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ABSTRACT
In large wireless sensor networks, the problem of assigning radio
frequencies to sensing agents such that no two connected sensors
are assigned the same value (and will thus interfere with one an-
other) is a major challenge. To tackle this problem, we develop
a novel decentralised coordination algorithm that activates only a
subset of the deployed agents, subject to the connectivity graph
of this subset being provably 3-colourable in linear time, hence
allowing the use of a simple decentralised graph colouring algo-
rithm. Crucially, while doing this, our algorithm maximises the
sensing coverage achieved by the selected sensing agents, which
is given by an arbitrary non-decreasing submodular set function.
We empirically evaluate our algorithm by benchmarking it against
a centralised greedy algorithm and an optimal one, and show that
the selected sensing agents manage to achieve 90% of the cover-
age provided by the optimal algorithm, and 85% of the coverage
provided by activating all sensors. Moreover, we use a simple de-
centralised graph colouring algorithm to show the frequency as-
signment problem is easy in the resulting graphs; in all considered
problem instances, this algorithm managed to find a colouring in
less than 5 iterations on average. We then show how the algorithm
can be used in dynamic settings, in which sensors can fail or new
sensors can be deployed. In this setting, our algorithm provides
250% more coverage over time compared to activating all available
sensors simultaneously.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence; I.2.9 [Computing Methodologies]:
Artificial Intelligence—Robotics: Sensors

General Terms
Algorithms, Experimentation, Theory

Keywords
Sensor Networks, Distributed Problem Solving, Graph Colouring

1. INTRODUCTION
Recently, the use of wireless micro-sensor networks has generated
a significant amount of interest in areas such as climate change re-
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search [12], weather and tidal surge prediction [11], and monitoring
intelligent buildings [7]. These networks consist of cheap sensors
with very limited computational capabilities; potentially, they can
be deployed by scattering them from airplanes or ground vehicles.
Taken to the extreme, these sensors could even become the size of
a grain of sand or even dust, in which case they are also referred to
assmartdust[17].

Crucially, because of their limitations constrained computational
resources, these sensors need simple and robust algorithms for con-
trolling various aspects of the network. Now, since centralised con-
trol of such aspects is often not possible, and would introduce a
single point of failure, the use of agent-based technologies have
been advocated to solve these problems in a decentralised fashion
[15]. In particular, such approaches include decentralised solutions
for packet routing [12], efficient prediction of missing data [11],
and assigning radio frequencies (or, equivalently, time slots for the
Time Division Multiple Access protocol [1]) to sensors such that
the number of required retransmissions due to interference is min-
imised (and data throughput is maximised), which is the problem
we focus on in this paper.

Now, several aspects of this problem have already been stud-
ied in the literature. In particular, the frequency assignment prob-
lem, which is often cast as a multi-agent graph colouring prob-
lem, has been extensively addressed by the development of various
message-passing algorithms [5, 6, 13, 1]. However, these algo-
rithms either produce approximate solutions [5, 6, 1], or require
exponential computation and communication [13]. These proper-
ties push these algorithms beyond the limited computational and
communicational abilities of micro-sensors, or require a large num-
ber of frequencies to optimally colour the graph, which reduces the
bandwidth of the network [1].

Therefore, in this paper, we propose a different approach to this
problem: instead of solving the graph colouring problem in the
original sensor network, we develop a novel decentralised coor-
dination algorithm that deactivates certain sensors within the net-
work, such that the resulting connectivity graph is more easily col-
ourable. More specifically, the algorithm constructs atriangle-free
graph, which does not contain cliques of size greater than 2. This is
appealing because it is a known result that these types of graphs are
3-colourable [16] in linear time [3]. Equally important, this bounds
the number of required frequencies, which can be very large for the
original sensor network.

However, this poses a new question: how to select those sen-
sors which should be deactivated to ensure that the resulting sensor
network has maximum coverage? In the literature, the problem of
maximising sensing coverage has been studied in both the presence
[7] and the absence [4] of a centralised controller. In these settings,
sensing coverage is often modeled as a submodular set function, a
versatile mathematical abstraction that intuitively captures the di-
minishing returns of adding an extra sensor to a sensor network.



For example, the probability of event detection with arbitrary sens-
ing areas, entropy reduction [9] and mutual information [7].

We show that the problem of selecting a triangle-free sensor net-
work that maximises coverage is NP-hard (based on theoretical re-
sults from [10]). Therefore, we develop an approximate algorithm;
it allows sensors to coordinate in a fully decentralised fashion to
build a triangle-free algorithm with high sensing coverage.

In more detail, the contributions of this paper are:

1. We derive a novel decentralised algorithm that activates a
subset of the available sensors so as to maximise sensing cov-
erage given by an arbitrary submodular set function, subject
to the connectivity graph being triangle-free.

