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Abstract— This paper addresses the problem of tracking
mobile nodes in Wireless Sensor Networks (WSN). Our ap-
proach is based on a tracking with range-only measurements
scheme, intended for implementation in WSN. The devel-
oped tracking system is designed for continuous estimation
of the target’s trajectory and two-axes velocity. A network
of “anchor” wireless nodes is considered to be deployed at a
specific region of interest. The anchor nodes collect data that
correspond to the range between the anchors and the target.
A multiple-modal Particle Filter (PF) algorithm is designed to
process the ranging observations and produce an estimation
of the target’s kinematic variables in real-time. The reason
for employing multiple models to represent the target’s motion
pattern, stems from the need to effectively track manoeuvring
targets. Manoeuvring targets require more complex modeling
which adequately represents the sudden changes of the position
and velocity vectors. Simulations are provided to assess the
performance of the proposed framework, considering real-
world conditions. The proposed multiple model approach is
evaluated on manoeuvring targets with constant as well as
variable turning rate. Finally, this investigation reveals that
the system’s accuracy depends upon two important system
parameters, the sampling period and the number of generated
particles in the PF algorithm. The effect of these parameters is
analyzed and amendments are proposed.

Index Terms— Wireless Sensor Networks, Target Tracking,
Particle Filters

I. INTRODUCTION

IRELESS Sensor Networks (WSNs) have emerged as

one of the most promising technologies in the area
of pervasive and distributed computing. By encompassing a
wireless communication module, various sensors and a low-
power processor in a limited size platform, WSNs provide a
mean that allows direct interaction with the physical world.
The unique features that WSNs demonstrate, fostered an
escalating interest along the direction of exploiting this
technology in a number of interdisciplinary application do-
mains. Some examples include, environmental and industrial
monitoring, surveillance and security systems and pervasive
healthcare [1].

One of the areas where WSNs are considered to be
particularly suited for, is in applications where tracking of
mobile targets is desired [2]. WSNs offer the ability of being
deployed in large numbers and obtain a vast amount of
information with high spatial and temporal resolution. These
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features render this technology suitable for locationing and
tracking applications. The purpose of a WSN tracking system
is to detect and track any moving object of interest (a.k.a.
the target) that is moving within the network’s coverage
area. Tracking may refer to anything from coarse-grained
localization of the target in an area, to specific positioning
through estimation of its kinematic variables. In addition
tracking can be performed non-continuously in a query based
context or in a continuous manner where the target’s position
is updated continuously and in real-time. In general, the
target’s dynamics are inferred by processing specific informa-
tion acquired by the network, mathematically associated with
the target’s kinematic characteristics. For example, various
sensor readings can reveal the relative distance between
the source and the sensor. The potential benefits of using
WSNss in tracking can be applied to a number of application
spanning from, locating personnel or assets in industrial
infrastructures to wildlife monitoring and security systems.

Much research focuses on locationing and tracking in
WSNs. A number of approaches, pertain to military surveil-
lance scenarios where detection and classification of in-
coming targets is of greater importance than continuously
estimating their dynamics [3]-[6].

This paper proposes a tracking system intended for de-
ployment in WSNs. The system focuses on estimating the
position and velocity of mobile nodes. A Particle Filter based,
tracking algorithm is employed to achieve real-time tracking
of mobile nodes based on a batch of range measurements
provided from the wireless network. The proposed tracking
system considers range observations between the target node
and a number of anchor nodes to be the only type of
information that becomes available to the system. Different
to this, a number of related approaches, consider more than
one type of data (ex. range and bearing) to be available to the
system [7]-[9]. However to acquire bearing data in WSNs
additional hardware (like micro-RADARS) must be attached
to every anchor node. Such hardware is usually costly not
to mention energy demanding. On the other hand, ample
ranging between wireless nodes can be achieved using a
variety of techniques which are relatively energy efficient and
do not require any additional hardware. Examples include
Time of Flight (ToF) and Received Signal Strength Indication
(RSSI) [10], [11].

