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Motivation

1 3GPP LTE-Advanced prospective
1 Green radio awareness - power efficiency
[ High transmission throughput requirement: broadband rather than narrowband

1 Problem: have to mitigate both the shadow and Rayleigh/Rician fading over
dispersive channels
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Why SC-FDMA?

[ Carrier modulation aware transmitter design

e Power amplifier (PA) requires low peak-to-average power ratio (PAPR) due to its limited

linear range
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1 Digital signal processing (DSP) at receiver

e Conventional SC receiver: time-domain equaliser (TDE) with hundreds of filter taps in
case of long channel impulse responses imposed by frequency-selective fading

SC-TDE — high DSP complexity

Multi—tap
TDE

RE — — Detection —»

e SC-FDE receiver transforms the received signal to the frequency-domain, as in OFDM
and employs single-tap multiplicative frequency-domain equaliser (FDE)

e SC-FDE receiver includes IDFT operation after conventional OFDM receiver
SC-FDMA(SC-FDE) receiver
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1 Multiple-access oriented subband mapping schemes
Localised

Distributed

:E /z / / . / U 3
Subbands @ ser

e Distributed mode provides higher multi-path diversity gain than localised mode.

e Localised mode may achieve multi-user diversity when invoking channel-dependent
scheduling, it is more suitable for a system in which a few users require high bit-rate.

e Interleaved mode is a special case of the distributed mode, where subbands are
arranged equidistantly from each other.

e The transmitted TD signal of localised mode requires a few subcarriers, while for
interleaved mode only single carrier is used.
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Why Cooperation?

d Aims
e Achieving energy/power efficiency
e Increasing system throughput
e Extending cellular coverage
e Supports multiple users

e Guarantees a given quality of service (QoS)

1 Relay selection: whom to cooperate with?
e Fixed - aiming for cooperative diversity, fixed relaying gain
e Random - limited relaying gain and selection diversity gain
e Distance-dependent - aiming for relaying gain

e Channel-dependent - aiming for both relaying and selection diversity gains -
Opportunistic Relaying
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Opportunistic Amplify-and-Forward Cooperative Relaying for
SC-FDMA Uplink

[ Our proposed systems are capable of
providing: S
e Multi-user (selection) diversity gain 1 | ,
e Cooperative (spatial) diversity gain i

e Multi-path (frequency) diversity gain

1 Additionally, MT(source)
e Free of multi-user interference (MUI) . R BS(destination)
and reduced AF relaying noise MT(relay)
e Low DSP complexity at the relay and MT (source)
BS
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Source MT Transmitter

[ DFT-spread-OFDMA style transmitter

T-domain : F-domain g T-domain
(t) | (f) =) = (1) (1)
X X X x S
i *| Subband | ¥ " Power Sk
DFT : IDFT -
— — Mapping —» " —{ Allocation —{add CP
O [ @A @ @[ P |9 (o

e k-th user's N consecutive TD symbol in the vector z"

e Bandwidth (BW) expansion factor M supports a maximum of M users

e N-point FFT matrix F n offers a normalised BW of N per user

e U-point IFFT matrix Fi provides the total normalised BW of U = N x M
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[ Total transmitted signal power P; is normalised to unity,
the source MT’s transmitted power Ps; ,, = €s ras P,
power sharing factor as , = ar r = 0.5, in terms of Equal Power Allocation (EPA),
Power Control Error (PCE): log-normal distributed samples with zero mean and
variance of o2, i.e. eg (dB) ~ N(0,02).

—

f) ~(f) | =)
x; T, +Tp

1 Subband mapping matrix P of the k-th user
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e Interleaved mode - achieves multi-path diversity gain v o )
7 1’/(!22
1, foru=nM + k - .
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0, otherwise i1 :
I 0
1 Transmitted signal before inserting cyclic-prefix CP 0 o]
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Interleaved subband mapping
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SC-FDMA Discrete Time-Domain Waveform (N=8,M=8)

1.5 T T T T T T
1.'- ....................................................................................
0'5_ ..............................................................................................
® NN XXX Svere' NN XX XXX EXNR) %)
EREERIIRRINRIRRI RN Rneeii
Q.
£ ‘ ‘ ‘ ‘ ‘ ‘
< -05F - .............. ............. .............. ............ ~— signal point 1 real
~ == signal point 1 imag
. .............. ........... .............. ............ —x signal point 4 real
; ; ; ; = =X signal point 4 imag
_15 | | | | T T |
0 10 20 30 40 50 60 70

Normalised time

SC-FDMA Discrete Frequency—Domain Waveform (N=8,M=8)

1. ¥ T T T T I I
% ; ; : ¥ : =} signal point 2 real
e+ o x = =+ signal point 2 imag| |
11 1 1 : : —x signal point 3 real
11 | | 3 3 = =% signal point 3 imag|
05 1ol | IR T — ]
3 1 I I
=
S ‘
g 11 1 1
05 O R S A [ [
11 1 1
11 1 1
_1 ... ++ ........................................... - ® o
-15 | | | | | |
0 10 20 30 40 50 60 70

Normalised frequency

Q-imag

SC-FDMA Time-Domain Constellations (BPSK)

15

(> signal point 1
> signal point 4 |

1] S R RRREEE

-15 . . . . .
-15 -1 -05 0 0.5 1 15
I-real

SC-FDMA Time—-Domain Constellations (BPSK)
15 = s——

: : : ® signal point 2
S ® | >k signalpoint3

] S R

-15 H L L H H
-15 -1 -05 0 0.5 1 1.5
I-real

outhampto



Channel Modelling

[ 2D propagation map, direct link: source-destination (S-D),
relaying links: source-relay (S-R), relay-destination (R-D)

[ Reference distance: S-D link, normalised distances: dsg + drp = 1
A Average path-loss: 655 and 657,
d Path-loss exponent n = 4, shadow fading £(dB) ~ N (O, a?)