2. We develop a centralised greedy algorithm based on the no-
tion of submodular independence systems, and derive a the-
oretical lower bound of1/7 on the approximation ratio of
the algorithm, for any submodular function. This algorithm
acts as a benchmark for the decentralised algorithm in the
empirical evaluation.

3. We develop dynamic counterparts for these two algorithms
that are capable of dealing with failing sensors and new sen-
sors, while ensuring the triangle-free property of the graphs.

4. We empirically evaluate our algorithm and show that it pro-
vides 90% of the coverage provided by an optimal algorithm,
and 85% of the coverage provided by activating all sensors
(without the restriction on the graph). Moreover, we show
that the frequency assignment problem on the resulting sen-
sor network can be solved by a simple and standard decen-
tralised graph colouring algorithm. Finally, in the dynamic
setting, we show that our algorithm provides 250% more
coverage over time compared to activating all available sen-
sors simultaneously.

The remainder of this paper is organised as follows. In Section 2
we define the problem. In Section 3 we present a centralised and a
decentralised algorithm. In Section 4 we extend these algorithms to
operate continually to replace failing sensors. In 5 we empirically
evaluate this set of algorithms and demonstrate their effectiveness.
Finally, we conclude in Section 6.

2. PROBLEM DESCRIPTION
LetS = {S1, . . . , SM} denote a set ofM sensors deployed on the
R

2 plane. The Cartesian coordinates are given by a vectorxi =
(xi, yi). Let d(xi,xj) denote the Euclidean distance betweenSi

andSj . Each sensorSi has a radio disk with radiusri within which
other sensors can receive their transmissions. Consequently sensor
Sj can receiveSi’s transmissions iffSj is contained withinSi’s
radio disk: d(xi,xj) ≤ ri. Each sensorSi has control over its
transmission radiusri, which it set anywhere between 0 andrmax,
which is the maximum transmission radius for all sensors. Given
this model, we can construct aconnectivity graphthat models the
communication network that exists among the sensors:

Definition 1. A sensorconnectivity graphC[S] of a set of sen-
sorsS is an directed graphC[S] = (S, E) in which E contains a
pair of sensors(Si, Sj) if Sj can receiveSi’s transmissions.

Now, to ensure transmissions between two sensors are not com-
promised by interference from other sensors, we wish to allocate
frequencies to each sensor such that no two sensors with over-
lapping radio disks are allocated the same transmission frequency.
However, note that the connectivity graph only modelsdirect col-
lisions, which are those that occur betweenSi andSj if they are

Si

Sk

Sj

Figure 1: The connectivity and collision graph of an example
sensor network. Possible direct and indirect collisions are rep-
resented by solid and dashed edges respectively.

contained within each other’s radio disks; it does not model the
possibility of indirect collisions [1], which occur when two sen-
sorsSi andSj are not contained within each others radio disks, but
there exists a sensorSk that is contained in both (see Figure 1 for
an example). When indirect collisions occur, sensorSk will receive
garbled transmissions fromSi andSj . Therefore, instead of using
C[S], we consider thecollision graphC2[S]:

Definition 2. The collision graphof sensorsS is the square of
C[S], denoted byC2[S]. This graph contains an edge(Si, Sj) if
there exists a path betweenSi andSj in C[S] of at most two edges.

By effectively connecting neighbours of neighbours in the con-
nectivity graph, the collision graph models the possibility of direct
as well as indirect collisions. Thus, solving the frequency alloca-
tion problem is equivalent to colouringC2[S], which is a known
NP-complete problem. Now, to bound the number of required
colours needed to colour the graph (also referred as the chromatic
number), which can be very large on an arbitrary sensor network,
and also in the interest of keeping the sensors as simple and ro-
bust as possible, we proceed in two steps. First, we wish to find a
set of sensors whose connectivity graphC[S] is easily colourable.
More specifically, by this, we mean that the graph istriangle-free.
A triangle-free graph is a graph that does not contain any cycles
of length 3, or, equivalently, whose maximum clique size is 2. A
3-colouring of a triangle-free graph is guaranteed to exist [16], and
can be computed in linear time [3]. This colouring avoids anydirect
collisions. In the second step we attempt to avoid anyindirectcolli-
sions by considering the densercollision graphof this triangle-free
connectivity graph. Simple graph theory shows that this graph is
guaranteed to beK7 minor-free,1 based on the triangle-free prop-
erty of the connectivity graph. By exploiting this property, and
applying the famous Hadwiger conjecture [8] we know that the ob-
tained collision graph is 6-colourable.2 Thus, the maximum num-
ber of colours needed to colour the collision graph of a triangle-
free connectivity graph is 6. In Section 5, we show that this can be
achieved by a simple decentralised graph colouring algorithm.