The major challenge of this work is twofold. Since WSNs
nodes are devices with limited energy supply and processing
power, the range estimates acquired by the system will inher-
ently contain an amount of noise. Thus, a great challenge for



such tracking systems is the robustness they demonstrate to
noise. In addition, the system is intended to effectively track
manoeuvring targets, which is the case in the majority of real-
world tracking scenarios. For this, a multiple-modal approach
is used to represent the dynamics of manoeuvring targets.
Such an approach diversifies the proposed system with other
approaches in the area that only consider a linear constant
velocity (CV) model for describing the target’s dynamics,
thus providing limited support for manoeuvring targets [12]—
[14]. By applying multiple models to represent the evolution
of the target’s dynamics in time, we demonstrate that the our
design can effectively track manoeuvring targets. The system
is tested against manoeuvring targets with constant as well
as variable turning rate.

The rest of the paper is organised as follows. An overview
of the system is provided in the next section. In Section III
we formulate the tracking problem as a nonlinear estimation
problem. In the following section the PF tracking algorithm,
designed to solve the estimation problem is analyzed. Simu-
lation results are presented in Section V. In the final section,
concluding remarks and future directions are discussed.

II. SYSTEM OVERVIEW

An illustration of the proposed system is given in Fig. 1
where four anchor nodes are deployed in known locations to
provide the range estimates. A wireless mobile node is the
object to be tracked. This target node can be strapped to the
actual object of interest which can be an animal, a robot, a
human or an object. The range data acquired by the anchor
nodes are then fused to a higher level node, a cluster-head or
a base station which is equipped with adequate processing
power and is energy redundant, which executes the tracking
algorithm and produces the estimates. The final estimates can
then be utilized by a front-end user for monitoring and/or
further processing.

Estimate Produced by the
o System

Real Trajectory

Fig. 1.

Tracking System Overview

III. PROBLEM FORMULATION

In order to best describe the target’s kinematics the track-
ing problem is formed in a discrete-time nonlinear state-
space approach. First of all, the system is considered to
run for a total amount of time denoted as “I"™”, divided into

several time steps according to the sampling period. In a
state-space representation the state vector contains all the
relevant information required to describe the system under
investigation. Hence, at each time step “k”, the state vector
“x” to be estimated comprises of the planar coordinates and
two axis velocity of the mobile target.

X = [l’ Y Vg Uy] (1)
A. State Dynamics

The state equation describes, in mathematical terms, the
evolution of the state-vector in time. To capture the dynamics
of manoeuvring target’s a multiple model approach is used
to form the state equation.Three motion models are used for
this reason. At each time step k£ an integer regime variable
indicates which model is in use during the sampling period
from (k — 1, k].

xp = F(rp)xp—1 + Twy_g 2
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e T, is the sampling period,

e Wi_1 is a 2 X 1 noise vector sampled from a known
distribution that represents the state noise (acceleration
units are used)

e Xy is the state vector, defined in Eq. 1

 and ry is the regime variable which is modeled as a time
homogeneous, three-state, first-order Markov chain with
transitional probability matrix given by the following
relationship:

Tmn ép{rk :m|r;€,1 :n} (4)

The following figure illustrates the regime variable transi-
tional probabilities.

Fig. 2.

Regime probability transition

The state transition matrix F', at time £ is defined accord-
ing to the value of the regime variable ry, (F,, ) and is given
as:

o The Constant Velocity Straight Line motion model
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o First Coordinated Turn model
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o where 75 is the sampling period and, @
o where w is the turn rate in rad/sec
Although the use of a multi-modal approach increases the
complexity of the system due to the state equation becoming
nonlinear. Manoeuvrings targets require to be modeled in
such a way in order for the system to cope with abrupt
changes in the position and velocity vectors.

