the world state w. As a result, the rule’s match strength v, (k;) is zero.

Keeping in mind the requirements identified in the introduction (the ability to
model uncertainty and at the same time support an argumentation framework),
we decided to use a simple theory revision algorithm called Fuzzy Rule Learner
(FURL) [10] to construct such a knowledge base containing the observed be-
havior of the other agents. Taking observations from the environment as input,
FURL is capable of creating a rule base of fuzzy rules. FURL’s output consists
of a multi-level rule base known as a Hierarchical Prioritized Structure [I1] and,
for each rule, the prediction error it causes on past observations (the training
set). Rules in each level can be thought of as an exception to rules in the layer
below it. For our application, however, we can think of the result just as a (flat)
rule base with fuzzy rules and their prediction error where the confidence values
are taken to be the inverse of the prediction error of the rule according to FURL.

2.3 Decision Making

In this section we introduce the argumentation framework used in the decision
making component. The work by Amgoud and Prade [II12] was considered to
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be a good basis for such a framework, because it inherently supports reasoning
under uncertainty with fuzzy logic. This framework uses the agent’s knowledge
base I, a set of its goals G, and a set of possible decisions (or actions) D. An
argument A in favor of a decision d € D is then defined as follows [IJ12].

Definition 3. Given an agent (K,G, D), an argument A in favor of a decision
d €D is a triple A= (S,C,d), where

— S C K is the support of the argument, containing the knowledge from the
agent’s knowledge base K used to predict the consequences of decision d,

— C C G are the consequences of the argument, i.e. the goals reached by decision
d, and

— d € D is the conclusion argument A recommends.

Moreover, SU{d} should entail C, S should be minimal, and C mazimal among
the sets satisfying the above conditions.

The original framework proposed in [I] requires that the support S should be
consistent with d. That is, applying d should not result in a contradiction with
previously acquired knowledge. However, the original framework is based on
propositional logic, whereas our method uses fuzzy logic. In contrast to proposi-
tional logic, applying a decision d on a fuzzy knowledge base I, will not result in
a contradiction, regardless of the contents of K. The consistency requirement is
therefore no longer relevant. This is due to the fact that a fuzzy rulebase is inher-
ently capable of resolving inconsistencies. More specifically, when multiple rules
fire at the same time, with different outputs, these outputs are fused together
and converted into a scalar using a process called defuzzification [13].

The set A gathers all arguments that can be constructed from I, G, and
D as follows: for each decision d € D, the consequences C' C G are predicted
using a subset S of the knowledge base K, resulting in an argument (S, C,d).
Subsequently, a decision is made by selecting the argument(s) with the highest
strength.

The process of reaching a decision can be determined in four steps:

1. The level of the argument is calculated based on the confidence in support S.
Remember from the previous section that the confidence in a rule depends
on how well it models another agent’s behavior.

2. The weight (or desirability) of the outcomes C is evaluated in light of the
goals of the agent (or those of its owner).

3. The level and the weight of each argument are combined in its strength.
Strength can be considered as a summary of the argument’s validity and the
desirability of the predicted outcomes of the decision it supports.

4. The decision supported by the argument with the highest strength is selected.

We will now discuss each step in more detail.

In the original framework [III2], the level of an argument solely referred to
the amount of confidence in the rules and facts in the support of the argument:
Level ((S,C,d)) = min{p; | (ki,pi;) € S}. However, in our model, rules in the
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knowledge base cannot be applied regardless of the state of the world. Often,
their precondition matches only partially with the facts in this state (as in Ex-
ample [I). Therefore, our definition of the level of an argument needs to take
care of the balance between this match strength in an environment w and the
confidence of the rules in the knowledge base:

1. For equal confidence levels p, the knowledge rule with the highest match
strength should determine the Level of the argument. The higher the match
strength, the more the knowledge applies to the current world state, and the
more reliable it is in this particular case.

2. For equal match strengths v,,, the knowledge rule with the lowest level of
confidence should determine the Level of the argument. This is consistent
with the argumentation framework presented in [I].

3. In cases where a rule is fully matched, or not matched at all (e.g. vy, (k) €
{0,1}), our definition should reduce to the definition of Level in the original
framework.

Therefore we base the level of an argument on the weakest part of the argument.
In our case, the weakest rule in a support set S given a world state w has not
only a low confidence, but also a high match strength.

