Scalable Mechanism Design for the
Procurement of Services with Uncertain Durations

Enrico Gerding
& Sebastian Stein
School of ECS
University of Southampton
Southampton, SO17 1BJ, UK
{eg,ss2}@ecs.soton.ac.uk

Waterloo, ON

ABSTRACT

In this paper, we study a service procurement problem with uncer-

tainty as to whether service providers are capable of completing a

given task within a specified deadline. This type of setting is of-
ten encountered in large and dynamic multi-agent systems, such a
computational Grids or clouds. To effectively deal with this un-
certainty, the consumer may dynamically and redundantly procure
multiple services over time, in order to increase the probability of
success, while at the same time balancing this with the additional
procurement costs. However, in order to do this optimally, the con-
sumer requires information about the providers’ costs and their suc-
cess probabilities over time. This information is typically held pri-
vately by the providers and they may have incentives to misreport

this, so as to increase their own profits. To address this problem, we

introduce a novel mechanism that incentivises self-interested pro-

viders to reveal their true costs and capabilities, and we show that

this mechanism is ex-post incentive compatible, efficient and indi-
vidually rational. However, for these properties to hold, it generally
needs to compute the optimal solution, which can be intractable in

large settings. Therefore, we show how we can generate approx-

imate solutions while maintaining the economic properties of the
mechanism. This approximation admits a polynomial-time solu-
tion that can be computed in seconds even for hundreds of provi-
ders, and we demonstrate empirically that it performs as well as the
optimal in typical scenarios. In particularly challenging settings,
we show that it still achieves 97% or more of the optimal.

Categories and Subject Descriptors
1.2.11 [Al]: Distributed Al—multiagent systems

General Terms
Economics, Reliability
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1. INTRODUCTION

Increasingly, participants in large distributed systems are able to
discover and automatically procure the services of others. This al-
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popularity in a large range of application areas, including Grids,
peer-to-peer systems, and cloud and utility computing [2, 11, 4].
Despite its benefits, flexible service procurement poses new chal-
lenges that have not been addressed satisfactorily by current re-

§earch. In particular, as services are offered by external pnavide

that are beyond the consumer’s direct control, their execution time
can be highly uncertain, due to concurrent access by other con-
sumers, hardware or network problems and the provider's schedul-
ing policies. This uncertainty becomes a critically important issue
if the task needs to be completed by a certain deadline.

As a result, a consumer needs to make appropriate decisions
about which services to procure, balancing the probability of suc-
cess with the overall cost. In particular, instead of only procuring
the service of a single provider for a particular task, the consumer
may benefit by redundantly procuring services from multiple pro-
viders (either simultaneously or sequentially). Furthermore, be-
cause service providers are inherently self-interested agents, they
may choose to mis-represent their capabilities if this promises to
increase their profits. For instance, a provider may exaggerate its
speed in order to entice potential customers to procure its service,
or it may inflate its costs to elicit higher payments. In these cases,
consumers may end up procuring unsuitable services from provi-
ders who are unable to complete the task in a timely or effective
manner. To address these challenges, in this paper we consider a
generic procurement scenario with service execution uncertainty,
in which multiple services can be obtained dynamically and redun-
dantly. Furthermore, we apply mechanism design to incentivise the
providers to truthfully reveal information about their costs, as well
as their quality of service.

A number of related papers apply mechanism design to service
procurement with execution uncertainty. In particular, Porter et
al. suggest a mechanism that incentivises providers to report a truth-
ful estimate of their success probability for a given task [9]. Ram-
churn et al. extend this by considering scenarios where providers
also report on their perceived reliability of other providers [10].
While these do not consider redundancy to increase the consumer’s
success probability, this extension is explicitly examined in [3].
However, all of these papers only consider the success probabil-
ity, and nottime-critical tasks. In contrast, we explicitly model the

lows service consumers to complete complex computational taskstime component by considering uncertain sendeeations This

on demand, but without the need to invest in and maintain expen-
sive hardware. Already, such a service-oriented approach is gainin
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model is much richer, as it allows additional services to be pro-
cured dynamically over time. Uncertain durations are investigated
in [12], but that work assumes that the duration distributions are
known and proposes mechanisms for eliciting information about
the costs of providers only. Furthermore, these mechanisms are not
efficient, unlike those presented here. However, since calculating
the optimal outcome is often intractable, here we additionally con-



sider, for the first time, how to find approximate solutions while 2.1.2 Service Providers

maintaining the economic properties of the mechanism. - As service completion times are generally uncertain, w&ldbe a

In more detail, this paper extends the state of the art in the fol- random variable describing the execution time of providerhere
lowing ways. First, we show that the well-known Vickrey-Clarke- e assume that Proly; < 0) = 0. This is the time from invoca-
Groves (VCG) mechanism can be applied to our procurement set-tion to completion and includes any time needed for pre- and post-
ting to elicit costs when the duration uncertainty of service provi- processing, queueing and data transfers. The random vari&bles
ders is known, but that this mechanism breaks down if this is not for ; ¢ M are distributed according to the cumulative distribution
the_ case. We then introduce our noglecution-Contingemech- ~ functions F;(t), whereF;(t) = Prol(X; < t) is the probability
anism, where the payments depend on the actual task completionyhat the task is successfully completed at mtdsne units after in-
time, and show that this mechanism is incentive compatible in ex yqcation. In the following, we also refer #; as agent’s duration
post implementation w.r.t. reporting the costs as well as duration fynction Given the duration functions, and a stratggywe can
uncertainty, and is individually rational. However, for these eco- calculate the probability that task T is completed by a certain time.
nomic properties to hold, the mechanism requires the solution to Tg dg so, we lef{, = min;e (1, ny (£t + X5, ) denote the random
be calculated optimally and breaks down in the case of heuristic yariable describing theverall completion timef the task. Then,

