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ABSTRACT search [12], weather and tidal surge prediction [11], and monitoring
intelligent buildings [7]. These networks consist of cheap sensors

ith very limited computational capabilities; potentially, they can

e deployed by scattering them from airplanes or ground vehicles.
Taken to the extreme, these sensors could even become the size of
a grain of sand or even dust, in which case they are also referred to
assmartdus{17].

Crucially, because of their limitations constrained computational

resources, these sensors need simple and robust algorithmsfor con
rithm. Crucially, while doing this, our algorithm maximises the trolling various aspects of the network. Now, since centralised con-

sensing coverage achieved by the selected sensing agents, whicH©! Of such aspects is often not possible, and would introduce a

is given by an arbitrary non-decreasing submodular set function. Sl point of failure, the use of agent-based technologies have
We empirically evaluate our algorithm by benchmarking it against been advocated to solve these problems in a decentralised fashion

a centralised greedy algorithm and an optimal one, and show that[15]' In particular, such approaches include decentralised solutions

the selected sensing agents manage to achieve 90% of the cover®" Packet routing [12], efficient prediction of missing data [11],

age provided by the optimal algorithm, and 85% of the coverage 2Nd @ssigning radio frequencies (or, equivalently, time slots for the
provided by activating all sensors. Moreover, we use a simple de- Time Division Multiple Access protocol [1]) to sensors such that

centralised graph colouring algorithm to show the frequency as- Fh‘? number of required retran_smissi_on; due to ipter_ference is min-
signment problem is easy in the resulting graphs; in all considered |m|sfed (and .da;[f]‘. throughput is maximised), which is the problem
problem instances, this algorithm managed to find a colouring in WeN ocusonin | IS paper. ¢ thi bl h readv b d
less than 5 iterations on average. We then show how the algorithm, ow, several aspects of this problem have already been stud-
can be used in dynamic settings, in which sensors can fail or new 1€d in the literature. n particular, the frequency assignment prob-
sensors can be deployed. In this setting, our algorithm provides :em, i‘:"h'%h is often c_as} asdg multl(-jagjenht g(;aphl colourmgf prob-
250% more coverage over time compared to activating all available em, has been extensively addressed by the development of various
sensors simultaneously. message-passing algorithms [5, 6, 13, 1]. However, these algo-
rithms either produce approximate solutions [5, 6, 1], or require
exponential computation and communication [13]. These proper-
ties push these algorithms beyond the limited computational and

In large wireless sensor networks, the problem of assigning radio
frequencies to sensing agents such that no two connected sensor
are assigned the same value (and will thus interfere with one an-
other) is a major challenge. To tackle this problem, we develop
a novel decentralised coordination algorithm that activates only a
subset of the deployed agents, subject to the connectivity graph
of this subset being provably 3-colourable in linear time, hence
allowing the use of a simple decentralised graph colouring algo-

Categoriesand Subject Descriptors

1.2.9 [Computing Methodologies]: Artificial Intelligence—Dis- communicational abilities of micro-sensors, or require a large num-
tributed Avrtificial Intelligencel.2.9 [Computing M ethodol ogies): ber of frequencies to optimally colour the graph, which reduces the
Artificial Intelligence—Robotics: Sensors bandwidth of the network [1].
Therefore, in this paper, we propose a different approach to this

General Terms problem: instead of solving the graph colouring problem in the

] ) ] original sensor network, we develop a novel decentralised coor-
Algorithms, Experimentation, Theory dination algorithm that deactivates certain sensors within the net-

work, such that the resulting connectivity graph is more easily col-

Keywor ds ourable. More specifically, the algorithm constructsiangle-free

graph, which does not contain cliques of size greater than 2. This is
appealing because it is a known result that these types of graphs are
3-colourable [16] in linear time [3]. Equally important, this bounds

1. INTRODUCTION the number of required frequencies, which can be very large for the
Recently, the use of wireless micro-sensor networks has generatedriginal sensor network.

a significant amount of interest in areas such as climate change re- However, this poses a new question: how to select those sen-
sors which should be deactivated to ensure that the resulting sensor
network has maximum coverage? In the literature, the problem of
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For example, the probability of event detection with arbitrary sens-
ing areas, entropy reduction [9] and mutual information [7].

We show that the problem of selecting a triangle-free sensor net-
work that maximises coverage is NP-hard (based on theoretical re-
sults from [10]). Therefore, we develop an approximate algorithm;
it allows sensors to coordinate in a fully decentralised fashion to
build a triangle-free algorithm with high sensing coverage.