Definition 4. Given a world state w, and a support set S, the weakest rule
(kj, pj) is obtained by:

. Pi
(kj, p;) = argmin {
I (ki,pi)eS ’Uw(k')

v (k:) £ o}. (1)

We define the level of an argument as the product of the confidence and the
match strength of this weakest rule.

Definition 5. Given a current world state w, the level of an argument A =
(S,C,d) is defined by Level,(A) = p; - vy (kj), where (k;, pj) is the weakest rule.

It is easy to check that this definition meets all three of the requirements stated
above: the rule with the lowest confidence level and the highest match strength is
selected, and the resulting level is the confidence level of this rule times multiplied
by its match strength.

The Weight of an argument A depends on the goals that can be reached.
The goals are given as tuples (g;, ;) in the set G. Like an element from the
knowledge base, a goal g; is a fuzzy rule or fact. The attached value 0 < \; <1
denotes the preference of the goal. In the original definition [1], weight is inversely
proportional to the preference of the most important goal that is not satisfied.
However, when using fuzzy logic, the predicate satisfied becomes fuzzy as well,
making this definition very difficult to apply. We therefore chose to re-establish
a similar relation between weight on the one hand, and preference and goal
satisfaction on the other hand. One of the key properties of such a relation is
that the more important a goal is, the more detrimental the reduction in weight
when the goal becomes less satisfied. This is realized by the following definition.
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Definition 6. Given a current world state w, the weight of an argument A =
(S,C,d) is defined by

Weight,,(A) = > vwus (g;) - Aj- (2)
(gj>)‘j)ec

This definition ensures that the weight of the argument is proportional to
the utility of the expected consequences of the decision. More specifically, if a
goal g with preference A\ is 50% true, we expect the utility to increase with
A/2. We sum over all goals of the agent to obtain the weight of the argument.
As Section shows, this also brings about a more intuitive trade-off between
(possibly conflicting) goals.

Finally, the Weight and Level of an argument are combined into its the
strength. Here we just follow the original definition [I].

Definition 7. Given a current world state w, the strength of an argument is
defined by Strength,,(A) = Level,,(A) - Weight,, (A).

Such a value of Strength can then be used to determine which argument is more
preferred.

Definition 8. Let A and B be two arguments in A. Argument A is preferred to
B iff Strength(A) < Strength(B).

The upcoming section illustrates how an agent built according to this architec-
ture operates in a simple problem domain.

3 Examples

In this section, we would like to investigate how an agent based on our approach
behaves in a simple art appraisal environment. We assume the environment is
inhabited with other agents with fixed strategies, and show that it is capable of
explaining its decisions in terms of aggregated observations (rules).

The Agent Reputation and Trust (ART) testbed provides a simple environ-
ment to do our experiments [8]. ART is becoming the de facto standard for
experimenting with trust algorithms and evaluating their performance. In this
environment our personal agent is put in competition with N other agents to
estimate the true value v of a painting. Each agent has its own area of expertise
for which it can give good opinions to others. Consequently, it is often wise to
consult other agents for an estimate of the value of the painting. Each other
agent i can send a tuple (¢;, e;) to our agent upon request where e; is the esti-
mate, and ¢; is the claimed certainty of this estimate (¢; being a low certainty
and cg a high certainty). Our agent then should combine these estimates in its
own appraisal by submitting a weight vector w = {w1,we, ..., wx} to the test-
bed, where w; > 0, and ), w; = 1. The weight for an agent ¢ should not only
depend on its claimed certainty c¢;, but also on its trustworthiness. Our slightly
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modified version of the testbed] subsequently calculates the weighted average of
the estimates to obtain the final appraisal a = Zf\; W; €.

As agents are rewarded based on the accuracy of their appraisals, they should
aim to find the weight vector w that minimizes the appraisal error for a painting
with true value v:

N

v — E W; €4

=1

3)

w = arg min
weRN

To determine a suitable w, our agent attempts to find a relation between
the claimed certainty ¢;, and the accuracy |v — ¢;| for each agent i. Now, since
agents compete with each other for a number of rounds (appraising different
paintings), it may be worthwhile to deceive other agents misrepresenting the
claimed certainty at some point. Needless to say, this creates an issue of trust.
Knowing when and whom to trust is therefore a prerequisite for success in this
domain.

