A Refinement-Based Correctness Proof of
Symmetry Reduced Model Checking

Edd Turner', Michael Butler? and Michael Leuschel®

!Department of Computing, University of Surrey,
2Electronics and Computer Science, University of Southampton,
3Institut fiir Informatik, Heinrich-Heine Universitat Diisseldorf

Abstract. Symmetry reduction is a model checking technique that can
help alleviate the problem of state space explosion, by preventing redun-
dant state space exploration. In previous work, we have developed three
effective approaches to symmetry reduction for B that have been imple-
mented into the PROB model checker, and we have proved the sound-
ness of our state symmetries. However, it is also important to show our
techniques are sound with respect to standard model checking, at the al-
gorithmic level. In this paper, we present a retrospective B development
that addresses this issue through a series of B refinements. This work
also demonstrates the valuable insights into a system that can be gained
through formal modelling.

Keywords: B, refinement, model-checking, symmetry reduction

1 Introduction

The B language is an established formal modelling notation whose salient fea-
ture is its support for the incremental refinement of abstract specifications into
concrete implementations. A B specification (machine) comprises a collection of
variables and operations that may manipulate these variables, together with an
invariant on the variables.

Formal verification in B typically requires the use of semi-automatic theorem
provers (e.g., BdFree [I], Atelier-B [2], the B-Toolkit [3] and Rodin [4]) to prove
that the operations of a machine preserve the invariant, and that each refinement
is valid. Model checking is a valuable, alternative approach that can perform
these tasks automatically, as with the PROB model checker [5].

Previously, we have focused on addressing the state space explosion challenge
that faces model checking [6I7U8]. This is where a linear increase in the size of a
specification leads to a combinatorial increase in the number of states that the
model checker must explore. The impact is that checking large specifications be-
comes intractable. Our work relied on the identification of symmetric states that
satisfy the same predicates [6 Theorem 1], and the implementation of an aug-
mented model checking algorithm in PROB that checks only one state from each
symmetry class. Experimental results were encouraging and have been shown to

reduce the time of model checking by up to three orders of magnitude, e.g., [8].
Moreover, these techniques have been integrated into the final version of the tool.
Complementary to this work, it is also important to guarantee the soundness
of our approaches, with respect to standard model checking. That is, if stan-
dard model checking exhausts its search space without finding an error, called a
counterexample, then it must be guaranteed that symmetry reduced checking ex-
hausts its constrained search space without finding a counterexample. In [6], we
sketched a proof that shows this. In this paper, we go a step further and present
a complete B development that shows the soundness of our methods through
B refinement. In doing so, we provide details of the model checking algorithms
used in terms of their key variables, and we make clear the system properties
that contribute to the soundness result.

The B development we present was specified and proved interactively using
B4Free’s graphical interface, Click'n Prove [9]. Alternatively, we could have used
the next generation of B, Event-B [I0] and the Rodin tool [4]. However, we
did not find our choice inhibited development. Instead, as is common to formal
modelling in general, the most time-consuming aspect was the iterative process
of finding a suitable abstraction of the system that captures the information we
required, in addition to discovering invariants important for refinement.

We proceed by presenting the abstract specification for model checking in
Section [2] and an immediate refinement in Section [3} Section [] provides a re-
finement machine whose behaviour closely models standard model checking in
PrOB. Next, the refinement in Section adheres to our style of symmetry
reduction implemented in [6], and Section gives a refinement that matches
our symmetry reduction strategy used in [7)8]. Finally, we provide a discussion
of our work in Section [f] For clarity of presentation, each machine is broken into
several parts, which are individually explained. Each machine specifies the same
set of operations, as required by B refinement, although they are only included
in the commentary when necessary.