In more detail, the contributions of this paper are:

1. We derive a novel decentralised algorithm that activates a Figure 1: The connectivity and collision graph of an example
subset of the available sensors so as to maximise sensing cov-sensor network. Possible direct and indirect collisions are rep-
erage given by an arbitrary submodular set function, subject resented by solid and dashed edges respectively.
to the connectivity graph being triangle-free.

contained within each other’s radio disks; it does not model the

possibility of indirect collisions [1], which occur when two sen-

sorsS; andS; are not contained within each others radio disks, but
there exists a sensok, that is contained in both (see Figure 1 for
an example). When indirect collisions occur, serspwill receive
garbled transmissions fro; and.S;. Therefore, instead of using

C|[S], we consider theollision graphC?[S]:

2. We develop a centralised greedy algorithm based on the no-
tion of submodular independence systems, and derive a the-
oretical lower bound ofl /7 on the approximation ratio of
the algorithm, for any submodular function. This algorithm
acts as a benchmark for the decentralised algorithm in the
empirical evaluation.

3. We develop dynamic counterparts for these two algorithms
that are capable of dealing with failing sensors and new sen-
sors, while ensuring the triangle-free property of the graphs.

Definition 2. The collision graphof sensorsS is the square of
C|[S], denoted byC?[S]. This graph contains an edgs;, S;) if
there exists a path betweghands; in C[S] of at most two edges.
4. We empirically evaluate our algorithm and show that it pro-

vides 90% of the coverage provided by an optimal algorithm,

and 85% of the coverage provided by activating all sensors

(without the restriction on the graph). Moreover, we show

that the frequency assignment problem on the resulting sen-

sor network can be solved by a simple and standard decen-
tralised graph colouring algorithm. Finally, in the dynamic
setting, we show that our algorithm provides 250% more
coverage over time compared to activating all available sen-
sors simultaneously.

By effectively connecting neighbours of neighbours in the con-
nectivity graph, the collision graph models the possibility of direct
as well as indirect collisions. Thus, solving the frequency alloca-
tion problem is equivalent to colouring?[S], which is a known
NP-complete problem. Now, to bound the number of required
colours needed to colour the graph (also referred as the chromatic
number), which can be very large on an arbitrary sensor network,
and also in the interest of keeping the sensors as simple and ro-
bust as possible, we proceed in two steps. First, we wish to find a
set of sensors whose connectivity grapfs] is easily colourable.

The remainder of this paper is organised as follows. In Section 2 More specifically, by this, we mean that the graplriangle-free
we define the problem. In Section 3 we present a centralised and & triangle-free graph is a graph that does not contain any cycles
decentralised algorithm. In Section 4 we extend these algorithms to ©f 1ength 3, or, equivalently, whose maximum clique size is 2. A
operate continually to replace failing sensors. In 5 we empirically 3-colouring of a triangle-free graph is guaranteed to exist [16], and

evaluate this set of algorithms and demonstrate their effectiveness.can be computed inlinear time [3]. This colouring avoids dingct
Finally, we conclude in Section 6. collisions. In the second step we attempt to avoidiadyrect colli-

sions by considering the densmllision graphof this triangle-free
connectivity graph. Simple graph theory shows that this graph is
2. PROBLEM DESCRIPTION guaranteed to b&; minor-free! based on the triangle-free prop-

LetS = {S1,...,Su} denote a set af/ sensors deployed onthe erty of the connectivity graph. By exploiting this property, and

R? plane. The Cartesian coordinates are given by a vegtor applying the famous Hadwiger conjecture [8] we know that the ob-
(wi,yi). Letd(xi,x;) denote the Euclidean distance betwestn tained collision graph is 6-colourableThus, the maximum num-
ands;. Each sensa$; has a radio disk with radius within which ber of colours needed to colour the collision graph of a triangle-
other sensors can receive their transmissions. Consequently sensdtee connectivity graph is 6. In Section 5, we show that this can be
S; can receiveS;'s transmissions iffS; is contained withinS;'s achieved by a simple decentralised graph colouring algorithm.
radio disk: d(xi,x;) < 7. Each sensof; has control over its Besides ensuring reliable communication between the sensors,
transmission radius;, which it set anywhere between 0 and.., we also wish to maximise the sensing quality that the sensor net-

which is the maximum transmission radius for all sensors. Given work provides. For reasons discussed in the introduction, in this

this model, we can constructannectivity graptthat models the  paper, sensing quality is given by a submodular set function:
communication network that exists among the sensors:
Definition 3. A set functionf : 2% — R defined over a finite

Definition 1. A sensorconnectivity graphC[S] of a set of sen- setE is calledsubmodulaiif for A C B C Eande € E, f(A +
sorsS is an directed grapf’[S] = (S, E) in which E contains a e) — F(A) > F(B+e)— F(B).
pair of sensor$S;, S;) if S; can receiveS;’s transmissions. ) ] ) ) o