In the two scenarios that follow, we study the decision making process of
our agent while in competition with two other agents: HONEST and RECIPRO-
CAL. HONEST is an agent that honestly asserts a certainty ¢ proportional to its
expected accuracy, i.e. crongst X |V — €Hongst|-

RECIPROCAL’s behavior is somewhat more complicated. When an opponent
has misrepresented its expertise by overstating its certainty, RECIPROCAL re-
sponds in kind by being dishonest as well. However, if RECIPROCAL’s opponent
is honest, RECIPROCAL behavior towards that opponent is identically to that of
HONEST.

In each of the following scenarios, our agent has interacted with both agents
in 200 transactions. From the observations made during these 200 transactions,
we used FURL to build an opponent model which constitutes the knowledge
base K. The knowledge bases use three different fuzzy domains: ¢y to c¢; denote
very low to very high certainty, aep to ae; denote eight different levels of the
appraisal error from low to high, and dy to ds denote the levels of dishonesty of
our agent in the previous round, also from low to high.

To give an example, Figure [2 shows the accuracy of the predictions made by
the model learned by FURL from observing RECIPROCAL’s behavior. During this
run, our agent ‘tests’ RECIPROCAL by alternating between honest and dishonest
behavior towards it. As can be observed from Figure B, FURL is reasonably
capable of learning the effect of dishonesty on RECIPROCAL’s behavior. At the
end of the run, the learned model contains multiple fuzzy if-then rules describing
the behavior, together with a confidence measure. To show what an opponent
model looks like, Tables [ and [2] contain a selection of rules from the opponent
models of RECIPROCAL and HONEST after 200 transactions.

! In our preliminary experiments, estimates are generated deterministically, instead of
being drawn from a probability distribution. That way, we could significantly reduce
the length of each competition run and still obtain useful results on the explanatory
power of the arguments generated by our agent.
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Fig. 2. Prediction errors of the learned opponent model for RECIPROCAL
Table 1. Model of HONEST’s behavior after 200 interactions. These learned rules de-

scribe the fact that if HONEST claims that its certainty is low (co), its error is usually
quite high (aes), and vice-versa.

# Rule Confidence
1 if certainty is co then appraisal-error is aes 0.00381
6 if certainty is ¢5 then appraisal-error is aeg 0.00520

Table 2. Model of RECIPROCAL’s behavior after 200 interactions. These learned rules
describe how RECIPROCAL works approximately. For example, rule 13 describes that
if the claimed certainty is moderate, and our agent was honest itself in the previous
round (do), then the appraisal error is quite low (aeo).

# Rule Confidence
1 if certainty is ¢o then appraisal-error is aer 0.09824
7 if certainty is ¢ then appraisal-error is aes 0.01403

12 if certainty is ¢c; and dishonesty is dg then appraisal-error is aeg 0.05282

13 if certainty is co and dishonesty is dyp then appraisal-error is aeg 0.03136

26 if certainty is c3 and dishonesty is d¢ then appraisal-error is aes 0.04653

Using the opponent model, the agent is able to make a decision about trusting
its opponents in the next transaction. More specifically, it chooses a weight
vector w to determine how the opponents appraisals are combined. Obviously,
the optimal decision is to assign all the weight to the agent that is most skilled
at appraising the painting (in which case w;x = 1 < ¢* = argmin; |v — ¢;|, and
w; = 0 & i # ). However, because of possible noise in the environment or
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suboptimal learning capabilities, determining ¢* is not a trivial task. Using the
argumentation framework, our agent is able to find a balance between utility of
the outcome of a decision, and the confidence in the knowledge used to predict
these outcomes.

3.1 Scenario 1: Requester Role

In this example scenario our agent consults HONEST and RECIPROCAL to ap-
praise one of its paintings. For each agent, it constructs arguments to support
the desirability of obtaining an estimate from both HONEST and RECIPROCAL.
The strengths of these arguments are used to determine the delegation weights
W = {WHongsT, WRecrrrocar |- 1N what follows, we focus on our agent’s goals, and
its available decisions. These, combined with the actual observations during a
transaction determine the strength of the arguments supporting the decisions
and subsequently the delegation weights.