2 An Abstract Specification for Model Checking

The abstract specification, mc0, introduces the sets and constants that are re-
quired to capture the overall behaviour of a model checking procedure, as used by
PRrROB. These are used to specify two mutually exclusive events that determine
when model checking can terminate. We begin by introducing the sets, constants
and properties used by this machine. The B encoding is given in Figure

The mc0 machine uses two sets, S and ANSWER. Deferred set, S denotes all
possible states of the system being model checked (i.e., the cartesian product of
types of the machine variables). Given that bounds are placed on system types
during model checking in PROB, |5] is finite. The enumerated set, ANSWER de-
notes the two, mutually exclusive, choices of message that are output once model
checking terminates; either Pass (the reachable search space has been exhausted
without finding a state that violates the invariant, i.e., a counterexample), or
Fuail (a reachable counterexample has been found).

MACHINE mc0 /* the reachable states */

SETS
S; ANSWER = {Pass, Fail} ’,’egh € E (AS) A
CONSTANTS ¢ reac

/* reach is a fiz-point */

i, /* special initial state */ tr[reach] C reach A

tr, /* transition relation */
inv, /* states satisfying invariant */

%) o
reach /* reachable states */ /* reach is the smallest fiz-point of

the reachable states */

PROPERTIES
e S e SA V(r).(r e P(S) A
. 1eTA
mv € P(S) A
1 € v A trir] € r =
reach C 1)

1 ¢ ran(tr) A

Fig. 1. The Sets, Constants and Properties of the Abstract Machine, mc0

There are four important constants used for the abstract specification (see
also Figure|3). Defining the behaviour of the system is ¢r, the transition relation
over states in S. The set of correctness conditions checked by the algorithm is
defined implicitly through inv; the subset of S satisfying the correctness con-
ditions. Such an approach is sufficient for the standard model checking of B
systems in PROB, since checking involves only the evaluation of the invariant
for the variables valuesﬂ A special state, i, is used to indicate the case where
the variables used by the specification have not yet been initialised. Successors
of i represent the initialisation of a machine, tr[{i}]. It follows that i is always
the root state of the search space. The set of states encountered during model
checking, denoted reach, is defined by a fix-point on tr, where tr[reach] C reach,
i.e., the successor of a reachable state is also reachable. Further, we specify reach
as the least fix-point of ¢r.

ok «— pass = ok — fail =
WHEN reach C inv WHEN reach 7¢_ mv
THEN ok := Pass THEN ok := Fail
END; END

Fig. 2. The Operations of the Abstract Machine, mc0

The operations of mc0 are given in Figure 2] These include pass and fail,
which are mutually exclusive events that specify the conditions under which
model checking terminates. The pass operation is enabled if all reachable states
satisfy the correctness conditions used during checking (reach C inv). In which
case, the Pass message is specified as a return parameter. Conversely, fail is
enabled if the set of reachable states do not satisfy the correctness conditions, and
the Fail message is output by the algorithm. In contrast to an implementation

! PROB also supports the bounded verification of LTL formulae [TT].

Fig. 3. Illustrating the constants of mc0 and variables of mcl

REFINEMENT mc!

REFINES mc0 rac C inv A

VARIABLES Zeri Eacre/z\zch \ inv
* * A
rac, /* reached and checked */ INITIALISATION
err /* reached errors */ = {i} ||
INVARIANT PO
err .=

rac C reach A

Fig. 4. The Variables, Invariant and Initialisation of mc1

of a model checking algorithm, this abstract specification either immediately
passes or fails. However, this is sufficient since its single goal is to capture the
key properties of the procedure. Details used by an implementation, such as
variable information, are given in refinements of mc0.

3 Refinement Level 1

Let us now present mc1, the first level of refinement for mc0 (i.e., mc0 C mecl).
This refinement introduces two key variables and two events that will be required
in an implementation of a model checking algorithm. Their use is generalised so
that later refinements can specify their precise roles during both standard and
symmetry reduced model checking. We found that this modularised the proof
effort required for these algorithms. Note that this generalisation was devised
after developing and attempting to prove the separate models for the two algo-
rithms (presented in Sections[d] and[5]), when we realised that this refinement was
a common abstraction that facilitates proof. Figure [d] presents the new variables,
invariant and initialisation clauses of mc! (see also Figure|3).