search algorithms. Now, since finding the optimal is a computa- the probability that the task T is completed by a certain tirige
tionally hard problem that is intractable in large settings, we show

how we can approximate the solution while maintaining the prop- "

erties of the mechanism. In particular, we provide a technique for Prob(X, <) = Prob (U Xy St ti) @)
finding the solution in polynomial time, which typically takes only =1

seconds, even in environments with hundreds of service providers.in our empirical analysis we will assume that the distribution func-
Although we also prove that this approximation can be arbitrarily tions of different providers are independently distributed, in which
far from the optimal in theory, we evaluate it empirically and find case note that:

that it performs as well as the optimal in typical procurement sce- n
narios. Furthermore, even in particularly challenging settings, the Prob(X, <t) =1— (1 - F,(t - ta)). )
approximation achieves 97% or more of the optimal. i=1

Our paper is structured as follows. In Section 2, we introduce the However, we emphasise that the theoretical results are more gen-
procurement problem and show how to find an optimal, dynamic eral, and also hold, for example, if the distributions are correlated.
procurement plan using redundancy. In Section 3, we then consider On execution, providef incurs a cost;, and to compensate a
the mechanism design problem, as well as a polynomial-time solu- provider for this cost, each providére M receives a payment,
tion for approximating the solution. In Section 4, we empirically which is given by transfer functions;. These transfers are de-

evaluate our approaches and, finally, Section 5 concludes. termined by gprocurement mechanisfdiscussed in detail in Sec-
tion 3) and could depend on the actual outcome (i.e., on the set of
2. PROBLEM DESCRIPTION providers actually invoked and whether or not the task succeeded),

In this section, we first formalise the problem and introduce all as well as the procurement strategy. Finally, due to the inherent un-
relevant terminology (Section 2.1). Then, we show how to find an certainty in the executions outcome, we assume that all participants
optimal procurement strategy with redundancy (Section 2.2). aim to maximise their expected utiligyrior to executing strategy

p, which is given by:

2.1 Modd E E 1 — Prob(X, < t,(i 3
We consider a single service consumgmwho would like to com- [ui(p)] = Elrilp] = ei - (1= Prob(X, < #,(i))),  (3)
plete a task". The consumer derives a vallie € R7 if the task whereE[7;|p] is theexpected transfeto provideri andt,(2) is its
is successfully completed within a given deadlitec R*, and0 invocation time €, (i) = oo if 7 is not inp).

otherwise. Furthermore, we assume that thereraservice provi- - ]
ders, given by the se¥/ = {1,...,m}, which can complete the =~ 2.1.3 Consumer’s Utility and Social Welfare

task on the consumer’s behalf. The consumer can invoke a pro-we define the consumer's utility as the difference between the value

videri € M at any time in the interval0, D]. In particular, the it derives from the task and all transfers it pays out, resulting in an
consumer may have multiple services running concurrently for the expected utilityof:

task and the valu¥ is obtained if at least one of the services com-

pletes within the required time. We assume that, once invoked, the Elua(p)] = V- Prob(X, < D) — Z Efrile) “)

provider remains committed to the task until it is completed (pos- e

sibly beyond the deadline). Thus, a service cannot be interrupted. ~ As is common in the mechanism design literature, we are inter-
ested in choosing a strategy which maximisesgbeial welfare

2.1.1 Procurement Strategy which is the sum of all utilities that agents derive in the system.

Given the above setting, we are interested in finding a procurementHowever, since the actual completion time is unknown until execu-

strategyp, which specifies a plan that determines which providers tion, we need to consider tlexpectedsocial welfare when select-

should be invoked and when. We den@téo be the set of all valid  ing a strategy, which is given by:

strategies, and compactly represent each strategy by a yeetor

((51,t1), ..., (Sn,tn)) € P with n < m, where each element Elw(p)] = Elua(p)] + Z Elui(p)]

represents the invocation tinte € [0, D] of a providers; € M. eM

Importantly, a provides; is only invoked at time; (and incurs cost

¢s,;) if no provider has so far completed the task. Without loss of

generality, we assume that < t; 11 (i.e., elements of the vector

are ordered by their invocation time), and+# s; if ¢ # j. We use Note that the transfers do not appear in this equation since these

p = ) to denote the case where no provider is invoked. simply redistribute the wealth between the agents.

n (5)
=V -Prob(X, < D) = > ¢, - (1= Prob(X, < t;))

i=1



2.2 Optimal Service Procurement distributions but not the costsand then proceed to a setting where

As noted above, we are interested in mechanisms that choose théve need to elicit both duration distributions and costs. Then, in

optimal procurement strategy’, which maximises the expected sectlon.3.4 we show how to use approxmqte solutions such that

social welfare, i.e.p* = argmax,_, E[w(p)]. To solve this, we computing thg payments becomes_ computatlor_lally tractgble, while

assumefor now, that we have full information about the providers’ ~ at the same time retaining the desired economic properties.

costs and duration functions, as these are required for calculating —_— .