Besides ensuring reliable communication between the sensors,
we also wish to maximise the sensing quality that the sensor net-
work provides. For reasons discussed in the introduction, in this
paper, sensing quality is given by a submodular set function:

Definition 3. A set functionf : 2E → R defined over a finite
setE is calledsubmodularif for A ⊆ B ⊆ E ande ∈ E, f(A +
e)− F (A) ≥ F (B + e)− F (B).

In more detail, sensing quality achieved by a subset ofS is given
by a non-decreasing submodular functionf : 2S → R

+. Intu-
1A K7 minor-free graph does not contain the complete graphK7

as a subgraph, i.e. it contains no cliques larger than 6.
2The Hadwiger conjecture states that anyKk minor-free graph is
(k − 1)-colourable. It has been proven fork ≤ 6 [14], but in this
paper, we assume that the conjecture holds fork = 7 as well.



itively, functionf defines the diminishing returns of adding an ex-
tra sensor to an existing sensor network.

Thus, the problem we address in this paper is to find a setS ′ ⊆ S
that maximisesf(S ′) subject toC[S ′] being triangle-free. These
sensorsS ′ will then form the new sensor network, by deactivating
sensorsS \ S ′.

Additionally, we can also consider a dynamic version of this
problem, by taking into account that sensors can fail. One ma-
jor cause of sensor failure is battery depletion. In this paper, we
assume that radio transmission accounts for the majority of the en-
ergy consumption of the sensor (and thus do not consider the energy
required for sensing). In more detail, sensors have an initial battery
capacitybi, which reduces over time as a result of their transmis-
sion power as follows:∆bi = −r2

i ·∆t.
In the upcoming sections, we show how, by activating a subset of

the sensor network such that the connectivity graph is triangle-free,
we can use greedy algorithms to compute sensor deploymentsS ′

with good sensing quality.

3. SENSOR SELECTION ALGORITHMS
In this section, we first present a centralised greedy algorithm with
theoretical bounds on the solution. This algorithm will act as a
benchmark for the decentralised algorithm that we develop in Sec-
tion 3.2. We then show that both algorithms activate a subset of the
deployed sensors whose connectivity graph is not necessarily con-
nected. As a result, sensors will not always be able to communicate
their measurements to a base station. Therefore, in Section 3.3, we
develop a decentralised algorithm that attempts to reconnect the
various components of the graph by incrementally increasing their
communication range.

Because of the correspondence between the results for the triangle-
free connectivity graph and its collision graph, in the remainder of
the paper, we will consider the connectivity graph only.

3.1 A Centralised Greedy Algorithm
Before introducing a decentralised algorithm to this problem, we
will first develop a centralised greedy algorithm based on the notion
of independence systems from combinatorial optimisation.

Definition 4. An independence systemis a pair(E, I ), where
E is a finite set of elements, andI is a collection of subsets ofE
such that ifA ∈ I andB ⊆ A, thenB ∈ I . Sets inI are said
to beindependent.

Clearly, the setI△-free of subsets ofS whose connectivity graph
is triangle-free form an independence system, since every induced
subgraph of a triangle-free graph is triangle-free. Now, since not
every subset is equal in terms of sensing quality, we augment these
independence systems with the submodular functionf that mea-
sures sensing quality:

Definition 5. A submodular independence systemis an indepen-
dence system together with a non-decreasing submodular set func-
tion f .

Unfortunately, for a submodular independence system, finding
a setI∗ ∈ I such thatI∗ = arg maxI∈I

f(I) is a NP-hard
problem [10]. Therefore, under the assumption that P6= NP, there
does not exist a polynomial time algorithm for computingI∗. As a
result, to obtain solutions that scale well with the size of the sensor
network, we have to resort to approximation. One of the simplest
approximation algorithms is the greedy algorithm (Algorithm 1),
that builds a solution without backtracking by iteratively adding
those elements that most improve the solution (with respect tof ),
while simultaneously satisfying an independence constraint.3

3Note that in this algorithm, the independence systemI need not

Algorithm 1 The greedy algorithm for a submodular independence
system((E, I ), f)

1: I := ∅

2: while E 6= ∅ do
3: e∗ := arg maxe∈E f(I + e)− f(I)
4: E := E − e∗

5: if I + e∗ ∈ I then
6: I := I + e∗

7: end if
8: end while
9: return I

The greedy algorithm computes amaximal independentset, which
is an independent setI such that by adding anye ∈ E \ I, it be-
comes dependent. In other words, no sensor can be added to the
sensor network without introducing a triangle.

Now, while the greedy algorithm is simple, it has its drawbacks;
the main one being that it can perform arbitrarily badly, as illus-
trated by the following example:

Example 1.LetE = {A, B1, . . . , BM}, I = {{B1, . . . , BM},
{A}}, andf({A}) = n, f({Bi}) = n − ǫ, f({B1, . . . , BM} =
(n − ǫ)M . The result of the greedy algorithm isI = A after a
single iteration. WhenM → ∞ andǫ → 0, the approximation
ratio for Algorithm 1, i.e. f(I)/f(I∗), approaches 0. In other
words, for arbitrary independence systems, the greedy solution can
be arbitrarily far away from the optimal solution.