B. Measurements Equation

The measurements vector contains the measurements that
are made available to the system. The observations in this
case correspond to the ranging data accumulated from the
anchor nodes. Thus, at each time step k, Ns anchor nodes
provide range estimates of the target’s Euclidean distance to
the them. The measurements equation provides the mathe-
matical association between the observations vector z; and
the state-vector x;. The dimension of the measurements
vector is Ny x 1. It is formed as:

zen, =V —yn )2+ (@ —an )2+ vie (8

o where time index k: is discrete: k =1,2,..., K

e T1,y) are the target’s coordinates and =y, ,yn, are the
coordinates of the anchors

e vi: is a Ng x 1 noise vector sampled from a known
distribution that represents the additive measurements
noise

IV. TRACKING ALGORITHMS
A. Particle Filters

This section provides insight in the design of the PF
tracking algorithm that operates on the range measurements,
acquired by the system, to infer the state vector of the target
at each time step. PF are a class of recursive Bayesian
Estimation methods inspired by the techniques of Importance
Sampling and Monte Carlo Integration [15]. In the Bayesian
Estimation framework the unknown state xj, is estimated in
a two-stage procedure given certain incoming measurements
and a mathematical process model [16]. Specifically, the
purpose of Bayesian Estimation is to produce an estimate of
the state x;; at time k based on the sequence of measurements
Z; up to that time instance. To calculate a state estimate,
the posterior pdf p(xy | Zy) of the state at time k should
be estimated. After obtaining the posterior pdf p(xy | Zg),

an estimation of the state vector can then be produced with
the use of a certain criterion like the Minimum Mean Square
Error (MMSE). PF are probabilistic approaches that estimate
an unknown probability density function (pdf) recursively
in time using a set of weighted random samples called
“particles”. These particles are sampled from a proposal
distribution and then weighted appropriately to approximate
the state’s pdf. Let’s denote the evolution of the state vector
up to time k as X, = {x; : j = 1,2,...,k}. Similar to
this, the measurements made available up to time k, are
denoted as Zy = {z; : j =1,2,...,k}. The pdf p(xx | Zx)
is approximated by a set of N particles denoted as X} and
their corresponding weights, w}. An approximation of the
state pdf at time k is given from the following:

N
p(Xi| Ze) = Y wid(Xy — Xj) ©)
i=1
where § is Dirac’s delta function.
As mentioned previously, particles X! are sampled from
a proposal distribution ¢(X|Z) and then assigned impor-
tance weights accordingly. The weight for each particle is
computed from the following relationship:

i o P(XZ | Zy.)
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One important issue of concern in PF is the degeneracy
problem. In practical terms, after a number of iterations all
but one particles have negligible weights. Thus, a substantial
amount of computation is devoted in updating particles with
minimal contribution to the approximation of the pdf. To
avoid the effects caused by degeneracy in PF, a measure,
called effective sample size Ny, is introduced and defined

as follows: ]

=~ an
N
2 iz (wi)?

A resampling step is carried out whenever N,y is found
to be smaller than a pre-defined threshold Nyp,.. Resampling
eliminates samples with low importance weights while mul-
tiplies samples with high importance weights.

Nepp =

B. Range only Tracking Multiple Model Particle Filter Al-
gorithm ROT-MMPF

To solve the nonlinear dynamic model presented in Section
II-A, a multiple model PF algorithm is employed. Since
multiple models are used, the state vector becomes an
augmented vector which contains both the state x; and the
regime variable rj. The augmented state vector is denoted
as, Y = [Xi ry]. Initial particles are drawn from two distri-
butions p(rp) and p(xp) which represent the system’s initial
knowledge regarding the target’s state. The transitional prior
p(Xk|Xk—1) is chosen as the importance density distribution
to sample particles from, for the state x;, while particles for
the regime variable are sampled according to the transitional
probability matrix II = [m,,,]. The rule that is followed



for that is; if T;i,l = m, then 7",2 should be set to n with
probability 7.

Upon receiving a new measurement the weight for each
generated particle is computed. Because the transitional prior
is chosen as the importance density function, Eq.10, which
calculates the weight for each particle, simplifies to w} o
p(zx|y?) which is the likelihood of the measurement vector
(real observation) zy, given the predicted observation z};, cal-
culated from Eq.8, using the sampled particle y%. Assuming
Gaussian statistics for the observations, each weight w}"c for
particle xi, (: = 1...N) is calculated from the following
likelihood relationship:

QDZ = L(zk|yi) =B emp(—0.5>|<(zk—z,i)*(zk—z,i)T) (12)

where B is a normalising constant which depends on the
measurements noise distribution. The final step in the ROT-
MMPF algorithm involves resampling, whenever N is
found to be smaller than Nyy,..