Variable rac is introduced to store all states reached by model checking so
far, which satisfy the correctness conditions. Conversely, err stores those states
reached by model checking that violate the correctness conditions.

Regarding the operations, mc1 introduces two events used during the traver-
sal of the state space. The operation, add_inv, models the checking of states that
satisfy the correctness conditions (and in later refinement machines also deter-

mines states yet to be checked). Conversely, add_err, models the checking of
counterexamples. We separate the events for state space traversal since we find
this style convenient for proof. The operations of mci1 are given in Figure

add_inv = /* new event */ add_err = /* new event */
ANY ss WHERE ANY ss WHERE
ss C reach \ rac A ss C reach \ rac A
ss Cinv A 88 #£ I N
ss # I ss N =92
THEN THEN
rac := rac U ss err ;= err U ss
END:; END;
ok «— pass = ok «— fail =
WHEN WHEN
reach C rac err £ &
THEN THEN
ok := Pass ok := Fail
END; END

Fig. 5. The Operations of mc1

Observe that the add_inv event selects a non-empty subset from the reach-
able states, which are yet to be reached, and which also satisfy the correctness
conditions. This subset is added to rac, ensuring they will not be encountered
again. Similarly, the add_err event selects a non-empty subset from the reachable
states, yet to be reached, but which contain no elements satisfying the correct-
ness conditions, i.e., are invariant violations. These violations are added to err
for a permanent record.

We refine the pass operation by specifying its guard as reach C rac. That
is, pass should become enabled when the reachable search space has been fully
covered by add_inv. To show the validity of a refined event, we must prove that
the guard of the abstract operation (G) can be derived from the new guard
(G’) together with the machine invariant (Inv), i.e., Inv A G' = G [12]. This is
straightforward, since rac C inv A reach C rac = reach C inv. We also change
the guard of the fail operation to simply, err # @&, which is intuitive because its
satisfaction indicates an error has been encountered by the add_err operation.
Proving that this refinement is valid is also simple since, err C reach \ inv A
err # & = reach € inv.

Given that we are model checking a finite state system, it is desirable to
prove the termination of the state space exploration algorithm specified in mc1,
which occurs when pass or fail enables. This can be shown by providing the
variant, | reach \ (rac U err) |, which represents the number of remaining states
yet to be explored. Then, we note that successive applications of add_inv and
add_err decreases the value of the variant progressively, until at some point no
new states can be added to rac or err, and therefore, add_inv or add_err can

REFINEMENT mc2 INVARIANT

REFINES mcl1 uner C rac A
VARIABLES trrac \ unez] C rac U err
unex, /* reached not fully explored */ INITIALISATION
rac, /* reached and checked */ unez := {i} ||
err /* reached errors */ rac := {i} |lerr := @

Fig. 6. The Variables, Invariant and Initialisation of mc2

no longer be enabled. This ensures that pass or fail will eventually engage. In
the case where errors exist, fail enables. If add_inv and add_err block, then all
reachable states have been checked, without error, and pass enables. Thus, we
have shown the algorithm specified in mc! terminates. The addition of variants
to a system is not supported in classical B and its B proversﬂ However, we have
provided a variant here to help illustrate the validity of mc1.

4 Refinement for Standard Model Checking

The B machines mc0 and mc1 given in the previous sections are specified at a
high level: certain details are not included that would be required for an imple-
mentation of the algorithm. This section addresses this issue through a single
refinement of mc! that specifies more closely the standard model checking algo-
rithm, and as a consequence, highlights several key properties. Figure [6] shows
the variables, invariant and initialisation clauses of this machine.

As can be seen, mc2 introduces a single variable, unez. The purpose of this
variable is to store all states reached by model checking so far, which satisfy the
correctness conditions, but whose successors are yet to be determined. Moreover,
it is defined as a subset of rac, since each state it stores will be reached via the
transition relation from the root state 4, and subsequently checked.