In more detail, sensing quality achieved by a subsé& isfgiven

Now, to ensure transmissions between two sensors are not comby a non-decreasing submodular functipn 2° — R. Intu-
promised by interference from other sensors, we wish to allocate A K- minor-free graph does not contain the complete graph
frequencies to each sensor such that no two sensors with over-55 3 subgraph, i.e. it contains no cliques larger than 6.
lapping radio disks are allocated the same transmission frequency.2the Hadwiger conjecture states that dify minor-free graph is

However, note that the connectivity graph only moditect col- (k — 1)-colourable. It has been proven for< 6 [14], but in this
lisions, which are those that occur betwegnand S; if they are paper, we assume that the conjecture hold&fer 7 as well.




itively, function f defines the diminishing returns of adding an ex- Algorithm 1 The greedy algorithm for a submodular independence
tra sensor to an existing sensor network. system((E, .%), f)
Thus, the problem we address in this paper is to find &'s&t S 1" [ .=o
that maximisesf(S’) subject toC[S’] being triangle-free. These 2: while E # @ do
sensorsS’ will then form the new sensor network, by deactivating e’ i=argmax.cp f(I +e) — f(I)

sensorss \ . BB
Additionally, we can also consider a dynamic version of this ! IJ.F:eIi e*t en

Noahrw

problem, by taking into account that sensors can fail. One ma- end if
jor cause of sensor failure is battery depletion. In this paper, we 8: end while
assume that radio transmission accounts for the majority of the en- 9: return 1
ergy consumption of the sensor (and thus do not consider the energy
required for sensing). In more detail, sensors have an initial battery

capacityb;, which reduces over time as a result of their transmis- ¢ greedy algorithm computesmximal independesset, which
i — 2 . . . :
sion power as followsAb; = —ri' - Al o is an independent sétsuch that by adding any € E \ I, it be-
In the upcoming sections, we show how, by activating a subset of ¢omes dependent. In other words, no sensor can be added to the
the sensor network such that the connectivity graph is triangle-free, sansor network without introducing a triangle.
we can use greedy algorithms to compute sensor deploynsénts Now, while the greedy algorithm is simple, it has its drawbacks;

with good sensing quality. the main one being that it can perform arbitrarily badly, as illus-

trated by the following example:
3. SENSOR SELECTION ALGORITHMS

In this section, we first present a centralised greedy algorithm with ~ Example 1.LetE' = {A, B:,..., By}, I = {{B1,..., Bu},
theoretical bounds on the solution. This algorithm will act as a {A}}, andf({A}) =n, f({Bi}) = n—¢ f({B1,...,Bu} =
benchmark for the decentralised algorithm that we develop in Sec- (n — €)M. The result of the greedy algorithm Is= A after a

tion 3.2. We then show that both algorithms activate a subset of the Single iteration. Wher/ — oo ande — 0, the approximation
deployed sensors whose connectivity graph is not necessarily con-ratio for Algorithm 1, i.e. f(I)/f(I"), approaches 0. In other
nected. As a result, sensors will not always be able to communicateWerds, for arbitrary independence systems, the greedy solution can
their measurements to a base station. Therefore, in Section 3.3, wee arbitrarily far away from the optimal solution.

develop a decentralised algorithm that attempts to reconnect the

various components of the graph by incrementally increasing their ) i )
ture that can be exploited to obtain a lower bound on the approxi-

communication range. : ; - : . .
Because of the correspondence between the results for the triangl1tion ratio for Algorithm 1. The notion gf-independencés one

free connectivity graph and its collision graph, in the remainder of ©f these [2]:
the paper, we will consider the connectivity graph only.

Fortunately, many independence systems exhibit additional struc-

Definition 6. An independence syste(iZ, .#) is calledp-inde-
3.1 A Centralised Greedy Algorithm pendenif for all A € . ande € E there exists a sd8 C A such

4
Before introducing a decentralised algorithm to this problem, we that such thalB| < pandA\ B +e € J.
will first develop a centralised greedy algorithm based on the notion

) X " N The following is a result in combinatorics that proves a lower
of independence systems from combinatorial optimisation.

bound on the approximation ratio of the greedy algorithm:
Definition 4. An independence systemia pair(F, .#), where ) )
F is a finite set of elements, and is a collection of subsets df THEOREM1 ([2, 10]). Algorithm 1yields d /(1+p)-approx-

such thatifA € .7 andB C A, thenB € .#. Sets in.” are said imation to maximising a non-decreasing submodular set function
to beindependent - subject to g-independence constraint.

