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a b s t r a c t

This study presents a new approach based on a hybrid algorithm consisting of Genetic Algorithm (GA),
Pattern Search (PS) and Sequential Quadratic Programming (SQP) techniques to solve the well-known
power system Economic dispatch problem (ED). GA is the main optimizer of the algorithm, whereas PS
and SQP are used to fine tune the results of GA to increase confidence in the solution. For illustrative pur-
poses, the algorithm has been applied to various test systems to assess its effectiveness. Furthermore,
convergence characteristics and robustness of the proposed method have been explored through compar-
ison with results reported in literature. The outcome is very encouraging and suggests that the hybrid
GA–PS–SQP algorithm is very efficient in solving power system economic dispatch problem.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Economic dispatch (ED) is an optimization problem where opti-
mal generation for each generator is determined to minimise total
fuel costs, subject to equality constraints on power balance and
inequality constraints on power outputs. Moreover, transfer losses,
generation rate changes and line flows may also be considered. The
complexity of the problem increases dramatically with the number
of units because of their combinatorial nature. For the sake of sim-
plicity, the cost function for generating units is often approximated
by a quadratic function.

A variety of techniques may be used to solve ED problems;
some are based on classical optimization methods, such as linear
or quadratic programming [1,2], while others use artificial intelli-
gence or heuristic algorithms. Classical techniques are highly sen-
sitive to a selection of the staring point and often converge to a
local optimum or even diverge altogether. Linear programming
methods are generally fast and reliable but use piecewise linear
cost approximation which reduces accuracy. Non-linear program-
ming methods, on the other hand, have convergence problems
and often result in very complex algorithms. Newton based algo-
rithms suffer from difficulties associated with handling a large
ll rights reserved.
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number of inequality constraints [3]. More recently, heuristic
search techniques – such as particle swarm optimization (PSO)
[4–6] and genetic algorithm (GA) [7] – have also been considered
in the context of ED. In addition, differential evolution algorithms
were implemented to solve the ED problem [8–10]. Differential
evolution (DE) is a stochastic search based method, which can
present a simple structure, convergence speed, versatility, and
robustness. However, DE fast convergence might lead the direction
of the search toward a local optimal and premature solution. Final-
ly, the use of harmony search (HS) method to find the global or
near global solution for the ED problem can be found in [11,12].
HS is considered as a stochastic random search method, which
does not need any information about the derivative. Nevertheless,
HS has some insufficiencies associated with the premature conver-
gence in its performance.

In the pursuit of the optimal solution for ED, various hybrid
methods have been investigated and implemented [13–15]. A com-
bined Particle Swarm Optimization and Sequential Quadratic Pro-
gramming (PSO–SQP) algorithm was developed in [13], where
PSO is the main optimizer and the SQP is used to fine tune the
PSO solution. However, since SQP is a gradient dependent method,
its application to non-continuous, non-differentiable and multi-
modal problems, such as ED, might not lead to an optimal solution.
An increasing international concern about environment also affects
the field of power generation where environmental issues are ad-
dressed directly. In another hybrid approach [14], the Differential
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Evolution (DE) and the Sequential Quadratic Programming (SQP)
were combined into a single algorithm and used on 13 and 40 ther-
mal units whose incremental fuel cost functions contain the valve-
point loading effect. In [15] the authors combined three evolution-
ary methods to solve a fuzzy modelled Unit Commitment Problem
(UCP). The three methods are Tabu Search (TS), Particle Swarm
Optimization (PSO) and Sequential Quadratic Programming (SQP)
(referred to as a hybrid TS–PSO–SQP). TS is used to solve the com-
binatorial sub-problem of the UCP. Then the non-linear program-
ming sub-problem of the UCP is solved using the hybrid PSO–
QSP technique.