An iteration of the ROT-MMPF algorithm is given in
Algorithm 1 and the flowchart of the ROT-MMPF in Fig.
3.

Algorithm 1 :ROT-MMPF Algorithm
Initialize
- Draw Initial Particles
fori =1to N do
rg ~ p(ro) (~ denotes sampling from)
xjy ~ p(zo)
end for
Sequential Importance Sampling Step
- Sample Particles and Calculate Weights
fori =1to N do
ry, ~ Tij
xi, ~ p(ok|zi-1)
Dy, = p(zi |z}, 7)) (using Eq.12)
end for
- Calculate total weight
t= Zivzl wy,
- Normalize weights
for i = 1to N do
wy, = tilﬂii
end for
Resampling Step
if Neff < Nipr then
- Resample with replacement to obtain N new particles distributed according
P(Yk|Zo:k)
end if

V. SIMULATION - RESULTS

This section provides results from simulating the proposed
tracking system under various two-dimensional scenarios.
The robustness of the tracking system with respect to the
additive noise that corrupts the state model and measure-
ments is examined. In the simulation environment considered
a single mobile node is the target that the system focuses on
tracing. To acquire the ranging information the mobile node
is always considered to be within the communication range
of the anchors. In particular, we investigate the effects of
Sampling Period (sampling interval) and number of Particles
on the achieved accuracy of the tracking system.

A wireless sensor network consisting of four anchor nodes
is considered to be deployed. The coordinates of the an-
chor nodes are, s; = [10m Om],s2 = [50m 0Om],s3 =

| Generate Particles from
| a proposal distributi

Pass Particles through
the state equation

4

Produce the predicted
observations

.‘ Incoming observations from anchor nodes

Assign weights to each
particle by computing the
likelihood

v

Resample if necessary

State estimate

Compute an estimation of
the target's state vector [P

Fig. 3. The flowchart of the ROT-MMPF algorithm

[10m 25m)], s4 = [60m 25m]. The state vector of the target
evolves in time as defined in Eq. 2, while the observations
that become available to the system from the anchor nodes,
are associated to the target’s state according to Eq. 8. The
sampling period is set to Ts = lsec and the system evolves
for T' = 75sec. In the implementation of the ROT-MMPF
tracking algorithm N = 500 particles were used. The turning
rate is considered to be constant and set at w = 7 /4 rad/sec.
The measurements and state noise sources are considered to
follow zero mean Gaussian distributions. Specifically:

Wp X ./\[(O, 212)
Vi & N(O, 2514)

The regime variable is defined as a first order homogeneous
Markov chain with transition probability m = 0.8 thus the
transition probability matrix is,

0.8 01 0.1
P(r¢|ri—1) = (0.1 0.8 0.1 (13)

0.1 0.1 038
The target’s initial state vector is X =
[lm 1m 2m/s 2m/s]. Initial particles for the

regime variable ry are sampled with equal probability
Po = (0.333 0.333 0.333), while initial particles for the
state x; are drawn from a Gaussian distribution of mean
equal to the objects initial location thus pg = xp and
covariance matrix S = I To quantify the accuracy achieved
in estimating the target’s position the Root Mean Square
Error (RMSE) is used.
The RMSE for position is,

RMSE = !

el

T
D (@ —west)? + (Y —vest)  (14)
t=1



The results from a single run of the above scenario are
illustrated in Fig. 4 for the target’s trajectory and in Fig. 5
for the target’s two-axis velocity.
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Fig. 4. True and Filtered target trajectory
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Fig. 5. Two-axis velocity estimation

The RMSE for this run was calculated, RMSE =
4.9318m. To evaluate the robustness of the tracking system,
the previous scenario is simulated multiple times. The RMSE
is calculated in every execution. Results are presented in
Fig. 6. In 85% of the executions the RMSE remains below
40m and in 77% below 20m. These results justify the
robustness of the system under a noisy environment (wjy, o
N(0,2), vy o N(0,2.5).