Clearly, the set?a e Of Subsets o whose connectivity graph Thus, to obtain a lower bound on the greedy algorithm for the
is triangle-free form an independence system, since every inducedsensor coverage problem, we need to determifte (S, Za -free).
subgraph of a triangle-free graph is triangle-free. Now, since not In order to do so, we need to restrict the problem defined in Section
every subset is equal in terms of sensing quality, we augment these2 slightly. This restriction involves limiting the radius of the radio
independence systems with the submodular funcficghat mea- disks to a constank for every sensot. A set of sensors with a
sures sensing quality: fixed radio rangeR is denoted asr, and the connectivity graph

_ . ) . obtained is called a unit disk graph. This construct allows us to
Definition 5. A submodular independence systisran indepen- prove the following theorem:

dence system together with a non-decreasing submodular set func-
tion f. THEOREM 2. Systen(Sr, Za-free) is 6-independent.

Unfortunately, for a submodular independence system, finding  proor Simple geometry shows that the maximum degree of a
aset/” € .7 such thatl* = argmax;. , f(I) is a NP-hard  triangle-free unit disk graph no larger than 11. L4ebe an valid
problem [10]. Therefore, under the assumption thet RP, there solution (i.e. A € .#). Now, deg(e) < 11 in A + e, otherwise
does not exist a polynomial time algorithm for computifiig As a A ¢ .7. Whendeg(e) = 11, A+ e contains 11 triangles. To break
result, to obtain solutions that scale well with the size of the sensor
network, we have to resort to approximation. One of the simplest be explicitly given. Typically, an oracle in the form of an algorithm
approximation algorithms is the greedy algorithm (Algorithm 1), Or indicator functiorl » (S) = true < S € . suffices.
that builds a solution without backtracking by iteratively adding ‘Whenp = 1, ap-independence system is callechatroid, which
those elements that most improve the solution (with respegj,to IS @ well-known structure in combinatorics.

while simultaneously satisfying an independence constfaint. We will drop this restriction again in our empirical evaluation, and
y fying P show that this has no detrimental effect on the algorithm’s perfor-

3Note that in this algorithm, the independence systémeed not mance.




Algorithm 2 The Distributed Greedy Algorithm fo$;
1: State «+ BAsIC
2: 8B — adj(S;i)
3: Broadcasti, SP)

4: Receive(j, SP)) forall S; € adj(S;)

5

6

7

8

. while State = BASIC do
On random activation
SB — {S| S € 8P A State(S) # DOMINATED }
if 3j:SPNSP # othen

9: Randomly selecf, € SP N SJB
10: Fir < f({S;,Sk})
11: if fjk > f({S“SJ}) andfjk > f({S“Sk}) then
12: State « DOMINATED
Figure 2: Visual representation of the proof of Theorem 2. See %2 elsg”d if
text for explanation. 15: State <+ DOMINATING
16:  endif
each of these, we remoye= [11/2] = 6 vertices fromA. Let B 17:  Send(i, State) to all S; € adj(S;)
denote this set of vertices. Theh\ B + e € .# with |B| < 6, as 18: end while

required. [

See Figure 2 for a visual representation of this proof. In this coordinate with their neighbours to identify the sensors that max-
figure, e is the black vertexB is represented by the white vertices imise coverage within that clique. In more detail, when running
and A is represented by the white and gray vertices. Radio disks this algorithm, each sensst; continually checks whether a pair of
are represented by gray circles. (For ease of exposition, these radisensorg.S;, Si) exist within the same clique, such that the cov-
disks have been scaled by 50%. As a result, links exists within this erage provided bysS;, Sk) is greater than the coverage provided

unit disk graph when the scaled disks overlap.) by both(S;, S;) and(S;, Sk). If this is discovered to be the case,
As a result of Theorem 2, the greedy algorithm is guaranteed S; is said to be @DMINATED. In all other casesS; is said to be
to produce a solutiod such thatf(I)/f(I*) > 1/7 for sys- DOMINATING. In the former case, activating the sensor would re-

tem (Sgr, Za-ree). However, we do not know whether or not this  sult in suboptimal sensing quality, and the sensor would turn itself
lower bound is tight. For example, note that in the worst case, off. Similarly, in the latter it is better to activate the sensor.

greedy yields &/11 approximation on the construction used in In more detail, Algorithm 2 captures the necessary steps to de-
the proofs® Moreover, our empirical evaluation (see Section 5) termine the status of a sensor. Before starting the mvhite loop,
obtained approximation ratios no less than 75%, even without the neighbours are discovered by means of message passing (lines 3

requirement that, = R for all . and 4). Then, in lines 7 and 8, the sensor attempts to find a non-
. . DOMINATED neighbour that in turn has a nonelMINATED neigh-
3.2 A Decentralised Greedy Algorithm bour in common with itself (i.e. a triangle). If no such neighbour