Fortunately, many independence systems exhibit additional struc-
ture that can be exploited to obtain a lower bound on the approxi-
mation ratio for Algorithm 1. The notion ofp-independenceis one
of these [2]:

Definition 6. An independence system(E, I ) is calledp-inde-
pendentif for all A ∈ I ande ∈ E there exists a setB ⊆ A such
that such that|B| ≤ p andA \B + e ∈ I .4

The following is a result in combinatorics that proves a lower
bound on the approximation ratio of the greedy algorithm:

THEOREM 1 ([2, 10]). Algorithm 1 yields a1/(1+p)-approx-
imation to maximising a non-decreasing submodular set function
subject to ap-independence constraint.

Thus, to obtain a lower bound on the greedy algorithm for the
sensor coverage problem, we need to determinep for (S, I△-free).
In order to do so, we need to restrict the problem defined in Section
2 slightly. This restriction involves limiting the radius of the radio
disks to a constantR for every sensor.5 A set of sensors with a
fixed radio rangeR is denoted asSR, and the connectivity graph
obtained is called a unit disk graph. This construct allows us to
prove the following theorem:

THEOREM 2. System(SR, I△-free) is 6-independent.

PROOF. Simple geometry shows that the maximum degree of a
triangle-free unit disk graph no larger than 11. LetA be an valid
solution (i.e. A ∈ I ). Now, deg(e) ≤ 11 in A + e, otherwise
A 6∈ I . Whendeg(e) = 11, A+e contains 11 triangles. To break

be explicitly given. Typically, an oracle in the form of an algorithm
or indicator function1I (S) = true⇔ S ∈ I suffices.
4Whenp = 1, ap-independence system is called amatroid, which
is a well-known structure in combinatorics.
5We will drop this restriction again in our empirical evaluation, and
show that this has no detrimental effect on the algorithm’s perfor-
mance.



Figure 2: Visual representation of the proof of Theorem 2. See
text for explanation.

each of these, we removep = ⌈11/2⌉ = 6 vertices fromA. Let B
denote this set of vertices. ThenA \ B + e ∈ I with |B| ≤ 6, as
required.

See Figure 2 for a visual representation of this proof. In this
figure,e is the black vertex,B is represented by the white vertices
andA is represented by the white and gray vertices. Radio disks
are represented by gray circles. (For ease of exposition, these radio
disks have been scaled by 50%. As a result, links exists within this
unit disk graph when the scaled disks overlap.)

As a result of Theorem 2, the greedy algorithm is guaranteed
to produce a solutionI such thatf(I)/f(I∗) ≥ 1/7 for sys-
tem (SR, I△-free). However, we do not know whether or not this
lower bound is tight. For example, note that in the worst case,
greedy yields a6/11 approximation on the construction used in
the proofs.6 Moreover, our empirical evaluation (see Section 5)
obtained approximation ratios no less than 75%, even without the
requirement thatri = R for all i.

3.2 A Decentralised Greedy Algorithm
Thus far we have assumed the existence of a centralised controller
that has perfect knowledge of functionf , setE and has a way of
determining whether the resulting graph is triangle-free. However,
when a centralised controller is absent, sensors do not have access
to the global knowledge required to execute the greedy algorithm
in a purely decentralised fashion. While it might be possible to
construct a decentralised algorithm that shares all required infor-
mation, this would require excessive communication between sen-
sors. Therefore, in this section, we take a different approach and
develop an effective approximate decentralised algorithm that re-
quires very limited local communication. In more detail, this al-
gorithm allows sensors to construct a triangle-free network by in-
specting their neighbourhood.7 That is, if the neighbourhood of
all sensing agents is triangle-free, the connectivity graph is triangle
free.

Now, the principle behind the algorithm is that no more than two
sensors within a clique can be activated without creating a trian-
gle. The key challenge is then to find which two sensors should
be activated to maximise sensing quality. Obviously, since solv-
ing this problem optimally in a central fashion is NP-hard, solving
it optimally in a decentralised fashion is at least as hard. There-
fore, we (again) resort to approximation in the form of agreedy
decentralised algorithm. Using this algorithm, sensors are able to
6This occurs whenf(e) = n, and for alla ∈ A, f(a) = n − ǫ.
The greedy selection ofe in the first iteration blocks the addition of
5 of 11 elements inA. Thus, the worst case approximation ratio is
limǫ→0 f(A \B + e)/f(A) = 6/11.
7The neighbourhoodof a vertex is the subgraph induced by the
vertex and its adjacent vertices.