Root Mean Square Error

RMSE (m)
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Simulation Execution Number

Fig. 6. RMSE for 100 executions

To analyze the factors that affect the accuracy of the
proposed system in a real-world scenario, simulations were

conducted for different values of the Sampling Period T.
The deployment parameters and noise sources were kept
similar as before. The number of particles used in the ROT-
MMPF algorithm implementation also kept the same N =
500. The total simulation time remained 7' = 75sec and
the system was simulated for increasingly Sampling Period
Ts=2,...,7sec. For each Sampling Period the system was
simulated a total of 100 times. At each execution the RMSE
for position was calculated and finally the average RMSE
was calculated for the total of 100 runs.

From Fig. 7(a) it is clear that the achieved tracking
accuracy, is heavily dependent upon the Sampling Period
as denoted by the increase of the average RMSE when the
Sampling Period increases. Low Sampling Period indicates,
increased temporal resolution of the collected data, leading
to improved accuracy of the tracking system. The Sampling
Period is heavily dependent on the amount of time required
by the anchor nodes to collect and fuse the ranging estimates.
Moreover the Sampling Period is also affected by the time the
system requires to run the tracking algorithm and produce an
estimate of the target’s state. The Sampling Period, also plays
an important role on the maximum speed of the mobile node
that can be effectively tracked. Fast moving targets, require
high temporal resolution among the collected ranging data.

One way to amend the lack of accuracy due to increased
Sampling Period is to employ more particles in the im-
plementation of the ROT-MMPF algorithm. A system with
the same deployment parameters as before is simulated for
increasingly number of particles. The system operates with a
sampling period of T's = 2sec and the ROT-MMPF utilizes
N = 700,1000, 1500, 2000, 2500 particles. Similar to the
investigation carried out previously the system was simulated
for a total of 100 times for each particle size. For N = 500
particles the average RMSE was found to be RMSE =
51.03m. Fig. 7(b) depicts the average RMSE against the
different particle sizes. By employing 5 times more particles
the system achieves more than 50% improvement in position
accuracy.
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Fig. 7.

To extend the investigation on more complex trajectories, a
scenario where the target performs manoeuvres with variable
turning rates (w) is simulated. The turning rate is defined
as the magnitude of the acceleration divided by the current
speed of the target [17]. Whenever a turn is performed (F(2)



and F(3) are used to describe the target’s dymanics) the
acceleration is set to be drawn from N(0,8). The target’s
initial state vector is xo = [lm 1m 1m/s 1m/s|. The
rest of the parameters are kept as previously. Results from
simulating this scenario are given in Fig. 8 for trajectory and
Fig. 9 for velocity. The RMSE for this exemplar run was
calculated and found to be RMSE = 6.7380.
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Fig. 8. True and Filtered target trajectory - variable turning rate
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Fig. 9. Two-axis velocity estimation - variable turning rate

VI. CONCLUSIONS - FUTURE WORK

In this paper, a collaborative approach for tracking mobile
nodes in ad-hoc WSNs is presented. The proposed system
achieves tracking based on the accumulated information
from a number of stationary anchor nodes which collect
range estimates and fuse them to a central node which
executes the tracking algorithm. Through simulations we
demonstrated the ability of the proposed tracking system
to perform robustly under noisy conditions and to achieve
substantial accuracy RMSE < 10m. The design of the
ROT-MMPF algorithm focuses on manoeuvring targets and
simulations revealed the ability of the algorithm to effectively
track manoeuvring targets with constant and variable turning
rate. The sampling interval between successive data readings
as well as the number of particles used in the algorithm’s
execution, affect the performance of the system significantly.
High sampling period means less sampling steps which trans-
lates to less amount of data to be accumulated on the same
amount of time. Ultimately, performance diminishes. Increas-
ing the number of particles results in improved performance.

However, it should be noted that increasing the number of
particles, results in an increase in the execution time of
the algorithm. In conclusion, the application requirements in
accuracy as well as the specifications of the hardware to be
used will dictate the optimum trade-off between performance
accuracy and time constraints.

The evolution of the work presented in this paper is the
implementation of the proposed system in hardware. Low-
power Zigbee compliant nodes are going to be used as
anchors, while more powerful hardware will fuse the ranging
data and execute the tracking algorithm. Specifically our own
laboratory results have demonstrated that ranging with up to
Im accuracy between node is feasible with a ToF technique.
This ranging technique is expected to be included in the
implementation.
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