Because it is in our agent’s interest to appraise the painting as accurately as
possible, its goal set G contains a single goal g; = (appraisal-error is acceptable,
1), where acceptable is a fuzzy set with a membership function that is inversely
proportional to the relative appraisal error ae; = h’;—e‘ Put differently, goal g;
states that our agent favors accurate appraisals from its opponents. Since g is
the only goal, it has maximal relative priority.

As mentioned before, the claimed certainty c is a key indicator of the expertise
of agent 4. In this example, suppose that HONEST returns a numerical value that
is 100% member of fuzzy set ¢;, meaning that it is quite uncertain (see Figure[3]
for the fuzzy partitioning of the certainty domain), while RECIPROCAL replies
that it can appraise the painting with a certainty between ¢4 and c¢5. Also, we
know that in the previous round, our agent has somewhat misrepresented its
certainty towards RECIPROCAL (dishonesty was a member of the fuzzy set ds).

1

Membership
o
o
T

<
=
T

0.2 -

1 1.2

Certainty

Fig. 3. Example fuzzy partitioning of the certainty domain
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Table 3. The support for Argument Agoxgsr

Knowledge | Match | Confidence
certainty is c1 100%
if certainty is ¢; then appraisal-error is aes| 100% 0.00832
appraisal-error is aes 100%

Table 4. The consequences, and the Level and Weight calculations of argument Anongsr

Goal | Match | Preference Property | Calculation | Result
a1 0.25 1 Level (Amongsr) 1 x 0.00832|0.00832

Weight (Amoxsst) 1x025 025
(a) The consequences of (b) The Level and Weight calculations
Argument Amongst of Argument Amongst

Our agent then has to consider two possible decisions in the set of decisions
D = {duonesr; dRucirrocar }: 10 accept the estimate from HONEST, and to accept
the estimate from RECIPROCAL. Because our agent can weigh the estimates re-
ceived from both agents, these decisions are not mutually exclusive. For example,
our agent can decide to weigh the appraisals from both agents equally, resulting
in a final appraisal that is the average of both agent’s appraisals.

Based on the claimed certainties from both agents, and the models in Tables[T]
and 2] we see that our agent expects a poor appraisal from HONEST. On the
other hand, RECIPROCAL’s certainty is very high, but our agent has to take
into account its own dishonesty towards RECIPROCAL. Using the goals G, the
knowledge base K (containing the model and the observations), and decisions
D, our agent generates two arguments. The first argument Aponpsr Supports
decision dyongst, the second argument Agrpciprocar Supports decision drgciprocar-

The support of Aponpsr consists of parts of the opponent model of HONEST
relevant to this particular transaction. This is summarized in Table[3l The con-
sequences of Aponpsr relate to the desirability of the consequences of decision
diongst in terms of the agent’s goals. For a certainty of ¢, a single rule in the
opponent model fires, and predicts an appraisal error of ae4 (last row in Table[3]).
Given this prediction, we can determine the utility in terms of goal g; (see Ta-
ble . When we defuzzify aey, we obtain a numerical value of 0.7519 Using
the membership function of acceptable, we determine that goal g; is only 25%
satisfied. From the information in Tables [l and we can now calculate the
Level, relating to the desirability of the consequences, and Weight, relating to
the confidence of argument Aponesr (see Equation [2): Table lists the steps
for this calculation. From this, our agent can now determine the strength of the
argument for HONEST: 0.00832 x 0.25 = 0.00208 (see Definition [g]).

2 Defuzzification is a mapping from membership of one or more fuzzy sets to the
original domain. There are a couple of ways to do this, but often the center of
gravity of the membership functions is taken [9].
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Table 5. The support for Argument Aggcrrocar

Knowledge Match|Confidence
certainty is ca 50%
certainty is cs 50%
dishonesty is ds 40%
if certainty is c4 then appraisal-error is aes 50% 0.00876
if certainty is cs then appraisal-error is aes 50% 0.01042
if certainty is c4 and dishonesty is d3 then appraisal-error is aeg 40% 0.01640
if certainty is c4 and dishonesty is ds then appraisal-error is aeq 40% 0.01640

Table 6. The consequences, and the Level and Weight calculations for argument

AREC[PROC,\L

Goal | Match|Preference Property | Calculation | Result

g1 0.75 1 Level (Arscrrocar) 0.5 x 0.00876|0.00438
Weight (ARECIPROCAL) 1x0.75 0.75