the expected social welfare, as shown in Equation 5. In Section 3, 31 Preliminaries

we will then consider settings with private information. In the following, we denote the reported costs and duration func-
Now, as described in Section 1, a key feature of the optimal strat- tions revealed to the mechanismyand ;. We leté = (é1, . . .,

egy is that it often includes multiple providers that are invoked ¢ém) be the reported costs of all service providers, and ddfine

dundantlyat different times to complete the task. This redundancy (Fl, o Fm> analogously. As is standard, we use the notation

allows the consumer to mitigate the uncertain behaviour of single ¢_, = (é1,...,&_1,¢41,...,¢m) to denote all cost reports ex-

providers and thereby derive a high probability of success. Un- cept from provideri (and £_; is, again, defined in a similar man-

fortunately, including redundancy leads to a difficult optimisation ner). Thus, we sometimes write= (¢;,¢_;) and " = (£}, F'_,).

problem, because it involves selecting a suitable subset of provi-  Gijven the information announced by the service providers, it is

ders as well as establishing the optimal invocation times for each possible to evaluate different procurement strategies. For example,

of these. Although solving this problem is not our main focus here, \ve let E[w(p)|¢, £] denote the expected social welfare of procure-

we briefly outline how this has been addressed in [12], as we will ment strategy given the reports of the providers, afigw (p)|c, F]

use that algorithm in our evaluation (Section 4). is the true expected social welfare. The optimal procurement strat-
In particular, the problem can be simplified by first identifying  eqy, givene and £, is p* (¢, F') = argmax op Elw(p)|é, F). If

the optimal invocation times of givensequence of service provi- e expected welfare and optimal procurement strategy are com-

ders. Here, it is possible to derive a simple analytical solution when pyted based on the same information, we will typically abbreviate

making certain assumptions about the duration functions of provi- this asE[w(p* (¢, F))] = E[w(p* (¢, F))|¢, F]. Finally, we will

ders. More specifically, if it is assumed that service durations are . 2

. L i i o usep*(é_;, F_;) = argmax,.p . Elw(p)|é—;, F_;] to refer to
exponentially distributeld then the optimal invocation times can the optimal procurement St’r’gég"y if providehad never existed

be quickly _compu@ed using backward_s induc_tion (noting that it is (whereP_; is the set of all strategies that do not contgin
always optimal to invoke the first provider at time= 0).

As this computation can be done efficiently, itis then feasibleto 3.2  Unknown Costs, Known Distributions
use a branch-and-bound algorithm to find the optimal sequence OfWe first show that, when the duration probability functio,
prowdgrs. This a_Igorlthm starts by searching all possml_e sequences, publicly known. we can apply the well-known Vickrey-Clarke-
of prow_ders (\.NhICh grows faster than exponentially witf), but Groves (VCG) mechanism [7] to our procurement setting. This
then quickly d_|scards "'?“ge p_arts_ of_the search space that are I(novmmechanism proceeds as follows. Using the reported costs and the
to be sub-optimal. Doing th's. significantly redyces the Seamh. ef- known duration functions, the consumer finds the optimal procure-
fort, compared to an exhaustive search, and it can solve medlum-ment strategyp® (¢, F'). Then, before executing’ (¢, ), the con-
sized problem with around 12 providers in less than a second and gy (6 1), ! e

20 providers in minutes. However, whem becomes larger than sumer computes and pays each service providen/ a transfer:

around 25 providers, then it quickly becomes infeasible to use the i = Elw_i(p" (&, F))] = E[w(p” (6, F-3))]. (6)

branch-and-bound approach, because its performance can still be

exponential or worse. For such settings, a greedy heuristic has been he second term of the transfer is the expected social welfare of the

proposed that is not optimal in general, but that has been shown tooptimal procurement strategy if providédid not exist. The first

achieve 99.88% of the optimal in experiments [12]. is the expected social welfare obtained by the optimal procurement
In the rest of this paper, we will make no further assumptions Strategyp* (¢, F), excluding the reported cost of provider

about howp™ is found, except that we have some algorithm to com-

pute it, given the performance characteristics of the providers. As  Elw—i(p" (¢, F))] =V - Prob(X (e, ry < D)—

this information is likely to be private in realistic settings, we now n
describe how providers can be incentivised to reveal this. > s (1=Prob(X,eer) < t5)) (7)
J=1j#i

3. MECHANISM DESIGN ) ~ We emphasise that, when computiBiw_; (p* (¢, F))], only pro-

So far we have asserted that the consumer has all the informationyideri’s cost is ignored, but the provider is not removed completely
available about the providers’ costs and duration functions in order from the social welfare. In particular, providés existence in

to compute the optimal procurement strategy. Here, however, we the procurement strategy may affect the probability of success and
consider the situation where this information needs to be elicited, therefore the consumer's utility, as well as that of other providers,
and we would like to design transfers such that each provider max- since it may influence whether or not they are invoked.

imises its expected utility by truthfully reporting this information. By defining the transfers for each service provitlas was done
That is, we would like the mechanism to leentive compatible in Equation 6, it is straightforward to show that service provider

In addition, since participation is voluntary, the mechanism should Mmaximises its expected utility by truthfully reportiig = c;. To

award the providers with a positive utility, at least in expectation. this end, letE[ui(p"({¢i, é—i), F'))|ci] be service providers ex-
That is, the mechanism should bedividually rational To this pected utility when all other service providers repart, provider

end, we start by considering the case where we know the duration 2The duration functions may be obtained from past or shared ex-

— o _ - periences, for example from using a trust or reputation system, or
'This is a common assumption in such settings. More specifically, simply given by the provider.

it means that the providers’ duration functions are givedhy) = 3Note that, in this case, this is also tbepected transfesince the
1 —e ' where); is a rate parameter. payment does not depend on the actual outcome.




i reportsé; and its actual cost is;. Then: that this mechanism is incentive compatible and individually ratio-
o nal, and also that providers no longer have an incentive to decommit
Elui(p™ ({6, e—i), F))les] = (addressing the first problem identified in section 3.2).