In addition, note that a new invariant condition is added: tr[rac\ unez] C rac
U err. This constitutes the basis of proving when model checking can terminate,
given that no violations exist. To clarify its use, we first present the behaviour
of the operations in this machine, given in Figure [7]

We introduce the remove operation to remove a state from unexr whenever
all of its successors have been reached, and therefore are elements of rac. The
repeated application of remove will cause unexr to diminish in size, indicating
that fewer transitions remain to be explored. This can be expressed formally as
a simple variant, | unex |, whose size decreases upon the action of remove.

The add_inv event of mcl is refined to select a single state from uner (a
state whose transitions have not yet all been traversed), and computes a single
successor of it (s2) that satisfies the correctness conditions. The successor is
added to both uner and rac. In the case where the successor is an invariant
violation, it is added to only err in the add_err operation. Addition to either
unex or rac would, otherwise, break the invariant, unex C rac A rac C inwv.

2 Event-B and its associated provers provide support for variants.

add_inv =
ANY s1,s2 WHERE
s1 € unex A
82 € inv A
sl — s2 €tr A
s2 ¢ rac N
err = &
THEN
unez := unez U {s2} ||
rac := rac U {s2}
END:

add_err =
ANY s1,s2 WHERE
sl € unex A
s2 & inv A
sl — s2 € tr A\
err = J
THEN
err := err U {s2}
END;

remove = /* new event */

ANY s WHERE
sl € unexr A

/* all s1’s successors checked */

tr[{s1}] C rac A
err = <&
THEN
unez := unex \ {sl}
END:
ok «— pass =

WHEN

uner = J N

err = J
THEN

ok := Pass
END;

ok — fail =
WHEN err # @
THEN
ok := Fail
END

Fig. 7. The Operations of mc2

A number of assertions are also specified in mc2, to verify the preservation
of responsiveness of the specified model checking algorithmﬂ We do not show
them because they simply consist of a disjunction of the guards of each op-
eration. Their proof with B4Free guarantees that there is always at least one
enabled operation, e.g., model checking has not yet finished, so one can perform
either add_inv, add_err or remove, or conversely, state space exploration has
terminated and either pass or fail is enabled.

Given the responsiveness of this machine, in addition to the previous vari-
ants specified for the add_inv, add_err and remove operations, which show that
eventually these operations are all blocked, we can deduce that either pass or fail
will eventually be enabled. This relies on pass and fail being valid refinements of
their abstract specification. This is trivial for the fail operation, since it remains
unchanged from mc1. The goal for the pass operation is to show that Inv A unex
= A err = & = reach C rac. By choosing the appropriate invariant, we have:

tr[rac \ unezx] C rac U err

= tr[rac] C rac Given unex = @ and err = @

That is, rac is a fix-point of ¢r. Since reach is the least fix-point, we can conclude
that reach C rac.

3 An assertion in B is an expression over the sets, constants, properties, variables
or invariant clauses of a B machine. They enable one to form corollaries in B. By
proving an assertion, it is made available for use inside other proof activities.

The overall chain of refinement developed for standard model checking con-
sists of: mcO C mcl T mc2. That is, mc2 is a valid refinement of mc0. Therefore,
the model checking algorithm specified in mc2 is sound with respect to the ab-
stract specification of model checking. In the next section, we introduce the
notion of symmetry reduction into our specifications.

5 Refinements for Symmetry Reduced Model Checking

This section presents two refinement machines that specify symmetry reduced
model checking through the refinement of mel (Section , namely rmcl and
rmc2. These refinements follow closely the specification of mc2, except they
introduce the concept of symmetry between states of a system.