Algorithm 2 The Distributed Greedy Algorithm forSi

1: State← BASIC
2: SB

i ← adj(Si)

3: Broadcast〈i,SB
i 〉

4: Receive〈j,SB
j )〉 for all Sj ∈ adj(Si)

5: while State = BASIC do
6: On random activation
7: SB

i ← {S | S ∈ SB
i ∧ State(S) 6= DOMINATED}

8: if ∃j : SB
i ∩ SB

j 6= ∅ then

9: Randomly selectSk ∈ SB
i ∩ SB

j

10: fjk ← f({Sj , Sk})
11: if fjk ≥ f({Si, Sj}) andfjk ≥ f({Si, Sk}) then
12: State← DOMINATED
13: end if
14: else
15: State← DOMINATING
16: end if
17: Send〈i, State〉 to all Sj ∈ adj(Si)

18: end while

coordinate with their neighbours to identify the sensors that max-
imise coverage within that clique. In more detail, when running
this algorithm, each sensorSi continually checks whether a pair of
sensors(Sj , Sk) exist within the same clique, such that the cov-
erage provided by(Sj , Sk) is greater than the coverage provided
by both(Si, Sj) and(Si, Sk). If this is discovered to be the case,
Si is said to be DOMINATED. In all other cases,Si is said to be
DOMINATING . In the former case, activating the sensor would re-
sult in suboptimal sensing quality, and the sensor would turn itself
off. Similarly, in the latter it is better to activate the sensor.

In more detail, Algorithm 2 captures the necessary steps to de-
termine the status of a sensor. Before starting the mainwhile loop,
neighbours are discovered by means of message passing (lines 3
and 4). Then, in lines 7 and 8, the sensor attempts to find a non-
DOMINATED neighbour that in turn has a non-DOMINATED neigh-
bour in common with itself (i.e. a triangle). If no such neighbour
can be found, the sensor’s best strategy is to turn itself on (line
15). If, however, such a neighbourdoesexist, at least one of these
three sensors needs to turn off in order to ensure that the graph is
triangle-free. Therefore, in line 11, the algorithm checks whether
turning itself on is a dominated strategy. If this is the case, the
sensor sets its state to DOMINATED, notifies its neighbours of its
updated status, and turns itself off (line 12).

A sensor is capable of detecting termination of this algorithm by
inspecting the states of its neighbours: if all neighbours are either
DOMINATED or DOMINATING , the algorithm has terminated. Note
that termination of this algorithm is guaranteed: when the number
of iterations approaches infinity, a DOMINATED sensor will select
Sk in Line 9, such that(Sj , Sk) with probability 1, and deactivate
itself. All D OMINATING sensors will remain in the BASIC state,
until all DOMINATED sensors have deactivated themselves. At this
point, DOMINATING sensors will no longer be able to find a triangle
(Line 8), and thus detect their DOMINATING state (Line 15).

3.3 The Reconnection Phase
At this point we have constructed two greedy algorithms that com-
pute a triangle-free subgraph ofC[S] with high sensing quality.
However, note that these induced subgraphs are not necessarily
strongly connected,8 since they only satisfy the requirement that
they are triangle-free (or cycle-free). We therefore add a second

8A graph isstrongly connectedif there exists a path from every
vertex to every vertex. For a sensor connectivity graph, this means
that every sensor is capable of communicating with all other sen-
sors via multi-hop routing. In the remainder of the paper, when we
use the termconnectedwe meanstrongly connected.



phase to these algorithms, that attempts to reconnect different com-
ponents of the computed subgraph. This algorithm is not always
capable of fully reconnecting the graph, since the maximum radio
transmission rangermax is sometimes insufficient. However, as we
will show in Section 5, even when it is not completely successful,
it manages to increase the size of the maximum connected compo-
nent significantly.

Now, to attempt to reconnect the graph, sensors incrementally
boost their radio signals to connect with sensors that were pre-
viously unreachable. Naturally, it is undesirable for sensors to
set their radio strength to the maximum setting, for two reasons.
Firstly, it will drain their battery quickly (with a rate ofr2

max),
thereby reducing the operation time of the sensor network as a
whole. Secondly, by increasing the radius of its radio disk, a sensor
might introduce additional edges that create a triangle, which was
exactly what we set out to avoid. So, in order to connect to addi-
tional sensors whilst maintaining a triangle-free graph, each sensor
individually executes Algorithm 3 which relies on local computa-
tion and communication only.

Algorithm 3 The Reconnection Algorithm
1: repeat
2: Broadcast〈i, adj(Si)〉
3: Receive〈j, adj(Sj)〉 for all Sj ∈ adj(Si).
4: ri ← c · ri

5: until adj(Si) ∩ adj(Sj) 6= ∅ or ri > rmax

6: ri ← ri/
√

c

It is easy to see that this algorithm preserves the triangle-free
property of the first connectivity graph. This is achieved by con-
tinually checking whether a neighbouring sensor shares a common
neighbour. If it is discovered that this is the case (Line 5), the graph
contains a triangle, at which point both neighbours reduce their ra-
dio range in order to break it (Line 6).