Thus far we have assumed the existence of a centralised controllercan be found, the sensor’s best strategy is to turn itself on (line
that has perfect knowledge of functigh setE and has a way of 15). If, however, such a neighbodoesexist, at least one of these
determining whether the resulting graph is triangle-free. However, three sensors needs to turn off in order to ensure that the graph is
when a centralised controller is absent, sensors do not have accestiiangle-free. Therefore, in line 11, the algorithm checks whether
to the global knowledge required to execute the greedy algorithm turning itself on is a dominated strategy. If this is the case, the
in a purely decentralised fashion. While it might be possible to sensor sets its state todWINATED, notifies its neighbours of its
construct a decentralised algorithm that shares all required infor- updated status, and turns itself off (line 12).
mation, this would require excessive communication between sen- A sensor is capable of detecting termination of this algorithm by
sors. Therefore, in this section, we take a different approach andinspecting the states of its neighbours: if all neighbours are either
develop an effective approximate decentralised algorithm that re- DOMINATED or DOMINATING, the algorithm has terminated. Note
quires very limited local communication. In more detail, this al- that termination of this algorithm is guaranteed: when the number
gorithm allows sensors to construct a triangle-free network by in- of iterations approaches infinity, adMINATED sensor will select
specting their neighbourhodd.That is, if the neighbourhood of Sk in Line 9, such tha{.S;, Si) with probability 1, and deactivate
all sensing agents is triangle-free, the connectivity graph is triangle itself. All DOMINATING sensors will remain in the &sic state,
free. until all DOMINATED sensors have deactivated themselves. At this
Now, the principle behind the algorithm is that no more than two point, DOMINATING sensors will no longer be able to find a triangle
sensors within a clique can be activated without creating a trian- (Line 8), and thus detect theirdMINATING state (Line 15).
gle. The key challenge is then to find which two sensors should .
be activated to maximise sensing quality. Obviously, since solv- 3.3 The Reconnection Phase
ing this problem optimally in a central fashion is NP-hard, solving At this point we have constructed two greedy algorithms that com-
it optimally in a decentralised fashion is at least as hard. There- pute a triangle-free subgraph 6f{S] with high sensing quality.
fore, we (again) resort to approximation in the form ofreedy However, note that these induced subgraphs are not necessarily
decentralised algorithm. Using this algorithm, sensors are able to strongly connectefl since they only satisfy the requirement that
they are triangle-free (or cycle-free). We therefore add a second

®This occurs whery(e) = n, and for alla € A, f(a) = n — e
The greedy selection efin the first iteration blocks the addition of  8A graph isstrongly connectedf there exists a path from every

5 of 11 elements ind. Thus, the worst case approximation ratio is  vertex to every vertex. For a sensor connectivity graph, this means
lime o f(A\ B +e¢)/f(A) = 6/11. that every sensor is capable of communicating with all other sen-
"The neighbourhoodof a vertex is the subgraph induced by the sors via multi-hop routing. In the remainder of the paper, when we
vertex and its adjacent vertices. use the terntonnectedve mearstrongly connected




phase to these algorithms, that attempts to reconnect different com-
ponents of the computed subgraph. This algorithm is not always
capable of fully reconnecting the graph, since the maximum radio
transmission range,, . is sometimes insufficient. However, as we
will show in Section 5, even when it is not completely successful,
it manages to increase the size of the maximum connected compo-
nent significantly.

Now, to attempt to reconnect the graph, sensors incrementally
boost their radio signals to connect with sensors that were pre-

constructed solution. So, once a sensor fails, Algorithm 1
is run again. However, instead of initialisidgto the empty
set in line 1,7 is initialised to the already computed subset,
minus the failing sensors. Furthermorejs initialised toF
minus all active and failed sensors. The algorithm will then
proceed to iteratively add new sensors (if possible). Should
new sensors be deployed, these are simply addéd tnd

the algorithm will run as before.

viously unreachable. Naturally, it is undesirable for sensors to Decentralised: Instead of completely turning off ®VINATED sen-

set their radio strength to the maximum setting, for two reasons.
Firstly, it will drain their battery quickly (with a rate of2,,,),

thereby reducing the operation time of the sensor network as a
whole. Secondly, by increasing the radius of its radio disk, a sensor
might introduce additional edges that create a triangle, which was
exactly what we set out to avoid. So, in order to connect to addi-

tional sensors whilst maintaining a triangle-free graph, each sensor

sors, these sensors keep monitoring communication in their
neighbourhood. Once a neighbouring sensor fails (which
can be detected by a prolonged interval of communication
silence), it resets its state toaBic, and runs Algorithm 2
again. Active sensors (i.e. those with @RINATING state)
need not re-run the algorithm. Should new sensors be de-
ployed, they will be treated asd@MINATED sensors.

individually executes Algorithm 3 which relies on local computa-
tion and communication only. 5.