5.1 Level 1

The primary purpose of the first refinement machine for symmetry reduced
model checking is to provide the first step towards integrating symmetry re-
duction into the B specification of standard model checking, whilst linking the
variables used by the standard and reduced approaches. Through this machine,
we also show that our original work in symmetry reduction [6] is sound with re-
spect to the abstract specification of model checking. In this particular strategy,
called permutation flooding, each unexplored state encountered is first checked
against the invariant. Then, all states symmetric to it (which we have proved
satisfy the same predicates) are computed and are added to the state space:
these states are marked as explored so that model checking need not explicitly
check them. The concept of state symmetries is specified using constants and
properties, and is given in Figure

The symmetries of a system are defined over the transition relation in terms
of sets of special permutations (called automorphisms), denoted aut. We also
specify two key properties of automorphisms, as given in [I3], Chapter 14]:

— an inverse of an automorphism is itself an automorphism, and
— automorphisms preserve the transition relation (a result also shown in [6]).

In the context of this specification, we define that the special state i (rep-
resenting the uninitialised machine) is symmetric only to itself. In addition, we
specify a consequence of a result in [6, Corollary 1], which proves that symmet-
ric states satisfy the same predicates. That is, a state satisfies the invariant, iff
states symmetric to it also satisfy the invariant.

A valid automorphism p for the example from Figure [3|is shown in Figure [J]
(dashed lines represent the transition relation), where S2 and S4 are permuted
for each other and all other states are kept unchanged. In terms of a B machine, a
state comprises the values of its variables. Intuitively, two states, such as S2 and
S4, are symmetric if the values of one state can be transformed into those of the
other. In addition, a sequence of state transitions (i.e., operations) possible from
one state will also be possible from the other; this is also depicted in Figure [0

REFINEMENT rmci
REFINES mc!
CONSTANTS
aut, /* automorphisms on tr */
rep /* representative function */
PROPERTIES
aut € P(S —» S) A
id(S) € aut A
Y(p).(p € aut = p~' € aut) A
V(p).(p € aut = i — i € p) A

/* P1: automorphisms preserve tr */
V(p,s1,82).(p € aut A s1 € S A
s2 €8 =
(s1 —s2€tr) &
(p(s1) = p(s2) € tr)) A

/* symmetries have same rep. */
V(p,s1,52).(p € aut A
sl — s2 €p=
rep(sl) = rep(s2)) A

/* s and rep(s) implies auto. */
V(s1,52).(s1 — s2 € rep =
A(p).(p € aut A s1 — s2 € p)) A

/* automorphisms preserve invar. */
V(p,s1,52).(p € aut A
sl +— s2 €p=
(s1 € inv) & (s2 € inv)) A
/* representatives are fiz-points */
rep € S — S A V(s).(s € ran(rep) = rep(s) = s)

Fig. 8. The Constants and Properties of the Machine, rmcI

e
o

Fig. 9. An automorphism for Figure

The constant, rep, is introduced to model an algorithm that computes a
unique representative for some given state, and is defined over the set of states S.
We have implemented this function in PROB, which determines a representative
state from the set of states symmetric to it [6].

It follows that checking one state during the reduced search, corresponds
to checking all symmetric states in the standard search. The rep function in
this refinement is constrained accordingly (the first 3 properties involving rep).
Further, we specify representatives as fix-points. Assertions for rmcl are given
in Figure whose proof simplifies later proof activities required to guarantee
its consistency and show that it is a valid refinement of mc1.

There are five assertions defined for this machine, of which the first four
are relatively simple and follow from the properties of aut and rep. The last
assertion requires proof that for any reachable state its representative state is
also reachable. To show this it is instructive to present a fix-point proof over
automorphisms, upon which rep is based. Using the property of automorphisms
marked P1 in Figure |8 we begin by proving for any automorphism p, that
p[reach] is a fix-point of tr:

ASSERTIONS

/* representatives preserve invar. */ V(s1,82).(s1 — s2 € tr =
V(s1,82).(s1 € S A (ss2).(rep(s1) — ss2 € tr A

s2e€SA rep(s2) = rep(ss2))) A

s1 +— s2 € rep =

((s1 € inv) & (s2 € inv))) A /* s is reachable iff
rep(s) is reachable */

rep(i) =1 A V(s).(s € S =
rep H[{i}] = {i} A ((s € reach) < (rep(s) € reach)))