7; — ¢; + (1 — Prob(X )« 8: 8 : <t; . )
( o> Xpr (er-0,m) ) 3.3.1 Failure of the VCG Mechanism

= Elw_i(p"({&,8-:), F))|e—i, F] — E[w(p" (é—i, F-i))] : L . ) .

(1= Prob(X e 1o oy < 1)) Consider the VCG mechanism, introduced in Section 3.2, with the
o L “““C—’f’ )= A modification that each provideit,is asked to report both its cost,

= Elw(p*({&, e—i), F))l{ci, ¢—i), F] = Elw(p*(¢—s, F—;))] (8) and its duration probabilityf;. The transfers for this mechanism

. . . i are calculated as follows:
Sincep* (¢, F') is, by definition, the procurement strategy which

maximisesE|[w] given reports?, provideri can optimise the first 7 = Elw_i(p" (&, F))|¢-i, F] — Elw(p"(¢—i, F-3))]  (9)
term from its perspective by reportirig = ¢;. As for the second
term in Equation 8, providei has no influence on this term, no
matter what the revealed cost, since this is based on a procuremen
strategy where provideris excluded. Therefore, the service pro-
vider is best off revealing its true cost if it wishes to maximise its
expected utility, irrespective of the reports of other agents. That is,
the mechanism is incentive compatibledominant strategie§.e.,
strategy-proof). In addition, note that the expected utility is always
positive, and therefore, the mechanism is also individually rational. ~ ExampLE 1. For the sake of simplicity, suppose that provider

While this mechanism displays the desired properties, it has two ; only misreports its duration distribution and that all other provi-
weaknesses. First, the mechanism is individually rationekjyec- ders report truthfully. Also suppose that(c, F') = ((i,0)). That
tation only, and notpost-executionndividually rational. That is, is, given the trueF;, the optimal procurement strategy is to only
for particular instances, upon executing the procurement strategy,invoke provideri and to do so without delay. Now, suppose there
the incurred costs may be greater than the transfers, resulting in aexists an alternative distribution?, such thatp*(c, (F/, F_;))
negative utility for the provider. Furthermore, upon learning this,a = p*(c, F) = ((i,0)) (i.e., the strategy remains unchanged) and
provider maydecommifi.e., refuse to attempt to execute the task F/(D) > F;(D) (i.e., the probability of success by the dead-
or delay the task indefinitely) and instead forgo the transfers. This line is higher). Clearly, since an increasing probability of suc-
is because the transfers are calculated in expectation, and are nogess increases the consumer’s utili§w(p*(c, (F}, F_;))] >
based on what occurs in practice. Elw(p*(c, F))]. Italso holds thatE[w—i(p" (¢, (F}, F-:)))] >

The second weakness which arises is the computational burdenE[w_, (p*(c, F))], and so the transfer; is increased when report-
it places on the consumer. The consumer must compute the optimaling F; instead of F;. Due to the fact that reporting”, has no
procurement strategy when considering all providers as candidatesimpact on the probability of being invoked (i.e., the allocation re-
and then the optimal procurement strategy as each provider is re-mains unchanged), provideis better off doing so.
moved from consideration. This problem is further exacerbated by
the fact that the consumer has limited computational power to start  In the above example, the providers have an incentive to misre-
with; that is why it is procuring services from the providers. While Port their distributions as this will increase therceivedexpected
an approximate algorithm using a greedy heuristic was proposedutility of other agents in the system, and thereby increase the per-
for handling settings with large number of providers (as described ceived expected social welfare. This, in turn, leads to an increase
in Section 2.2), it has been well established that many mechanisms,in the transfers. In this particular case, the provider was able to in-
including VCG mechanisms like ours, may not be incentive com- crease the perceived expected utility of the consumer by increasing
patible if the outcome selected is sub-optimal and does not max- the probability of success. However, it is equally possible to con-
imise social welfare [8f. Therefore, heuristics and approximation ~ Struct examples that increase the expected utility of other providers.
algorithms must be carefully designed in order to ensure that the ~ Technically, the VCG mechanism fails here because the expected
mechanism maintains the desired strategic properties. utility of an agent (either the consumer or one of the providers) de-

To this end, in the next section, we investigate alternative solu- P€nds not only on the procurement strategy, but also on the private
tions which address both the computational overhead and the inceninformation of other agents in the system (in this case, the infor-
tive to decommit, while maintaining incentive compatibility. We Mmation about the duration functions). Such settings are known as

also now consider settings where both the costs and durations ofsettings withinterdependent typg$], and it has been shown that,

As before, provideri has no influence on the second term of
he transfer function, since this is the expected social welfare that
ould have been achieved if providehad not participated in the
mechanism in the first place. However, we now show, by example,
that a provider can improve its transfer by misreportign such
a way that the first term of the transfer is increased, thus resulting
in higher expected utility for the provider.

services are private information. in general, in situations where agents have interdependent types, it
is impossible to design a mechanism which ensures that the chosen
3.3 Unknown Costs, Unknown Distributions outcome maximises social welfare and is incentive compatible in