EMPIRICAL EVALUATION

In this section, we will evaluate the algorithms developed in the
previous sections in a large scale sensor deployment scenario.
repeat L In the first part of the empirical evaluation, we measure the per-
Emaqcas,(‘v;djs@i)? I S: € adi(S: formance of the non-dynamic versions of the centralised and de-
eceive(j, adj(S;)) forall 5 € adj(S:). centralised greedy algorithms. In the second part, we subject the

Algorithm 3 The Reconnection Algorithm

Ti <= C-Tj . . . .. . .
until adj(Sil) Nadji(S;) # D Orry > Fmaz dynamic versions of these algorithms to empirical evaluation. First,
i — ri/Ve however, we describe the experimental setup common to both.

5.1 Experimental Setup

To empirically evaluate the algorithms, we consider a scenario in
which M sensors have been randomly deployed in a unit square,
and are tasked with event detection. The area in which sefjsor
can detect an event is a disk with radiyswhich is drawn from the
interval [0.05, 0.2] with uniform likelihood. The radiug; within
which sensorS; can receive and send transmissions is uniformly

Figure 3 shows the output of the centralised algorithm for an ex- drawn from the interval0.5R, K], where R controls the range of
r;, and is one of the parameters we vary in our experiments. More-

ample sensor deployment wittf = 100 sensors. In this exam- over, the maximum radio transmission rangeris.. = 1.2R.

ple, sensor quality is represented by different sized sensing dISks'Events occur randomly within the unit square with uniform proba-

Notice how phase 1 selects a subgraph that consists of 8 compo-_.,. X ) , . .
nents. Phase 2 reconnects these components effectively whilst en-b'“ty' The sensing quality(5") achieved by a subse C § is

suring that the resulting connectivity graph remains triangle-free. EE: s:ESﬂe%iZEngfb :tr |g;gte(t)en(ges%re?:§rnt8' l.e. those that fall within
A particularly attractive feature of the selected sensors, is that their More f 9 v, letv(S.) denote th o f sens
connectivity graph is colourable with 3 colours, and their collision ore forma )/2 etv(S;) denote the sensing area of senSer
graph with 6 colours (see Section 2), while the original connectiv- i-€. V : S — 2%". Moreover, letu(-) denote the meastifeof an

ity graph (in this particular case) needed 23 colours (so its collision area, i.eu : 2% _, R. Now, functiony is defined as:

graph would probably requirg- 23 colours).
4. DEALING WITH DYNAMISM f(s):“&gv(s)) @

In the previous section, we discussed algorithms that perform a
one-off optimisation procedure to activate a subset of the sensors NSOIS: to a deplovment. incr total ; | than
that provide high sensing quality. In this section, we consider a a Sensop; 10 a deployment Increases total coverage 1ess tha

H /
more dynamic setting, in which deployed sensors can fail and new adding3; t0 S’ C S.
sensors can be deployed. Now, as the example in Figure 3 and ; ;
the experimental results in Section 5 will show, the number of sen- .2 Evaj uation Of. the Greedy .Algor Ithms
sors needed by both the centralised and decentralised algorithms i$0" the_ first set of experiments, we applled the cen_trallsed and de-
fairly small compared to the number of deployed sensors. Thus, the centralised greedy algorithms of Section 3 on a simulated sensor
remaining sensors that are not selected by either algorithm can bedeployment withd = 300. The sensing range for each sensor
used to replace failed sensors. In this section, we will therefore de- Was uniformly drawn fronf0.05, 0.2], while the radio range was

velop dynamic counterparts of Algorithm 1 and Algorithm 2, that SWe have also considered scenarios with different parameters, for
continuously monitor the sensor network and select replacementsyyhich our algorithms performed equally well. However, we found
for sensors that stop functioning. These dynamic counterparts arethat these specific parameters lead to particularly challenging prob-
obtained as follows: lem instances.
) ) ) 1%To avoid confusion, we use the term ‘area’ to describe two dimen-
Centralised: The key property of the centralised greedy algorithm  sional shapes, and ‘measure’ to denote the extent (or size) of an
is that it selects the sensors that most improve the already area.