Finally, a particular family of global optimization methods,
known as Direct Search methods, originally introduced and devel-
oped by researchers in 1960s [16], has recently received some
attention. The Direct Search methods are simply structured to ex-
plore a set of points, in the vicinity of the current position, looking
for a smaller objective function value than the current one. This
family includes Pattern Search (PS) algorithms, Simplex Methods
(SM) (different from the simplex used in linear programming),
Powell Optimization (PO) and others [17]. Direct Search methods,
in contrast to more standard optimization methods, are often
called derivative-free as they do not require any information about
the gradient (or higher derivative) of the objective function when
searching for an optimal solution. Therefore Direct Search methods
are particularly appropriate for solving non-continuous, non-dif-
ferentiable and multimodal (i.e. multiple local optima) optimiza-
tion problems, such as the economic dispatch.

The main objective of this study is to introduce a hybrid method
that combines the Genetic Algorithm (GA), Pattern Search (PS) and
Sequential Quadratic Programming (SQP) – referred to as the hy-
brid GA–PS–SQP method – in the context of power system eco-
nomic dispatch problem with a valve-point effect. The valve-
point effect is a ‘ripple’ added to the generating unit’s curve when
each steam admission valve in a turbine starts to open. Therefore,
to improve accuracy when using this model, an additional term
representing the valve-point effect is added to the cost function
as suggested in [18]. The addition of the valve-point effect poses
a more challenging task to the proposed method since it increases
the non-linearity of the search space as well as the number of local
minima (see Fig. 1). The introduction of PS in the proposed hybrid
algorithm as a refining search method has added additional factor
of confidence in the final solution. In addition, the proposed meth-
od consists of a combination of three search methods that have
been used for the first time together in the literature.
Gene

Cost

fuel cost curve with valve-point

fuel cost curve without valve-poi

Fig. 1. The valve-
The proposed hybrid method has eliminated the need to pro-
vide a suitable starting point for PS and/or SQP. This feature led
to the reduction of total execution time of the algorithm when
compared to other reported methods. In a previous paper of the
authors [19], finding a proper initial point for PS required an ex-
tended computational time to locate its best solution. The addi-
tional time came from the need to execute the algorithm with
100 different starting points to get the minimum fuel cost reported
in [19]. On the other hand, the proposed algorithm needed only
one single run (Case I only) to produce acceptable results that
can be compared to the outcomes of the other methods. More de-
tails will be presented in the numerical result section.

The paper is organized as follows: Section 2 introduces the
problem formulation; Section 3 presents a description of the pro-
posed PS algorithm; the analysis and test results are included in
Section 4, followed by concluding remarks.

2. Problem formulation

The traditional formulation of the economic dispatch problem is
a minimization of summation of the fuel costs of the individual dis-
patchable generators subject to the real power balanced with the
total load demand as well as the limits on generators outputs. In
mathematical terms the problem may be stated as:

F ¼
XN

i¼1

FiðPiÞ ð1Þ

The incremental fuel cost functions of the generation units with
valve-point loading are represented as follows [20]:

FiðPiÞ ¼ aiP
2
i þ biPi þ ci þ jei � sinðfi � ðPi min � PiÞÞj ð2Þ

subject to

XN

i¼1

Pgi ¼ PD þ PL ð3Þ

Pgimin
< Pgi < Pgimax

; i 2 Ns ð4Þ

where F is the system overall cost function, N the number of gener-
ators in the system, di, bi, ci the constants of fuel function of gener-
ator number i, ei, fi the constants of the valve-point effect of
generator number i, Pgi the active power generation of generator
number i, PD the total power system demand, PL the total system
transmission losses, Pgimin

the minimum limit on active power gen-
ration

nt

point effect.
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eration of generator i, Pgimax
the maximum limit on active power

generation of generator i, and Ns is the set of generators in the
system.

The sinusoidal term added to the fuel cost function which mod-
els the valve-point effect creates ripples in the heat-rate curve and
therefore introduces more local minima to the search space.

For the sake of simplicity, the system losses are ignored for all
the test arrangements reported in this study.

3. Methods description

Due to the limitations on the length of this paper, and good cov-
erage of the GA technique in the literature, only the PS and SQP
method will be briefly mentioned here. A more comprehensive
description of the technique may be found in the recent publica-
tion by the authors [17].