In this section, we relax the assumption that the duration distri- dominant strategies (see, for example, [5]). Therefore, we need to
butions are known, and consider mechanisms which need to elicit Make & concession on one of these properties and so, to this end, we
both the distributions as well as the costs. To this end. we first show Introduce a mechanism that still maximises social welfare, but uses
that the VCG mechanism no longer exhibits our desired properties & Slightly weaker solution concept, the ex-post equilibrium. We
and, in particular, providers have an incentive to misreport their du- Make this particular choice, because we believe itis still a very nat-
ration functions. We then introduce a modified mechanism, which ural s_,olutlon concept, and, in fact, it is often regarded as a practical
we refer to as th&xecution-Contingent VC@&echanism, where ~ Solution concept [1].

the transfers are contingent on the actual execution of the procure- 3.3.2 Execution—Contingent VCG

ment strategy and on whether or not the task succeeded. We show " ) i o
In this section, we introduce a modification of the VCG mecha-

“Intuitively, this is because an agent can misreport its information nism, where the transfers made to the service providerscarin-
in order to try and manipulate the approximation in its favour. genton the outcome of the execution of the procurement strategy.




We show that this modification results in a mechanism which is
able to elicit both the costs and the duration distributions from the
service providers.

As before, each service providérjs asked to report its cost;,
and its duration distributionZ;. The consumer then finds the op-
timal procurement strategy; (¢, F'), andupon completion of exe-
cutionand once the outcome is known (i.e., whether or not the task
was completed successfully before the deadline and which provi-
ders were invoked), the transfers of the providers are determined.
LetZ, denote theset of invoked providersThen:

|

Note that, when the task fails, transfers are actually negative (mean-
ing that the providers have to pay a penalty). However, to ensure
individual rationality, payments need to be positimeexpectation

To this end, we calculate thexpected transfer@.e., before execu-

tion of the procurement strategy) as in Equation 7 by taking into
account the probability of success and the probability of a provider
being invoked (and thus incurring the cost), which gives:

V- EiGIp*(a PO E[w(p*(é_;, F_;))] if succeeded
— Zjerp*(é MG Elw(p*(é—s, F_;))] otherwise

E[ri] = Ew_i(p"(&, F))|é—i, F] = Elw(p*(¢—i, F3))] (10)

PROOF Assume that all service providers hututhfully report
their costs and duration distributions. That is, they reportand

F_;. Then, if provider reports¢; and 3}, its expected utility is:
Elui(p* (¢4, ¢—4), (Fi, F3)))] =
Elw_i(p" ((éi,c—i), (Fi, F-3)))le—i, F] — Blw(p* (c—i, F—3))]

i (1= Prob (X, e o qpyp iy SH))
= Elw(p*({éi,c—i), (Fy, F_3)))le, F] — Elw(p*(c—i, F_;))]

First, we note that the second term on the RHS is independent
of provideri’s reported cost and duration distribution. Thus, there
is nothing that providei can do to change this value, given the re-
ports of the other providers. Secondly, the first term of the RHS
is computedafter the execution of procurement strategy While
the selection op* depends on the reported cost and duration prob-
abilities, the actual outcome upon execution depends on the true
distribution durations. As a result, note that:

E[w(p*(<ci76*i>7 <Fi7Ff’i>)|c7 F] >
Elw(p" (&, c—i), (Fi, F-3)))le, F]

by definition of p*. Thus, if all other providers truthfully report
their costs and duration distributions, provides also best off re-

To see how Equation 10 differs from the previous mechanism, vealing its information truthfully, since this will result in the mech-
note the subtle but important difference between the first term of anism selecting the procurement strategy which optimises the so-
this equation and the same term of the transfers for the regularcial welfare in expectation. This, in turn, leads to the expected
VCG (given by Equation 9). Whereas the expected transfers in utility maximisation of providet.

Equation 9 are calculated basedreporteddistribution functions, The Execution-Contingent VCG mechanism is also individually
these are now based on what actually happens, which correspondsational, sinceE|[w(p*(c, F))] > Elw(p*(c—s:, F—;))], implying
to the true distribution functions (hence the conditioning on the true thatEfu;(p*(c, F'))] > 0. O

istribution ). At th ti h th timal -
distribution ) © same ime, Nowever, the optima’ procure In Section 3.2, we identified two main drawbacks of the VCG

ment strategy is determindskforeexecution, and therefore this is : . . .
still calculated based on the reported distribution functions (in con- mechanism: the computational requ_lrement§ to calculate the Opt"
trast to the case where we assume complete information about themal _strategy, and t_he fact that service prowders_ may have an In-
distribution functions — see Equation 6). Hence, the Execution- centive to decommit or delay t_axecutlon. Inte_restlnglyZ the latter is
Contingent VCG mechanism is not incentive compatibleami- no Iopger a proplgm when using the Exe'cutlon.-.Contlngent V.CG’
nant strategiegwe omit a formal demonstration due to space re- despite the p055|b|I_|ty that_th_e post-execunon_ L_mll_ty of the provider
strictions). We will, instead, try to achieve the following, weaker may become negative. This is becausg the ut|||t.y is calculated ba;ed
notion of incentive compatibility: on \(vhat actually happ_ened, and any increase in the post-execution
social welfare results in the same increase in transfers. Therefore,
there is no need to impose additional penalties or a deposit to en-
force the schedule. Instead, providers are always incentivised to
execute the task and to start at the scheduled time. The first issue
relating to the computational overhead of the standard VCG still
arises with the Execution-Contingent VCG, as it also needs to com-
pute the optimal procurement strategy. To address this problem, in
the next part, we investigate how we can approximate the optimal
solution, while maintaining the properties of the mechanism.