It is easy to see that this algorithm preserves the triangle-free
property of the first connectivity graph. This is achieved by con-
tinually checking whether a neighbouring sensor shares a common
neighbour. Ifitis discovered that this is the case (Line 5), the graph
contains a triangle, at which point both neighbours reduce their ra-
dio range in order to break it (Line 6).

To illustrate the techniques we have developed in this Section

Clearly, f is a non-decreasing submodular function, since adding
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(a) The original sensor deployment of (b) Sensors selected by the centralised (c) The connectivity graph after the
100 sensors. greedy algorithm. reconnection phase.

Figure 3: Example execution of the algorithm. The circles represent the sensing areas of the sensor. An edge between two sensors
indicates communication between them is possible.

i : : . i : : : — 3
[ [
g g
2 0.8 2 0.8 25
3 8
g g o
£ 0.6r £ 0.6 5 20r
3 3 g
£ £ &
G 0.4r G 0.4r -~ Optimal #* 15-
5 & . Optimal (no RC)
5 5 A —Centralised
£ 0.2{~ - optimal o2 . - - -Centralised (no RC) [ 10 - - Optimal

— Centralised =" Decentralised — Centralised

—— Decentralisegl - - -Decentralised (no R( . —— Decentralisedl

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 2 01 0.2 0.3 0.4 0.5
R R R

(a) Achieved fraction of maximum possiblgb) Achieved fraction of maximum possible (c) Number of active sensors.
sensing coverage. sensing coverage by largest connected com-

ponent.

Figure 4: Resultsfor the static algorithms (M = 30). Error barsindicatetheerror of the mean.

161 T T T -
—Centralised
140~ —Decentraliseg

120~

[
[

1)
o
o
%

=
o
=

# Sensors
o)
o

hee!

3 _/I\ . G
}I }I\\I\I‘E\I

o
=

—Centralised
- --Centralised (no RC)

—Centralised % Decentralised

i —— Decentralised i - - -Decentralised (no RC)

0. 0.1 0.2 0.3 0.4 0.5 0.2 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
R R R

(a) Achieved fraction of maximum possible(b) Achieved fraction of maximum possible (c) Number of active sensors.

sensing coverage. sensing coverage by largest connected com-

ponent.

o
£
I
Q

Fraction of maximum coverage
o o e
S o2}
Fraction of maximum coverage
o
o))

N
=

(=]

Figure5: Resultsfor the static algorithms (A = 300). Error barsindicate theerror of the mean.

uniformly drawn from[0.5R, 1.0R]. During the experiments, we  optimal approach does not scale beyead0 sensors! Because
varied R betweern).1 and0.5, to determine the effect of different  of this, we performed two batches of experiments. In the first, we
levels of density in the connectivity gragi{S]. used 30 sensors and evaluated the centralised, decentralised and op-
We benchmarked the algorithms against an optimal algorithm timal algorithms, and in the second batch we applied the centralised
that computes a triangle-free subgraph with optimal coverage. This and decentralised algorithms on a deployment of 300 sensors.
algorithm uses branch and bound and exploits the structure of sub- We measured the sensing coverage of the selected sensors com-
modular functions to improve computational efficiency. Despite puted by both centralised and the decentralised algorithms as a frac-
these computational efficiency improvements, however, such an

n more detail, on many problem instances, the optimal algorithm
took >2 hours, while both greedy algorithms always terminated in
less than 5 seconds on a standard desktop computer.
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tion of the sensing coverage of all sensors. Moreover, in order to ‘ ‘ " [—Cls] 3colous
determine the effectiveness of the reconnection algorithm, we also ---C?[S]: 6 colours
measured the coverage achieved by the largest connected compo- \ |
nent of the graph. This metric captures the trade-off between the
graph connectedness and sensing quality. Finally, we measured the
number of selected sensors.

The results of the first batch are summarised in Figure 4. Figure
4(a) shows the sensing quality as a fraction of the sensing quality
achieved by all\/ sensors. This plot clearly shows that the differ-
ence between the optimal solution and the solution computed by ‘ ‘ ‘ ‘
both greedy algorithms is less than 10% in the most constrained 0.1 02 03 04 05
case (i.e. R = 0.5). This is a clear indication that both greedy
algorithms compute very good approximations, without the need
for exhaustively searching the solution space. Figure 4(b) shows
the sensing quality achieved by the largest component. In this fig-
ure, the postfix ‘no RC’ indicates that the reconnection algorithm
from Section 3.3 was not used. This figure demonstrates the ef- 1500~ ~Singleon
fectiveness of the reconnection algorithm; it manages to connect ---0n
a sufficient number of components to almost double the sensing L T Cenwatsed
quality of the largest component of the graph. Finally, Figure 4(c)
shows that the optimal algorithm manages to select a small number
of extra sensors compared to both greedy algorithms. As expected
both greedy algorithms are less successful in satisfying the inde-
pendence constraints while maximizing sensor coverage. However,
this effect is only marginal, since the optimal algorithm selects just
10% more sensors than the decentralised greedy algorithm.