3.1. Pattern search

The Pattern Search (PS) is an evolutionary routine suitable for
solving a variety of optimization problems that lie outside the
scope of typical optimization tasks, and has the advantage of being
very simple in concept, easy to implement and computationally
efficient. Unlike, say, genetic algorithms [21,22], the PS has a flex-
ible and well-balanced operator able to enhance and adapt the glo-
bal as well as fine tune the local search. A helpful review of direct
search methods for unconstrained optimization may be found in
[17].

The PS algorithm computes a sequence of points that may or
may not approach the optimum. First, a set of points called a mesh
is established around an existing point (initial or from the previous
step). If a point in the mesh is found to improve the objective func-
tion, the new point becomes the current point at the next iteration.
The PS begins with an initial point X0 supplied by the user. At the
first iteration, with a scalar = 1 (called the mesh size), the pattern
vectors (or direction vectors) are constructed as ½01�, ½10�, ½�10�
and ½0 � 1� þ X0, and new mesh points are added as illustrated
in Fig. 2. Objective functions are computed until a value smaller
than for X0 is found. If there is such a point, the poll is successful
and the algorithm sets this point as equal to X1 .

After a successful poll, the algorithm multiplies the current
mesh size by 2, (called the expansion factor) and proceeds to iter-
ation 2 with the following new points: 2 � ½10� þ X1;2 � ½01� þ X1,
2 � ½�10� þ X1 and 2 � ½0 � 1� þ X1. If a value smaller than for X1

is found, X2 is defined, the mesh size is increased by two and iter-
ations continue. If at any stage the poll is unsuccessful, i.e. no point
has an objective function smaller than the most recent value, the
current point is not changed and the mesh size is reduced (e.g.
by multiplying by 0.5, a contraction factor). These steps are re-
peated until the optimum is found, that is one of the terminating
Fig. 2. PS mesh points and the pattern.
conditions occurs, for example the mesh size is less than the set
tolerance, the maximum number of iterations has been reached,
the change in the value of the objective function is very small, or
similar. The algorithm is depicted in Fig. 3.

3.2. Sequential quadratic Programming

The solution of the Kuhn–Tucker (KT) equations forms the basis
of many non-linear programming algorithms. These algorithms at-
tempt to compute the Lagrange multipliers directly. Constrained
quasi-Newton methods guarantee super linear convergence by
accumulating second order information regarding the KT equations
using a quasi-Newton updating procedure [23]. These methods are
commonly referred to as Sequential Quadratic Programming (SQP)
methods, since a QP sub-problem is solved at each major iteration
(also known as Iterative Quadratic Programming, Recursive Qua-
dratic Programming, and Constrained Variable Metric methods).
The QP optimization problem can be described as follows:

min
1
2

dT
k Hkdk þrf xT

k dk

� �

subject to ½rgxk�
T dk þ gixk ¼ 0 i ¼ 1; . . . ;me

½rgxk�
T dk þ gixk � 0 i ¼ me þ 1; . . . ;m

where Hk is the Hessian matrix of the Lagrange func-
tionLðx; kÞ ¼ f ðxÞ þ

Pm
i¼1ki � giðxÞdk is a basis of the search direction

of the kth iteration.
SQP can be decomposed into three main stages:

� Updating of the Hessian matrix of the Lagrangian function.
� Line search and merit function calculation.
� Quadratic programming problem solution.

A convergence test is made at each iteration, after the solution
of the quadratic programming problem until the control variables,
gradient of functions and objective function reaches a specified tol-
erance value [24,25]. It should be mentioned that SQP method
needs a starting point, which will be provided from the second
phase of computation (PS phase).