3.4 Approximate Mechanism Design

As mentioned in Section 2.2, computing the optimal procurement

strategy becomes intractable as the number of available providers
increases, and this is of particular importance in our domain, as the
consumer has limited computational resources. However, as dis-
cussed in Section 3.2, replacing the optimal procurement strategy
with a sub-optimal one obtained through use of a heuristic or ap-

proximation algorithm, can destroy the incentive properties of the

underlying mechanism.

DEFINITION 1 (EX POSTINCENTIVE COMPATIBILITY ).
A mechanism igx post incentive compatiblé, for each provider
i with ¢; and F;, and for all possible cost functions and duration
distributions of other providers;_; and F_;, and for allé; # ¢;
andFi 75 Fi,

Elui(p* ({ci, c—i), (Fi, F-i)))] > Elui(p” ({1, c—i), (B, F-i)))]-

In words, a mechanism is ex post incentive compatible, if, when
all service providers but report their cost and duration distribu-
tions truthfully, then no matter what this revealed information is,
provideri maximises its expected utility by truthfully reporting its
own cost and duration distributions. This is a weaker notion of
incentive compatibility than incentive compatibility in dominant
strategies, since truthtelling by providerelies on all other pro-
viders also reporting their information truthfully. However, it is
stronger than Bayesian incentive compatibility, because it does not
depend on prior knowledge of the other providers’ private infor-
mation and because truthtelling is a Nash equilibrium, even when ; : .

) L Given this, there are several ways to address the computational
types are revealed after the allocation. Hence, itis often regarded as

a realistic solution concept in the mechanism design literature (see,pmblgm' In [12], for e_xqmple, alterna_nve, S'”?p'ef mechanisms
) . : . were introduced for a similar setting which required less computa-
for example, [1] for a detailed discussion). We now show that: . . -
tion on the part of the consumer. However, these mechanisms relied

THEOREM 1. The Execution-Contingent VCG mechanism is: ©On complete information about the distribution functions, and can-
(1) ex post incentive compatible, and (2) individually rational. not easily be extended to a setting where this information needs



to be elicited. Furthermore, these mechanisms resulted in a low In the case that finding the optimal procurement strategy does
efficiency (when no further knowledge about the providers was as- not allow for a closed-form analyical solution, another appoach is
sumed, the efficiency ranged between 84 and 86 percent of the op-to discretise time Let T' denote the total number of discrete time
timal). For these reasons, we now propose an alternative approactslots before the deadlin®.® Now, given an ordered set of candi-
for reducing the computational burden on the consumer. date providers, each of these providers has at AMgsbssible in-

To this end, we note that Nisan and Ronen showed that it is vocation times, except for the first provider who should be invoked
sometimes possible to have mechanisms which knowingly use sub-immediately (as mentioned in Section 2.2, it is always optimal to
optimal outcomes [8]. They proposed that instead of changing the invoke the first provider with no delay). Since there are at most
algorithm for finding the optimal outcome (in our case, the optimal candidate providers, finding the optimal invocation times therefore
procurement strategy), one could restrict #a of possible out- requires searching through less ti&h ! combinations. Together
comesand then run the optimal algorithm on this restrictecPdet. with finding the optimal set of ordered candidate providers, this
the following, we apply this approach to our procurement problem, results in a time complexity ad(m™” - 7"~ 1).
and show that the Execution-Contingent VCG mechanism is incen-  While these approximations have a desirable computational com-
tive compatible for appropriately restricted outcome spaces. Fur- plexity, they may result in sub-optimal solutions. In the following,
thermore, we show that this approximation admitsoynomial- we analyse more formally how far they can be from the optimal in
timesolution to calculate the optimal (within the space of allowable the worst case.

outcomes) procurement strategy. 343 Worst-Case Performance

3.4.1 EC-VCG Approximation As our approximation restricts the set of solutions, it can yield a
Letn denote the maximum number of service providers that can be solution that is significantly worse than the optimal — especially

selected as part of a procurement strategy, an@.jet {p € P : when the optimal strategy,”, contains many more thamn provi-

|p| < n) represent theeduced sebf strategies. When = 1, the ders. In fact, we show that it can be arbitrarily far from the optimal.
reduced set of strategies contains only procurement strategies with )

no redundancy, while iff = m, thenP, is the full procurement THEOREM 3. Foranyn > 1, there exists amn, F" andc, such

strategy space. We propose applying the Execution-Contingentthat t.he ratio between t.he expectgd spcial welfare of the optimal
VCG mechanism, but selecting only procurement strategies from Solution and the approximate solution is at leastor anyb > 1.

the setP,,. We can show that this restricted version of the Execution- Thatis:

Continggnt VCG mechanism is i.ncentive compatib!e and in.divid- Elw(p*(c, F))] > b (11)
ually rational under the assumption thats chosen without using argmax,cp, Bw(ple, F)] =
information about the providers (i.e., before the mechanism starts).