Fig. 10. The Assertions of rmci

tr[p[reach]] C plreach] (A)
< Vy-y € tr[p[reach]] = y € p[reach) inclusion is universal
< (3z -z € plreach] A x — y€ tr) quantify on p
= y € plreach]
& (Fz-p~i(z) € reach Nz — y € tr) p is injective

= p~!(y) € reach

& (3z-p~Y(z) € reach Ap~t(z) — p~i(y) € tr) property P1
= p~1(y) € reach

< true

Equation (A) implies p[reach] is a fix-point of ¢r. Thus, for an automorphism g¢:
reach C q[reach) (B)
By monotonicity, from (B) we get:

q [reach] C q~'[q[reach]]
& g Yreach] C reach q is injective (©)

Instantiate ¢ with p in (B) to get:
reach C p[reach] (D)
Instantiate ¢ with p~! in (C) to get:

(p~1)~L[reach] C reach
< plreach] C reach p is injective (E)

Finally, from (D) and (E) we obtain the result p[reach] = reach. That is, all
automorphisms preserve the reachable states.

Six variables are used by this machine, and are shown in Figure[T1] Intuitively,
they can be split into three pairs, where each pair consists of a variable used

VARIABLES

/* vars for standard checking */ rerr C err A

rac,unetz,err, rep ™ [rrac] = rac A

/* vars for reduced approach */ rep ™ [runex] = unex A

TTaC, TUNeT,Terr rep ™ [rerr] = err A
INVARIANT trirac \ unez] C rac U err

unex C rac A INITIALISATION

rrac C ran(rep) A rac := {i} || rrac := {i} ||

rrac C rac A unex := {i}|| runex := {i}||

runex C rrac A err == @ || rerr := @

Fig. 11. The Variables, Invariant and Initialisation of rmc1

in the B specification of standard model checking (rac, unex or err), and a
corresponding variable introduced to specify reduced checking (rrac, runex or
rerr). The key premise is to link each pair with some set of constraints, so that
properties that apply to standard checking also apply to the reduced approach.

As with the standard approach to checking, the set of states reached during
checking whose successors have not yet all been explored (unez), is a subset of the
states encountered by model checking (rac); unex C rac. To link rac and rrac,
we specify that rrac C rac and rep_l[rmc] = rac; the states symmetric to those
of rrac are members of rac. We specify corresponding constraints for variables
unez, runez, err, and rerr. In addition, tr[rac\ unez] C racU err is specified to
simplify the detection of model checking termination when no counterexamples
are found (i.e., when unexr = @ and err = &, see mc2 in Section . This will
be proved correct in the next refinement using only rrac, runex, and rerr. The
operations of rmcl are given in Figure

Notice that this machine behaves in a similar way to mc2, which also refines
mcl. The difference regarding the add_inv or add_err events, is that for each
newly encountered state s we add its representative to runex (if s satisfies the
invariant) or rerr (if s violates the invariant); while adding all symmetric states,
rep~1[{s}] to unex or err. The remove operation follows this pattern, and re-
moves a state from runexr whenever the representatives of all of its successors
have been encountered; while all symmetric states are then removed from unex.

Justification of the correctness of this refinement is similar to the standard
case, presented in Section [4 This involved proving the enabledness preservation
of operations, the validity of the refinement and that eventually pass or fail
becomes enabled.

Soundness Result 1: The important observation of this refinement machine
is that the style of state space traversal provided by the operations add_inv,
add_err and remove, reflects the algorithm we used in our initial work on symme-
try reduction in PROB, i.e., permutation flooding. For example, rep = [{rep(s2)}]
in the add_inv operation in Figure[I2|represents all symmetric states of s2, which
are used to flood the variables, unex and rac. We obtain the assurance that per-
mutation flooding is sound with respect to the abstract specification of standard
model checking, since mc0 C mcl C rmcl.