Many ideas have been suggested to ensure that the solution sat-
isfies the constraint [26]. For example, the constraint can be aug-
mented with the objective function using Lagrange multipliers. In
this way the size of the problem will increase by introducing
new parameters. In this study, the Pattern Search (PS) method han-
dles constraints by using augmented Lagrangian to solve the non-
linear constrained economic dispatch problem [27–30]. The vari-
ables’ bounds and linear constraints are handled separately from
non-linear constraints. Thus a sub-problem is formulated and
solved, having the objective function and non-linear constraint
function, using the Lagrangian and the penalty factors. Such a
sub-problem is minimized using a pattern search method, where
the linear constraints and bounds are satisfied. For more explana-
tion on how PS handles constraints refer to [29,31,32].

4. Numerical results

In order to asses the effectiveness and robustness of the pro-
posed hybrid method, several test cases of economic dispatch with
valve-point effect have been considered. For simplicity, transmis-
sion losses are ignored in all test cases (PL in Eq. (3) is set to zero).
The non-linear minimization problem formulation of all test cases
has been solved using the predefined functions ga, pattern search
and fmincon incorporated into the GA & DS toolbox of Matlab
[31]. Consequently, cost coefficients of the fuel cost and the com-
bined objective function for the considered test cases were coded
in Matlab environment.
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Fig. 3. Flow chart of the proposed hybrid method.
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Initially, several runs were carried out with different values of
the key parameters of GA, PS and SQP, such as migration rate,
cross-over rate, population size, initial mesh size, and mesh
expansion and contraction factors. For the GA, different values
for migration rates and cross-over were chosen for each case,
whereas the population size for GA was set to 100. The mesh size
and the mesh expansion and contraction factors were selected as
1, 2, and 0.5 respectively. As for the terminating criteria in PS
iterations, all tolerances were set to 10–6 and the maximum
number of iterations and function evaluations were chosen to
be 1000. All runs were conducted using a modest laptop com-
puter with 1 GHz Pentium 3 processor and 256 MB of RAM, so
the comparisons of computing times with those given in litera-
ture should be fair.
4.1. Case I: three generating units

Three generating units have been modelled using a quadratic
cost function and with the effects of the valve-point loading in-
cluded. All data (upper and lower bounds for the units and fuel cost
coefficients a, b, c, e, and f) are given in [20,32], and the load de-
mand is 850 MW.

The hybrid GA–PS–SQP algorithm has been executed 100 times
to study its performance and effectiveness. The proposed algo-
rithm has produced the same final result for the 100 runs. It was
concluded that Case I needs only single run to reach its optimal
or near optimal solution. The execution times have been compared
with other evolutionary methods, such as Genetic Algorithm (GA),
Evolutionary Programming (EP) and Particle Swarm Optimization



Table 1
Generator loading and total fuel cost with the total load demand of 850 MW (Case I).

Method P1 (MW) P2 (MW) P3 (MW) PD (MW)

GA 398.7 399.6 50.1 848.4
EP 300.3 400.0 149.7 850.0
EP–SQP 300.3 400.0 149.7 850.0
PSO 300.3 400.0 149.7 850.0
PSO–SQP 300.3 400.0 149.7 850.0
PS 300.3 399.9 149.7 850.0
GA–PS–SQP 300.3 400.0 149.7 850.0

Total fuel cost ($/h) = 8234.1

Table 2
Comparison of execution times and costs.

Method Mean time (s) Best cost ($/h) Mean cost ($/h)

GA 35.80 8222.1 8234.7
EP 6.78 8234.1 8234.2
EP–SQP 5.12 8234.1 8234.1
PSO 4.37 8234.1 8234.7
PSO–SQP 3.37 8234.1 8234.1
PS 0.81 8234.1 8352.4
GA–PS–SQP 15.28 8234.1 8234.1

Cost Comparison
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Fig. 4. Minimum cost comparison.

Table 3
Generator loading and fuel cost determined by the GA–PS–SQP hybrid method with
total load demand of 1800 MW.

Generator Unit generation (MW)

Pg1 628.31
Pg2 148.50
Pg3 224.03
Pg4 109.75
Pg5 109.85
Pg6 60.00
Pg7 109.86
Pg8 109.83
Pg9 109.86
Pg10 40.00
Pg11 40.00
Pg12 55.00
Pg13 55.00

Total cost ($/h) 17964.25

Table 4
Comparison of GA–PS–QSP results (Case II).