] o PROOF We prove this by showing how to choose F' andc, so
THEOREM 2. Foranyl < n < m, if the allocation is given by {hat the above holds. For simplicity, we assume here that durations

arg_maxgeﬁnhE[w(plé, ], th? Execution-Contingent VCG mech-  of gifferent providers are independent, as shown in Equation 2. For
anism with the reduced set of procurement strateigs s incen- all i, we lete; = 0 and Fy(D) = 1 — f,with 1> f > (1 — %)%.

tive compatible and individually rational. Clearly, as providers are free in this example, it is always optimal

PROOF. Sincer is independent of any of reports, no provider o invoke all available providers at tinte= 0. Given this, we can
can increase the social welfare, and hence its transfers, by misrenow choosen, so that Equation 11 holds:

porting. Therefore, the proof follows directly from Theorem 1.1

o< E[w(p*(c.F))]
In the following section, we consider the computational proper- - P Blw(ple,F)]
ties of finding an optimal strategy in the restricted solution space. & b < % (12)
. . . In(1—b-(1—f"))
3.4.2 Polynomial-Time Solution AU

We now show that, once the paramejes set, then finding the op- ~ Due to our initial constraints fof, this can always be satisfied[]

timal procurement strategy iR, becomes polynomial in the num-

ber of possible service providers,. We illustrate this by consider- To conclude, we have shown that, through limiting the number
ing two different scenarios. First, we consider the situation where Of possible outcomes, we can obtain a solution which is polynomial
the optimal invocation times for providers can be found analyti- in the number of service providers, while maintaining the desired
cally, given a set of providers and their ordering in the procurement properties of the mechanism. However, we have also demonstrated
strategy (such settings were discussed in Sections 2.2). The probzthat, in general, this approximation can be arbitrarily far from the
lem of finding the optimal procurement strategy then reduces to the optimal. Nevertheless, we believe that, in realistic settings, where
problem of finding the optimal ordering of the providers, among providers are generally costly, the benefit of increased redundancy
all sets ofy providers. This is equivalent to searching through diminishes with the number of providers. Therefore, an approxi-
all possible ordered subsets of st of sizen, which has size ~ mate solution may often be close to the optimal, even whés
m!/(m—n)!. Once the optimal procurement strategy is found, then chosen to be significantly less tham. To this end, in the next

the transfers for all providers must be computed. If a provider is not Section, we evaluate our approximation empirically.

in the optimal procurement strategy then their transfer is automat-

ically set to zero, and thus we only need to explicitly compute the 4. EMPIRICAL EVALUATION
transfers for at mosy providers in the optimal procurement strat-  In this empirical evaluation, we are primarily interested in the effect
egy. The overall cost of this ig- (m — 1)!/(m —n)!, which results of varying the approximation parameteon the overall expected

in the overall complexity o (m™) for running the mechanism. social welfare. Although we showed that the approximation can

®In particular, if an algorithm isnaximal-in-range then VCG- Note that time slots are not required to be equally spaced. How-
based mechanisms, applied to the restricted problem, are incentiveever, it is important that they are satlependentf the providers’
compatible. See [8] for details. reports. Otherwise, the incentive properties may no longer hold.
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Figure 1: Performance of approximate mechanism.

be arbitrarily far from the optimal, we believe that it can achieve (depending ornm). Beyond this, the approximation quickly starts

a good performance in realistic environments, where only a few to perform as well as the optimal. This is not entirely surprising,
redundant providers can often yield a high expected utility. In par- because the long deadline and low value result in a relatively low
ticular, if the approximate mechanism achieves a social welfare that benefit in using redundancy. However, the number of providers

is close to the optimal even for small valuespthen the approx- in the optimal solution is still higher than 2 in most cases (e.g.,
imation is clearly useful in large environments where finding an whenm = 50, the near-optimal solution obtained by the heuristic
optimal solution would be intractable. algorithm contains more than 5 providers on average).

In addition to the social welfare, we will also investigate the run- In the critical setting, we note that a slightly highgris needed

ning time of our proposed mechanism, to verify that it is feasible to perform close to the optimal. Herg,= 3 results in80 — 93%
even when there many providers, and we will briefly discuss how of the optimal,; = 4 leads to88 — 99% and byn = 5, 93 — 99%
the choice of) affects the consumer’s utility. We start by describing is reached (again, dependingor). Forn = 7, the approximation
our experimental setup, and then consider all performance metrics.achieves)7% or more in all settings. This is due to the fact that

) now a higher level of redundancy is required to complete the task
4.1 Experimental Setup successfully within the deadline. We also note that, as intmal

In our experiments, we assume that the durations of providers areSetting, a highem leads to a slightly lower relative performance for
independently and exponentially distributed. For each experimen- the same;. This is because settings with more providers inherently

tal run, we generate a provider randomly by drawing its egsgnd offer better opportunities for redundancy.

rate parameter),, independently and uniformly at random from ~ Overall, the results are highly promising. In all cases, a rela-
the interval[0, 1]. To consider different environments, we examine  tively low value forn, compared tan, leads to a social welfare that
two Separate scenarios — where the consumer hemraal task is close to the Optlmal (Or the near-optimal heuristic for |an@9r

with a low valueVhoma = 2 and a long deadlin®noma = 2; and a This indicates that our approximate mechanism is feasible for com-
more challenging one, where the consumer hastial task with plex environments where computing the optimal allocation would
a high valueVziica = 8 and a short deadlinBgiical = 0.5. These be intractable. Next, we examine how quickly a solution for this

two scenarios were chosen as representative of the general trend@Pproximation is found in practice.
our mechanism displays in different environments. In particular, in ; ;