To illustrate the techniques we have developed in this Section,
Figure 3 shows the output of the centralised algorithm for an ex-
ample sensor deployment withM = 100 sensors. In this exam-
ple, sensor quality is represented by different sized sensing disks.
Notice how phase 1 selects a subgraph that consists of 8 compo-
nents. Phase 2 reconnects these components effectively whilst en-
suring that the resulting connectivity graph remains triangle-free.
A particularly attractive feature of the selected sensors, is that their
connectivity graph is colourable with 3 colours, and their collision
graph with 6 colours (see Section 2), while the original connectiv-
ity graph (in this particular case) needed 23 colours (so its collision
graph would probably require≫ 23 colours).

4. DEALING WITH DYNAMISM
In the previous section, we discussed algorithms that perform a
one-off optimisation procedure to activate a subset of the sensors
that provide high sensing quality. In this section, we consider a
more dynamic setting, in which deployed sensors can fail and new
sensors can be deployed. Now, as the example in Figure 3 and
the experimental results in Section 5 will show, the number of sen-
sors needed by both the centralised and decentralised algorithms is
fairly small compared to the number of deployed sensors. Thus, the
remaining sensors that are not selected by either algorithm can be
used to replace failed sensors. In this section, we will therefore de-
velop dynamic counterparts of Algorithm 1 and Algorithm 2, that
continuously monitor the sensor network and select replacements
for sensors that stop functioning. These dynamic counterparts are
obtained as follows:

Centralised: The key property of the centralised greedy algorithm
is that it selects the sensors that most improve the already

constructed solution. So, once a sensor fails, Algorithm 1
is run again. However, instead of initialisingI to the empty
set in line 1,I is initialised to the already computed subset,
minus the failing sensors. Furthermore,E is initialised toE
minus all active and failed sensors. The algorithm will then
proceed to iteratively add new sensors (if possible). Should
new sensors be deployed, these are simply added toE, and
the algorithm will run as before.

Decentralised: Instead of completely turning off DOMINATED sen-
sors, these sensors keep monitoring communication in their
neighbourhood. Once a neighbouring sensor fails (which
can be detected by a prolonged interval of communication
silence), it resets its state to BASIC, and runs Algorithm 2
again. Active sensors (i.e. those with a DOMINATING state)
need not re-run the algorithm. Should new sensors be de-
ployed, they will be treated as DOMINATED sensors.

5. EMPIRICAL EVALUATION
In this section, we will evaluate the algorithms developed in the
previous sections in a large scale sensor deployment scenario.

In the first part of the empirical evaluation, we measure the per-
formance of the non-dynamic versions of the centralised and de-
centralised greedy algorithms. In the second part, we subject the
dynamic versions of these algorithms to empirical evaluation. First,
however, we describe the experimental setup common to both.

5.1 Experimental Setup
To empirically evaluate the algorithms, we consider a scenario in
which M sensors have been randomly deployed in a unit square,
and are tasked with event detection. The area in which sensorSi

can detect an event is a disk with radiussi, which is drawn from the
interval [0.05, 0.2] with uniform likelihood. The radiusri within
which sensorSi can receive and send transmissions is uniformly
drawn from the interval[0.5R, R], whereR controls the range of
ri, and is one of the parameters we vary in our experiments. More-
over, the maximum radio transmission range isrmax = 1.2R.
Events occur randomly within the unit square with uniform proba-
bility. The sensing qualityf(S ′) achieved by a subsetS ′ ⊆ S is
the expected number of detected events, i.e. those that fall within
the sensing disk of at least one sensor.9

More formally, let▽(Si) denote the sensing area of sensorSi,

i.e. ▽ : S → 2R
2

. Moreover, letµ(·) denote the measure10 of an

area, i.e.µ : 2R
2

→ R. Now, functionf is defined as:

f(S) = µ

 

[

S∈S

▽(S)

!

(1)

Clearly,f is a non-decreasing submodular function, since adding
a sensorSi to a deploymentS increases total coverage less than
addingSi to S ′ ⊂ S.

5.2 Evaluation of the Greedy Algorithms
For the first set of experiments, we applied the centralised and de-
centralised greedy algorithms of Section 3 on a simulated sensor
deployment withM = 300. The sensing range for each sensor
was uniformly drawn from[0.05, 0.2], while the radio range was

9We have also considered scenarios with different parameters, for
which our algorithms performed equally well. However, we found
that these specific parameters lead to particularly challenging prob-
lem instances.