Evolution method Mean time (s) Minimum cost ($/h) Mean cost ($/h)

EP 157.43 17,994 18,127
EP–SQP 121.93 17,991 18,107
PSO 77.37 18,031 18,206
PSO–SQP 33.97 17,970 18,030
PS 5.88 17,969 18,089
HQPSO(5) – 17,964 18,274
FAPSO–NM 6.8 17,964 17,964
IHS – 17,960 17,965
DE 1050.8 17,964 17,965
GA–PS–QSP 11.06 17,964 18,199
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(PSO), presented in [13]. Moreover, previous results from the
implementation of the Patter Search (PS) method in ED problems
have also been added [19]. This numerical experiment compares
the performance of the proposed hybrid algorithm with the other
methods in terms of the dispatching cost and the speed of conver-
gence. Table 1 shows the optimal solutions determined by the dif-
ferent methods, whereas the execution times and cost comparison
are shown in Table 2.

All methods (except GA) give an almost identical ‘best’ solution,
whereas ‘mean’ costs differ slightly. The mean execution time for
the proposed hybrid method is worse than for the other methods,
except for GA, due to three consecutive searches being applied
when seeking the best solution. However, the proposed algorithm
requires only one run (in this case only) to achieve its final solu-
tion, whereas the other methods needed 100 runs. The reported
times in other methods were the mean execution times, and the
total run time in this case should be the mean multiplied by the
number of runs (100). For a fair comparison in computation time,
the total run times of the other algorithms should be compared
with the execution time of the proposed method. For example,
the total computational time for PS (100 runs) was 22.14 s, and
when compared to GA–PS–SQP’s 15.28 s, one can find that the pro-
posed algorithm has saved about 30% of computational time. Figs.
4 and 5 compare the results of the methods in terms of the mini-
mum cost and the best execution time, respectively.

For GA, the population size, migration rate and cross-over rate
were set to 100, 0.76 and 0.4, respectively, while the parameters
for the PS were stated previously.

4.2. Case II: 13 generating units

In this test there are 13-generating units, while quadratic cost
functions combined with the effects of valve-point loading have
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been used as before. All data for the 13 generators may be found in
[32,33] and the load demand is 1800 MW. The GA–PS–SQP algo-
rithm has been executed 100 times. Similar comparisons as for
Case I are summarized by Tables 3 and 4. The results for the other
methods are taken from [4,5,9,12,13,19].
In this case the GA–PS–QSP hybrid method outperforms all
other algorithms in terms of achieving the best minimum cost
(although differences are quite small), while at the same time
offering significant saving in computing times – except for the PS
method (see also Figs. 6 and 7). It appears that the proposed



Table 6
Comparison of GA–PS–SQP results (Case III).

Method Mean time (S) Minimum cost ($) Mean cost ($)

EP 1167.35 122,624 123,382
EP–SQP 997.73 122,324 122,379
PSO 933.39 123,930 124,154
PSO–SQP 733.97 122,094 122,245
PS 42.98 121,415 122,333
FAPSO–NM 40 121,420 121,419
DE 72.94 121,416 121,423
GA–PS–SQP 46.98 121,458 122,039
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Table 5
Generator loadings and fuel costs determined by GA–PS–SQP (Case III).

Generator Generator production
(MW)

Generator Generator production
(MW)

Generator Generator production
(MW)

Generator Generator production
(MW)

Pg1 110.97 Pg11 168.80 Pg21 523.28 Pg31 190.00
Pg2 111.02 Pg12 168.80 Pg22 523.28 Pg32 190.00
Pg3 120.00 Pg13 214.76 Pg23 523.28 Pg33 190.00
Pg4 179.73 Pg14 394.28 Pg24 523.28 Pg34 164.80
Pg5 88.27 Pg15 304.52 Pg25 523.28 Pg35 200.00
Pg6 140.00 Pg16 304.52 Pg26 523.28 Pg36 200.00
Pg7 259.60 Pg17 489.28 Pg27 10.00 Pg37 110.00
Pg8 284.60 Pg18 489.28 Pg28 10.00 Pg38 110.00
Pg9 284.60 Pg19 511.28 Pg29 10.00 Pg39 110.00
Pg10 130.00 Pg20 511.28 Pg30 88.66 Pg40 511.28