add_inv =
ANY s1,s2 WHERE
sl € runer A
s2 € inv A\
sl +— s2 €tr A
rep(s2) ¢ rrac A
rerr = &
THEN
runex := runex U {rep(s2)} ||
unezx := unex U rep” [{rep(s2)}] ||
rrac := rrac U {rep(s2)} ||
rac := rac U rep” [{rep(s2)}]
END:;
add_err =
ANY 51,52 WHERE
sl € runer N
s2 ¢ inv A
sl — 82 €ir A
rep(s2) ¢ rrac A
rerr = &
THEN
rerr := rerr U {rep(s2)} ||
err == err U rep” ' [{rep(s2)}]
END:;

remove =
ANY s1 WHERE
sl € runer A
/* all s1’s successors checked */
rep(tr[{s1}]] C rrac A
rerr = &
THEN
runex := runezx \ {s1} ||
unex := unex \ rep *[{s1}]
END:;

ok «— pass =
WHEN
rerr = J N
runexr = <
THEN
ok := Pass
END:;
ok — fail =
WHEN
rerr # &
THEN
ok := Fail
END

Fig. 12. The Operations of rmcl

5.2 Level 2

In the final refinement for symmetry reduction, we retain only three variables,
rrac, runex and rerr, from the relatively detailed rmcl, upon which we specify
a minimal set of constraints, as shown in Figure

INITIALISATION
rrac := {3} ||
runex := {i} ||
rerr = &

REFINEMENT rmc2 INVARIANT
1 € rrac A\
rrac C ran(rep) A
rrac C rac N\
runexr C rrac A

rerr C err

REFINES rmci

VARIABLES

rrac, runex, rerr

Fig. 13. The Variables, Invariant and Initialisation of rmc2

Observe that the specification of the variables remains the same as that given
in rmcl, while all details of rac, unezx, and err have been removed. The same
applies for the operations of this machine: add_inv, add_err and remowve are

identical to those in rmcl, except that there are no assignments to rac, unex,
and err. For this reason, we do not show the operations of this refinement.

We note that the style of state space traversal specified contrasts with that
of rmc1 and instead reflects more closely a classical symmetry reduction algo-
rithm, which we used in [7)8]. Therefore, upon encountering an unexplored state
(e.g., s1 in add_inv), we compute and store only the unique representatives of
its successors that have not yet been checked (rep(s2)); the model checking al-
gorithm will never store two symmetric states, and it has less of a demand for
memory. The disadvantage of implementing such a rep function is that it can be
computationally expensiveﬂ We also note that the proof of correctness for rmc1
is echoed by this machine.

Soundness Result 2: The chain of refinement for our classical approach to
symmetry reduced model checking consists of: mc0 C mcl T rmcl T rmc2.
Therefore, by the transitivity of refinement, our augmented algorithm is sound
with respect to the abstract specification of model checking.

6 Concluding

We have presented a B development that shows through refinement the sound-
ness of our previous methods for symmetry reduction in PROB, with respect to
standard model checking. That is, if standard model checking exhausts its search
space without finding a counterexample then symmetry reduced checking must
also exhaust its quotient search space without finding a counterexample.

An abstract specification for model checking, mc0, is given in Section [2]
which is refined by mc! in Section [3] From here, two separate two chains of
refinement specify details of algorithms that implement the standard and reduced
approaches. The refinement branch for the reduced approach includes rmcl,
which reflects the style of model checking we adopted in [6], and rmc2, that
reflects the style we used in [7] and [§]. Given that both chains refine the abstract
specification, we obtain our desired soundness result.

The system was specified using B and the Click’n Prove tool, although it
would have been possible to use Event-B. Indeed, our use of guarded B opera-
tions is characteristic of events in Event-B. In addition, we could have utilised
the tool support of Event-B when guaranteeing the model checking algorithms
eventually terminate having found a counterexample (fail) or without finding
a counterexample (pass), after exploring the reachable state space. This task
involved using variants to ensure the add_inv, add_err and remove operations
eventually relinquish control (giving pass and fail an opportunity to be enabled),
and proving the preservation of operation enabledness for the system. Despite
this, we did not find using B impeded the development process. We recognise
though, that if our development had become more complex (e.g., requiring de-
composition), it would have been beneficial to use Event-B and its tools.