10To avoid confusion, we use the term ‘area’ to describe two dimen-
sional shapes, and ‘measure’ to denote the extent (or size) of an
area.



(a) The original sensor deployment of
100 sensors.

(b) Sensors selected by the centralised
greedy algorithm.

(c) The connectivity graph after the
reconnection phase.

Figure 3: Example execution of the algorithm. The circles represent the sensing areas of the sensor. An edge between two sensors
indicates communication between them is possible.
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(a) Achieved fraction of maximum possible
sensing coverage.
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(b) Achieved fraction of maximum possible
sensing coverage by largest connected com-
ponent.
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(c) Number of active sensors.

Figure 4: Results for the static algorithms (M = 30). Error bars indicate the error of the mean.
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(a) Achieved fraction of maximum possible
sensing coverage.
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(b) Achieved fraction of maximum possible
sensing coverage by largest connected com-
ponent.

0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

120

140

160

R

# 
S

en
so

rs

 

 

Centralised
Decentralised

(c) Number of active sensors.

Figure 5: Results for the static algorithms (M = 300). Error bars indicate the error of the mean.

uniformly drawn from[0.5R, 1.0R]. During the experiments, we
variedR between0.1 and0.5, to determine the effect of different
levels of density in the connectivity graphC[S].

We benchmarked the algorithms against an optimal algorithm
that computes a triangle-free subgraph with optimal coverage. This
algorithm uses branch and bound and exploits the structure of sub-
modular functions to improve computational efficiency. Despite
these computational efficiency improvements, however, such an

optimal approach does not scale beyond≈ 30 sensors.11 Because
of this, we performed two batches of experiments. In the first, we
used 30 sensors and evaluated the centralised, decentralised and op-
timal algorithms, and in the second batch we applied the centralised
and decentralised algorithms on a deployment of 300 sensors.

We measured the sensing coverage of the selected sensors com-
puted by both centralised and the decentralised algorithms as a frac-

11In more detail, on many problem instances, the optimal algorithm
took >2 hours, while both greedy algorithms always terminated in
less than 5 seconds on a standard desktop computer.



tion of the sensing coverage of all sensors. Moreover, in order to
determine the effectiveness of the reconnection algorithm, we also
measured the coverage achieved by the largest connected compo-
nent of the graph. This metric captures the trade-off between the
graph connectedness and sensing quality. Finally, we measured the
number of selected sensors.

The results of the first batch are summarised in Figure 4. Figure
4(a) shows the sensing quality as a fraction of the sensing quality
achieved by allM sensors. This plot clearly shows that the differ-
ence between the optimal solution and the solution computed by
both greedy algorithms is less than 10% in the most constrained
case (i.e.R = 0.5). This is a clear indication that both greedy
algorithms compute very good approximations, without the need
for exhaustively searching the solution space. Figure 4(b) shows
the sensing quality achieved by the largest component. In this fig-
ure, the postfix ‘no RC’ indicates that the reconnection algorithm
from Section 3.3 was not used. This figure demonstrates the ef-
fectiveness of the reconnection algorithm; it manages to connect
a sufficient number of components to almost double the sensing
quality of the largest component of the graph. Finally, Figure 4(c)
shows that the optimal algorithm manages to select a small number
of extra sensors compared to both greedy algorithms. As expected
both greedy algorithms are less successful in satisfying the inde-
pendence constraints while maximizing sensor coverage. However,
this effect is only marginal, since the optimal algorithm selects just
10% more sensors than the decentralised greedy algorithm.

The results of the second batch are shown in Figure 5. Overall,
the same features as before can be observed here. However, Fig-
ure 5(a) shows that the achieved coverage of the decentralised al-
gorithm drops below 60% of the maximum achievable coverage for
R = 0.5. The same—albeit less strong—effect can be observed for
the centralised greedy algorithm. However, note that for this level
of radio range, the sensors cover around a quarter of the entire area.
As a result, the connectivity graph of the original sensor network is
very dense, and by limiting the solution to triangle free graphs the
problem is very constrained. Figure 5(b) again demonstrates the
effectiveness of the reconnection algorithm, but also that between
R = 0.1 andR = 0.3 both algorithms provide at least 85% of the
maximum possible sensor coverage, while needing approximately
half (for R = 0.1) to a tenth for (R = 0.3) of the available sensors.

Finally, to corroborate the theoretical result that the resulting
connectivity and collision graphs are easily 3 and 6-colourable re-
spectively (see Section 2), we used a simple and standard algo-
rithm to colour the graphs in a decentralised fashion. This algo-
rithm is anǫn-greedy algorithm, i.e. with probability1 − ǫn it
selects the colour that minimises the number of mono-chromatic
edges, while with probabilityǫn it picks a random colour. Fur-
thermore, probabilityǫn decreases with each iteration of the algo-
rithm asǫn ←

n−1

n
ǫn, wheren is the iteration number. Given

this context, Figure 6 shows that colouring the resulting graphs in
a decentralised fashion is indeed trivial: for 300 sensors, the algo-
rithm needs 5 iterations on average to correctly colour both types of
graphs. Moreover, this simple algorithm managed to find a colour-
ing in all 5000 considered problem instances.