(a) The consequences of (b) The Level and Weight calculations

Argument Agrgcrerocar of Argument A,

Next, our agent performs the same steps for RECIPROCAL. For determining the
support and consequences of argument Aggcprocar, we follow the same procedure
as above. These are summarized in Tables [B] and respectively. This time,
four rules fire based on the certainty received from RECIPROCAL and our agent’s
dishonesty towards it in the previous round. The resulting appraisal error is
expected to be somewhere between aey and aes. This corresponds with a 75%
satisfaction of goal g;. Table shows the calculation of the Level and Weight
of this argument. Based on these measures, we now calculate the strength of the
argument: 0.00438 x 0.75 = 0.00329.

In the final step, our agent compares the strengths of both arguments. This
is done in Table [l After normalizing these strengths, we obtain the weight
vector w. From Table [1 it can be seen that RECIPROCAL determines 61% of
the appraisal. Evidently, our agent favors a low appraisal error, while taking the
reduced confidence of the knowledge of RECIPROCAL’s behavior for granted.

In this scenario, it has been demonstrated that our agent is able to make a
trade-off between an agent whose behavior can be reliably predicted (HONEST)
and an agent for which a less reliable opponent model is available, but which
probably provides a more accurate appraisal (RECIPROCAL). The strengths of
the arguments supporting both decision reflect this trade-off. In the end, the
lower predicted appraisal error for RECIPROCAL proved to be decisive.

Table 7. The delegation weights for HONEST and RECIPROCAL in scenario 1

Agent | Level|Weight|Strength|Delegation weight
HONEST 0.00832‘ 0.25‘ 0.00208‘ 0.39

RECIPROCAL|0.00438 0.75]  0.00329 0.61
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3.2 Scenario 2: Provider Role

In the previous scenario, we focused on the appraisals received from the oppo-
nents. Now, we also include another type of decision. Other agents may ask our
agent for an appraisal. In such a situation, our agent needs to decide how truth-
fully it should report its estimate of the value of their paintings. To this end,
we add a new goal, and apply the decision making procedure to the appraisals
generated by our agent. The new goal, called g2, essentially encourages our agent
to be as deceptive as possible towards other agents (by overstating the accuracy
of the provided estimate). However, when other agents discover this behavior,
they may give our agent worse estimates as well. Deceiving other agents must
not negatively influence the accuracy of appraisals received from those agents
too much. Consequently, we must find a balance between the members of the
new goal base G = {g1,92}-

Deciding the extent of the deception towards an opponent differs from deciding
delegation weights in scenario 1 in that the certainty variable is not relevant. In
the previous scenario, the agent wanted to predict the appraisal error based on
the claimed certainty of its opponents. Now, the agent attempts to predict the
effect of its own dishonesty on the appraisal error in the next round. Therefore,
the opponent models in Tables [Il and 2l need first to be made independent of the
certainty variable.

This is done by generating a set of arguments for each available decision for a
number of certainty valuesld This way, we effectively factored out the certainty
variable from the opponent model, while the relation between dishonesty and ap-
praisal error remains intact. The Level and Weight of each of these arguments
are averaged to obtain an aggregated Level and Weight. The recommended deci-
sion is then calculated in the normal fashion. Of course, deciding on the amount
of deception towards HONEST is trivial, because HONEST does not respond to the
behavior of its opponentSH Because of this, our agent is capable of being totally
dishonest with this agent, without surrendering accuracy. In what follows, we
therefore illustrate this process by calculating the best level of deception towards
RECIPROCAL.

In addition to goal g; from scenario 1, goal go=(dishonesty is deceptive, 0.5)
is included in the goal base G of our agent. The membership of the fuzzy set
deceptive is proportional to the extent to which the agent misrepresents its
expertise by overstating its certainty. Note that goal gs has a lower priority than

goal ¢g;.
We consider five different decisions: d 4, i.e. dishonesty is 0.0, dp, i.e. dishon-
esty is 0.25, ..., and dg, i.e. dishonesty is 1.0. Table ] shows the arguments

generated for each decision. We see that the extent of our agent’s dishonesty
towards RECIPROCAL influences the average appraisal error. Of course, due to
the nature of RECIPROCAL, this is to be expected, because it punishes dishon-