The results of the second batch are shown in Figure 5. Overall, 001
the same features as before can be observed here. However, Fig-
ure 5(a) shows that the achieved coverage of the decentralised al- Figure 8: Total coverage over time.
gorithm drops below 60% of the maximum achievable coverage for
R = 0.5. The same—albeit less strong—effect can be observed for
the centralised greedy algorithm. However, note that for this level
of radio range, the sensors cover around a quarter of the entire are
As a result, the connectivity graph of the original sensor network is
very dense, and by limiting the solution to triangle free graphs the
problem is very constrained. Figure 5(b) again demonstrates the
effectiveness of the reconnection algorithm, but also that between
R = 0.1 andR = 0.3 both algorithms provide at least 85% of the
maximum possible sensor coverage, while needing approximately
half (for R = 0.1) to a tenth for @ = 0.3) of the available sensors.

Finally, to corroborate the theoretical result that the resulting
connectivity and collision graphs are easily 3 and 6-colourable re-
spectively (see Section 2), we used a simple and standard algo
rithm to colour the graphs in a decentralised fashion. This algo-
rithm is ane,-greedy algorithm, i.e. with probability — ¢, it
selects the colour that minimises the number of mono-chromatic
edges, while with probability,, it picks a random colour. Fur-
thermore, probability,, decreases with each iteration of the algo-
rithm ase, «— ”T*en, wheren is the iteration number. Given
this context, Figure 6 shows that colouring the resulting graphs in
a decentralised fashion is indeed trivial: for 300 sensors, the algo-
rithm needs 5 iterations on average to correctly colour both types of
graphs. Moreover, this simple algorithm managed to find a colour-
ing in all 5000 considered problem instances.
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Figure 6: Iterations required by the greedy graph colouring
algorithm (M = 300).
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benchmarked our algorithms against a naive strategy (referred to as
a‘On‘) in which all sensors are activated upon deployment.

The results are shown in Figure 7. The plots in Figure 7(a) and
7(b) show the coverage over time achieved by all active sensors and
the largest component respectively. Clearly, the sensing quality
provided by the ‘On’ strategy rapidly decreases, since all sensors
are activated, and the sensing areas overlap, causing redundancy.
Compared to ‘On’ the triangle-free and decentralised algorithms
perform notably better. Moreover, whereas the decentralised algo-
rithm is outperformed by the centralised one for the initial sensor
deployment (cf. Figures 5(a) and 5(b)), the decentralised algorithm
“starts outperforming its centralised counterpart after 250. The
explanation for this is found in Figure 7(c) that shows the number of
active sensors over time: the decentralised algorithm requires less
sensors for the initial deployment, and therefore has more sensors
available to replace failed ones.

Finally, we recorded the total sensor coverage provided over time
for several radio rangeR. Sensor coverage over time is defined
as the area of the region below the graphs shown in Figures 7(a)
and 7(b). For this experiment, we added an additional benchmark
strategy that activates only a single sensor at a time (referred to
as ‘Single On’). The performance of this strategy acts as an up-
per bound on the total coverage over time that can be achieved,
. . . since no two sensors redundantly cover the space. Figures 8 and 9
5.3 Evaluation of the Dynamic Algorithms show the results. These figures confirm that ‘On’ is outperformed
For the second experiment, we evaluated the dynamic greedy al-by both greedy algorithms for several valuesiyfand by around
gorithms. To do this, we simulated randomly deployed sensor net- 250% forR = .2. Moreover, by comparing the performance of our
works as before. However, we now also consider sensor failures. algorithms to that of ‘Single On’, we see that these algorithms man-
In our simulations, sensors get deactivated as they completely de-age quite effectively to minimise redundant coverage, since ‘Single
plete their battery. Initially, every sensS has a battery capacity ~ On’ has no redundant coverage by its very nature. The mostimpor-
b; of 1 unit. Recall from Section 2 that the battery depletion rate tant conclusion we can draw from these experiments, however, is
is modeled ag\b; = —r? - At. Each time a sensor fails, we em-  that the decentralised algorithm achieves at least 80% of the sens-
ploy the algorithms developed in Section 4 to attempt to replace it ing quality of the centralised greedy algorithm (92% fr= .2),
with sensors that were not selected for the initial deployment. We while only requiring local communication and computation.
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