5.3 Evaluation of the Dynamic Algorithms
For the second experiment, we evaluated the dynamic greedy al-
gorithms. To do this, we simulated randomly deployed sensor net-
works as before. However, we now also consider sensor failures.
In our simulations, sensors get deactivated as they completely de-
plete their battery. Initially, every sensorSi has a battery capacity
bi of 1 unit. Recall from Section 2 that the battery depletion rate
is modeled as∆bi = −r2

i · ∆t. Each time a sensor fails, we em-
ploy the algorithms developed in Section 4 to attempt to replace it
with sensors that were not selected for the initial deployment. We
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Figure 6: Iterations required by the greedy graph colouring
algorithm (M = 300).
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Figure 8: Total coverage over time.

benchmarked our algorithms against a naïve strategy (referred to as
‘On’) in which all sensors are activated upon deployment.

The results are shown in Figure 7. The plots in Figure 7(a) and
7(b) show the coverage over time achieved by all active sensors and
the largest component respectively. Clearly, the sensing quality
provided by the ‘On’ strategy rapidly decreases, since all sensors
are activated, and the sensing areas overlap, causing redundancy.
Compared to ‘On’ the triangle-free and decentralised algorithms
perform notably better. Moreover, whereas the decentralised algo-
rithm is outperformed by the centralised one for the initial sensor
deployment (cf. Figures 5(a) and 5(b)), the decentralised algorithm
starts outperforming its centralised counterpart aftert ≈ 250. The
explanation for this is found in Figure 7(c) that shows the number of
active sensors over time: the decentralised algorithm requires less
sensors for the initial deployment, and therefore has more sensors
available to replace failed ones.

Finally, we recorded the total sensor coverage provided over time
for several radio rangesR. Sensor coverage over time is defined
as the area of the region below the graphs shown in Figures 7(a)
and 7(b). For this experiment, we added an additional benchmark
strategy that activates only a single sensor at a time (referred to
as ‘Single On’). The performance of this strategy acts as an up-
per bound on the total coverage over time that can be achieved,
since no two sensors redundantly cover the space. Figures 8 and 9
show the results. These figures confirm that ‘On’ is outperformed
by both greedy algorithms for several values ofR, and by around
250% forR = .2. Moreover, by comparing the performance of our
algorithms to that of ‘Single On’, we see that these algorithms man-
age quite effectively to minimise redundant coverage, since ‘Single
On’ has no redundant coverage by its very nature. The most impor-
tant conclusion we can draw from these experiments, however, is
that the decentralised algorithm achieves at least 80% of the sens-
ing quality of the centralised greedy algorithm (92% forR = .2),
while only requiring local communication and computation.
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(a) Coverage over time
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(b) Coverage over time (largest component)
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(c) Active sensors over time

Figure 7: Results for the dynamic algorithms (M = 300, R = 0.2).
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Figure 9: Total coverage over time of largest component.

6. CONCLUSIONS
In this paper, we developed a novel decentralised algorithm that
activates a subset of a wireless sensor network, such that the con-
nectivity graph of the resulting sensors is triangle-free, while at the
same time maximising sensing coverage. Moreover, we also de-
veloped a centralised greedy algorithm based on the notion of sub-
modular independence systems, for which we derived a theoretical
lower bound of1/7 on the approximation ratio of the algorithm.
We then proceeded to consider dynamic settings, in which sensors
can fail, or new sensors can be added to the existing deployment,
and extended both our algorithm and the centralised greedy algo-
rithm to operate in such settings. We empirically evaluated our
algorithm by benchmarking it against the centralised algorithm and
an optimal one. We showed that the selected sensors manage to
achieve 90% of the coverage provided by the optimal algorithm,
and 85% of the coverage provided by activating all sensors. Equally
important, we showed that the frequency assignment problem in the
resulting sensor network can be solved by a simple decentralised
graph colouring algorithm. Finally, in the dynamic setting, our al-
gorithm provides 250% more coverage over time compared to ac-
tivating all available sensors simultaneously.

Our future work in this area is to extend the applicability of these
algorithm to passive mobile sensors. These are sensors that are
moved by forces beyond their control, such as wind or water. Since
the connectivity graph will be subject to constant change, the com-
puted subgraph of the sensor network might have to be periodically
revised. Furthermore, we would like to investigate the use of de-
centralised scheduling algorithms (e.g. [4]) to reduce redundant
coverage by overlapping sensing areas, which would improve the
lifetime of the network even further.
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