3 More specifically, we generated an argument for 100 equally spaced values of ‘cer-
tainty’ between 0 and 1.

4 This is reflected in Table Il which shows only a relation between certainty and the
appraisal error.
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Table 8. Properties of the set of arguments supporting different values of dishonesty
towards RECIPROCAL

Dishonesty|Appraisal Error|Goal Satisfaction| LevelWeight

g1 g2
da 0.00 0.63 0.37 0.00 1.49 0.37
dp 0.25 0.75 0.25 0.25 1.49 0.38
do 0.50 0.85 0.15 0.50 1.49 0.40
dp 0.75 0.87 0.13 0.75 1.49 0.51
dp 1.00 0.85 0.15 1.00 1.49 0.65

esty by responding in kind. Consequently, increasing dishonesty while keeping
the certainty constant, the appraisal error increases.

The interesting aspect of this scenario is the trade-off between goals g; and
g2. Our agent has to decide what it values most: an accurate appraisal from,
or its deception towards RECIPROCAL. With this particular goal base and its
associated priorities, we conclude from Table [§] that our agent favors the latter.
Decision dg is preferred based on the fact that it has the highest weight.

4 Discussion

In this paper we showed how arguments can be based on fuzzy rules. This gen-
eralization of Amgoud and Prade’s argumentation framework [I] is able to come
up with a reasoning for each of the possible decisions. We showed how the con-
fidence and match strength of the underlying rules, and the priority of the de-
cisions influence the decisions of our agent. Combined with a fuzzy rule learner
this argumentation framework forms a unique method for agents to reason about
trust, and provide a logical explanation for the actions (to be) taken.

Existing work on opponent modeling in the context of trust uses scalars or
small vectors to represent trust. For example, in FIRE [14] the quality and
the reliability of past transaction-results are derived and used for future deci-
sion making. An application of the Dempster-Shafer theory collects evidence of
trustworthiness [I5], and another approach using probabilistic reciprocity cap-
tures utility provided to and received from an agent [16], or the probability that
task delegation towards an agent is successful [17]. Because of the limited amount
of information present in these models, much of the information gathered dur-
ing interacting with an opponent is lost. Consequently, the decision models they
support are quite limited.

An example where the model of trust is more elaborate can be found in the
work by Castelfranchi et al. [6/18], where trust is decomposed in distinct beliefs.
Such a more complex model would open up the possibility of implementing
different intervention strategies, depending on the precise composition of trust,
instead of just having a binary choice: delegation or non-delegation. However in
their approach the reasons why an agent is trusted are still not very clear. An
owner of an agent that uses a so-called fuzzy cognitive map is confronted with a
list of specific beliefs on parts of the model of the other agent, such as the other’s
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competence, intentions, and reliability. It is not clear where these beliefs come
from, and no method is given to learn such beliefs from past interactions. For
this, we need to trace back the process that established a certain decomposition
of trust for a specific agent. We believe that our approach forms a good basis
to include such a more elaborate model of trust, but this may require a more
advanced fuzzy rule learning algorithm.

Improving the opponent modeling algorithm is one of our goals for future
work. The FURL algorithm we used in our approach has a number of limitations.
Most importantly, FURL is incapable of detecting relatively complex behavior.
It is not able to accurately model data sets with a large number of input variables
as can be seen from the extensive experiments in our technical report [19].

In contrast to the decision model of Castelfranchi et al., the modified doxastic
logic for Belief, Information acquisition, and Trust (BIT) [20] is more capable
of explaining why certain facts are believed. For example, using BIT, an agent
could be able to present the rationale of the decision to trust another. In terms
of our aim, this is very appealing. However, due to the inherent uncertain, vague
and continuous nature of observations in a Multi-Agent System it is not trivial to
translate these to BIT. In this paper we showed how to make such a translation
to fuzzy logic. Modal logic has no ‘native’ support for directly representing such
observations, but possibly the ideas of our architecture can be reproduced in the
context of modal logic.

As a final note, in the current work we have only used arguments in favor of a
decision. The framework, however, also allows for contra-arguments, allowing for
much more complex argumentation. Maybe even more interesting would be to
add support for reputation in our approach. This would involve broadening our
model, designing new algorithms to select agents from which reputation informa-
tion is requested, and developing an algorithm to aggregate these reputations.
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