4 This rep function is based upon algorithms for determining isomorphic graphs, for
which there is currently no known polynomial time algorithm.

The B development presented captures properties of model checking that are
sufficient to show the overall soundness of our approaches to symmetry reduction.
In these specifications, we have removed the details of the algorithms that select
a unique representative from a class of symmetric states; as modelled by the
rep function. Proving that our implementations correctly compute representa-
tives currently remains as future work and would require developing additional
formal models. We do not believe this would be difficult for our permutation
flooding approach, since the implementation relies on a simple, but effective,
permutation function. However, we do think this would be challenging for our
two other implementations, which use complex algorithms for determining graph
isomorphism, and were inspired by the work of McKay [14]. Additional future
work is to extend our B development by adding labels to ¢r so that properties can
be proved over paths of the system. This would provide a basis for proving the
soundness of refinement via model checking. Finally, it would also be valuable
to prove that symmetry reduced model checking preserves LTL properties.

References

1. Clearsy: B4Free tool, Available at http://www.b4free.com (2009)

2. Steria, Aix-en-Provence, France: Atelier B, User and Reference Manuals, Available
http://www.atelierb.eu/index-en.php. (2009)

3. B-Core (UK) Limited: B-Toolkit manuals, Available at http://www.b-core.com/
btoolkit.html (2002)

4. Abrial, J.R., Butler, M.J., Hallerstede, S., Voisin, L.: An Open Extensible Tool
Environment for Event-B. In Liu, Z., He, J., eds.: ICFEM. Volume 4260 of Lecture
Notes in Computer Science., Springer (2006) 588-605

5. Leuschel, M., Butler, M.J.: ProB: A Model Checker for B. In Araki, K., Gnesi,
S., Mandrioli, D., eds.: FME. Volume 2805 of Lecture Notes in Computer Science.,
Springer (2003) 855-874

6. Leuschel, M., Butler, M.J., Spermann, C., Turner, E.: Symmetry Reduction for
B by Permutation Flooding. In Julliand, J., Kouchnarenko, O., eds.: B. Volume
4355 of Lecture Notes in Computer Science., Springer (2007) 79-93

7. Turner, E., Leuschel, M., Spermann, C., Butler, M.J.: Symmetry Reduced Model
Checking for B. In: TASE, IEEE Computer Society (2007) 25-34

8. Spermann, C., Leuschel, M.: ProB gets Nauty: Effective Symmetry Reduction for
B and Z Models. In: TASE, IEEE Computer Society (2008) 15-22

9. Abrial, J.R., Cansell, D.: Click’'n Prove: Interactive Proofs within Set Theory. In
Basin, D.A., Wolff, B., eds.: TPHOLSs. Volume 2758 of Lecture Notes in Computer
Science., Springer (2003) 1-24

10. Métayer, C., Abrial, J.R., Voisin, L.: Event-B Language (RODIN, D7) (2005)

11. Leuschel, M., Plagge, D.: Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. In Ameur, Y.A., Boniol, F., Wiels, V., eds.:
ISoLA. Volume RNTI-SM-1 of Revue des Nouvelles Technologies de I’Information.,
Cépadues-Editions (2007) 73-84

12. Abrial, J.R.: The B Book: Assigning programs to meanings. Cambridge University
Press, New York, NY, USA (1996)

13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

14. McKay, B.D.: Practical Graph Isomorphism. Congressus Numerantium 30 (1981)
45-87

http://www.b4free.com
http://www.atelierb.eu/index-en.php
http://www.b-core.com/btoolkit.html
http://www.b-core.com/btoolkit.html

	A Refinement-Based Correctness Proof of Symmetry Reduced Model Checking
	Edd Turner1, Michael Butler2 and Michael Leuschel3