4 Instantaneous path-loss: Gsr = {srdgp and Grp = ErpIR )

553 5RD >{

Source Relay Destination
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Assumptions

BPSK modulation without channel coding

AWGN CAN (0, 0%;) at the relay and BS

Perfect Channel State Information at the Receiver (CSIR) of the BS
Channel-Dependent Relay Selection (CD-RS) based on pilots

Orthogonal subbands of the DFT-S-OFDM signals, avoiding MUl among the source MT

I T e E

A sufficiently long CP for each transmitted TD signal block, leading to zero inter-block
interference (IBI)

[ Each subband encounters independent and identically Rayleigh distributed block fading

1 The K users’ signals are transmitted synchronously over the uplink channels
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Relaying Topologies

[ Half-Duplex Time-Division Cooperation

e Time slots
TSq: S—D and S—>R, TSs: R—D

e Direct Transmission

K—1 d R
~ (T 0
ré%= ZH(Dksg)k + %) \
k=0
e Single-Dedicated-Relaying (SDR): d \
K sources and K relays 15
RK 1

t / (t) (t) ~(t)
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Cooperative Strategies

a1 Amplify-and-Forward combined with subband-based FD equalisation and
remapping

(t)

S[l)lbband DFT Remove TSRk
Subband [*—— VPemap |=—j ~— O\

f N
Amplify Pi . P @ \I\Sl ‘
Matrix A
Subband IDFT /TS,
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e Subband-specific equalisation and amplification matrix

V) = diag{Bi) By B b

where the n-th element is the specific gain factor of the n-th subband

) = \/PRt ¢/[Pst kGsrlhSp |2 + 0% ].

e The transmitted signal of the k-th relay during TS»

st = \/PoraGonFUPBHG 2l + )
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Signal Processing at the BS’s Receiver

1 MMSE Assisted Joint FD Equalisation and Combining (JFDEC)

NGO ~(f) |JFDEC () | ISurss
<—

- IDFT -t “*—1 Demap [*— DFT

H ,iUD,k:’n T CP
@ LFx @ |wp ot Pi (9L Fuv @
e The k'-th user’s received signals include direct and relay branches:
(f) (f) (f) n'y)
Yo = VP PsewHp Q2" +np

e MMSE optimum weight matrix W , -, jointly carry out single-tap FDE and diversity
combining of the direct and relay branches.
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J JFDEC-MMSE cont.
e The n-th and (n + N)-th element of the JFDEC W, ,» can be expressed as

(f) (f) 2 (f) 2 —1
” P hDO,k"n |hDO,k:’n| + |hD1,k:’n| _|_P—1
D,k'n o3 o3 Nb1.n Stk ’
(f) (f) 2 (f) 2 —1
. th,k’n |hDO,k’n| |hD1,k’n| P—l
wD,k/(n—I-N) - NDl - O']2V + NDl N + St,k’

e 1D decision variable vector
95 = FIWD vy,

e The k’-th user’s overall received SINR

1
T =\N —1 —1 -1
N = (”YSR,k:/n ""'YRD,k/n)
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Simulation Results

(1 Power reduction of JFDEC receiver by ignoring path-loss and shadowing

SC-FDMA AF (N=M=K=L=8)
; | 5 | | — Simulation
..... Semi-analysis
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Opportunistic Cooperative Relaying

[ Opportunistic relaying
- allows a single relay to be selected from a cluster of J(J > 0) inactive MTs, the so-called Relay
Candidates (RC), depending on which MT provides for the best end-to-end link quality between the
source and destination

‘ Source

O Relay
Candidate

‘ Target Relay

Base Station

SU-RS MU-RS
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Relay Selection Schemes

1 Single-User Relay Selection (SU-RS) for the SDR
e High number of idle MTs, more RCs may be considered

e Each source MT is capable of seeking a target relay from a cluster of J RCs which are
independent of the other source MT’s RC

-(opt)
= ar ma 1
Jn B max {1k}

1 Multi-User Relay Selection (MU-RS) for the SDR
e Low number of inactive MTs resulis in an insufficient number of available RCs

e A cluster of K source MTs is assocated with a cluster of J(J>K') RCs, the system only
requires a total of K relays

:(opt)
PY) — ar ma -
Thid gje[o,J—1],k}e([o,K—u{%’k}
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Simulation Results

e BER performance of relay selection schemes
- for path-loss exponent n = 4, 4 source MTs and total 16 RCs case

SC-FDMA SDR AF JFDEC (N=M=L=8, K=n=4)
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Simulation Results

e Power reduction of relay selection schemes
- for path-loss exponent n = 4, 4 source MTs and total 16 RCs case

18 SC-FDMA SDR AF JFDEC (N=M =L=8, K=77:4)w

E— azg—OdB 02 =0dB
16| --- 05—4dB o ‘OdB
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Transmit power per bit (dB)

20
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Conclusions

1 Cooperative SC-FDMA was studied

e Proposed diversity-optimised FDE receiver
— achieved 4dB power reduction

e Relay selection schemes for opportunistic relaying
— Over fading channels free freom shadowing:
SU-RS provides 6.8dB power reduction
MU-RS provides 7.8dB power reduction
— Over 4dB shadow fading channels:
SU-RS provides 8dB power reduction
MU-RS provides 9.7dB power reduction
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