the first scenario only a few providers will be included in the op- 4'3 R_unnmg Tlme . . .
timal solution (due to the relatively low uncertainty in meeting the 10 investigate the running time of our approximate mechanism in

long deadline), while, in the second scenario, there are often tenPractice, we record the total time needed to compute the optimal al-
or more providers in the optimal strategy, to ensure a high successIocat_lon and all transfe_rs for the se_ttlngs described above. In more
probability despite the short deadline. We also consider environ- detail, we use a Java implementation of the branch-and-bound al-

ments of different sizes, witm € {10, 25,50,100}. Finally, in gorithm described in Section 2.2, discarding solutions with more
order to ensure statistical significance, we repeat all experimentsthans providers, and we record its run-time on an Intel Pentium
1000 times and show 95% confidence intervals. Core 2 Quad 2.83 GHz with 4GB RAM and running Windows 7.
In the following, we start by examining the expected social wel- ~ The results are shown in Figure 1(b) and display some encour-
fare achieved by our approximate mechanism. aging trends, indicating that the run-time of the approximate mech-
anism is small for most values af In fact, in all but two of the
4.2 Social Welfare settings tested here, the mechanism completes in less than a minute.

For example, even for theritical task withm = 100 andn = 5,

the allocation and all transfers are calculated in 2.8 seconds on aver-

age (achieving 93% of the optimal). Moreover, for smaller settings,

the mechanism often takes less than a second to complete. The

longest average run-time recorded is just over 4 minutes=(100,

n = 7 for the critical task, which achieves 97% of the optimal).
Although we do not discuss larger settings here for reasons of

"Form = 10, this is obtained by solving the problem optimally. space, we note that the mechanism is still feasible when there are

For larger settings, solving this optimally is infeasible, and so we Several hundreds of providers. For example, when= 200 for

compare the mechanism to the heuristic approach described in Secthecritical task withn = 5, it finds a solution in 10 seconds. When
tion 2.2. This has been shown to be near-optimal [12]. m = 400, this increases to 58 seconds.

Figure 1(a) shows the expected social welfare that is optained by
our approximate mechanism, as a percentage of the optiffiaé
trends shown here are promising, indicating that even ajl@an
result in a good overall performance. In particular, in tleemal
setting, whem = 1, the expected social welfare is alreagty —
92% of the optimal, and when = 2, this increases t67 — 100%
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Figure 2: Consumer’s utility (horizontal lines indicate con-
sumer’s utility in welfare-maximising procurement strategy).

Finally, we now turn our attention to the consumer’s utility when
using our approximate mechanism.

4.4 Consumer’s Utility

So far, we have been concerned mostly with the social welfare ob-
tained by our mechanism. This is because it indicates how well the
available providers are used to complete the task. However, it is
also interesting to consider the consumer’s utility in this setting, as
this is typically lower than the social welfare. This is due to the fact

that the consumer pays providers more than their costs, in order to

incentivise them to be truthful (in the mechanism design literature,
this is commonly referred to as ti&formation renj.
To quantify this loss in utility for the consumer, Figure 2 shows

the consumer’s expected utility, as a percentage of the optimal so-

cial welfare (or near-optimal for largen). For reference, we also
plot the consumer’s expected utility in the optimal (social welfare-
maximising) allocation. We note several interesting trends here.
First, the utility lost as information rent can be significant when

is relatively low. For example, when = 10, then even in the opti-
mal solution, the consumer achieves only 69% of the social welfare
(in the case of theritical task). This is because the payments to
the agents are relatively high, as each makes a large marginal con
tribution (the difference between the optimal social welfare and the
social welfare when removing the agent from the system, which is
how the payment is calculated). However,rasincreases, there
are more likely to be several high-quality providers, thus leading to
lower payments. For example, when = 50 in the same setting,
then the consumer obtains 87% of the social welfare.

The second interesting trend in the figures is that the consumer [4]

generally comes close to its optimal utility with lower values for
n than when considering the social welfare. For example, when
n = 4 for the critical task andm 50, the consumer already
achieves 99% of its utility in the best allocation (while only obtain-
ing 91% of the social welfare). This means that when the consumer
is primarily interested in maximising its own utility, rather than the

order to complete a given task within its deadline. However, to do
this effectively, it needs to know the providers’ costs and success
probabilities over time, which are typically only known by the pro-
viders. In this context, we proposed a novel mechanism that incen-
tivises providers to reveal this private information by paying them
a transfer that is conditional on the actual task completion time. We
show formally that the mechanism is ex post incentive compatible
and individually rational.

However, the mechanism relies on finding an optimal procure-
ment strategy, which can be infeasible in large environments. To
address this, we also proposed a polynomial-time approximate mech-
anism, which retains the same economic properties, but typically
finds a solution in seconds or less, even when there are hundreds
of potential providers. The performance of this approximate mech-
anism can be balanced explicitly with its computational require-
ments by setting the maximum number of services to procure re-
dundantly. We showed empirically that a small value for this pa-
rameter (around 5) is typically sufficient, even when there are many
providers, resulting in a social welfare that is often equivalent to the
optimal in normal settings (and achieves 97% or more of the opti-
mal in particularly challenging scenarios).

In future work, we plan to consider settings with multiple inter-
dependent tasks that are part of complex workflows. Such settings
are common in realistic service-oriented systems, but also present
a more complicated computational problem. We will also exam-
ine scenarios with multiple consumers and more dynamism, where
tasks and agents arrive or depart over time. Again, these occur
frequently in practice and necessatitate the use of more complex
two-sided market mechanisms.
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