RPgi = 10,500 MW Total cost: $121458.14
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algorithm performs better as the problem becomes larger and
more complex. The migration and cross-over rates for GA have
been changed in this case to 0.64 and 0.3, respectively, whereas
the population size is the same as in the previous case. For the re-
cord, the best solution time and the minimum time for the 100
runs were 11.06 s and 6.77 s, respectively.

The proposed hybrid method has generated very satisfactory
solutions, all 100 being within 2.3% of the best result. The maxi-
mum cost and the total execution time for the 100 runs were
18,392 $/h and 1054.9 s, respectively.
PS GA-PS-
SQP

Minimum Cost
Mean Cost

son for Case III.

PSO-SQP GA-PS-SQPPS
ethod

parison (Case III).
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4.3. Case III: 40 generating units

The final test case consists of 40 generating units with full data
given in [32,34]. The GA–PS–SQP algorithm has been executed a
hundred times and the results and comparison with other methods
from [5,9,13,19] are given in Tables 5 and 6, respectively, while
Figs. 8 and 9 show the comparison of costs and best times for all
methods. The load demand is 10,500 MW.

Fig. 10 illustrates the quality of the optimum depending on the
starting point provided by the hybrid GA–PS to the SQP algorithm.
The tendencies and the properties of the algorithm are similar to
those observed when studying Case II. Overall, the proposed hybrid
method yields the best mean cost of all the methods compared, at
significant savings of computational effort. These short computing
times allow for more cases to be studied with the aim of increasing
the confidence in the final solution. In addition, all results from the
100 runs are within 1% of the best value. It may therefore be con-
cluded that the first stage (i.e. the outcome of the PS) provides a
good staring point to the final search method to ensure that all re-
sults are global or near global solutions. In this case the migration
rate, cross-over rate and population size are the same as for Case II,
and the total computation time for the 100 runs is 4467.64 s.

One of the identified advantages of combining the three tech-
niques into a hybrid GA–PS–SQP is to do with the removal of the
requirement to provide an initial (staring) point for the algorithm
to commence the search. The PS technique on its own, successfully
implemented and reported in the previous paper [19], relies on a
good initial ‘guess’ making the technique more susceptible to get-
ting trapped in local minima. In the proposed hybrid method, the
initial search based on the use of the GA does not require the user
to provide such a starting value as the search is performed auto-
matically. The tests undertaken have confirmed that this indeed
makes the whole optimization process more robust and explains
why the error bound of all solutions is now so narrow, much better
than when using the other techniques.

5. Conclusions

This paper describes a novel hybrid approach based on a combi-
nation of Genetic Algorithm (GA), Pattern Search (PS) and Sequen-
tial Quadratic Programming optimization (SQP) to study power
system economic dispatch problems, taking account of the valve-
point effect. Three test cases (numerical experiments) have been
studied, consisting of 3, 13 and 40 generators, respectively, and
comparisons of the quality of the solution and performance have
been conducted against Evolutionary Programming (EP), Particle
Swarm Optimization (PSO), hybrid EP–SQP (Sequential Quadratic
Programming) and hybrid PSO–SQP methods. The results demon-
strate that the proposed scheme outperforms the other methods
in terms of better optimal solutions and significant reduction of
computing times. The economy of computation is particularly
noticeable for more complicated problems with larger number of
units. Furthermore, the GA–PS–SQP technique has overcome an
important drawback of the PS or SQP methods that is the need to
supply a suitable starting point. This shortcoming of the PS and
SQP methods was highlighted in the previous work of the authors
as it makes any optimization method relying on a good choice of
the initial point possibly more susceptible to getting trapped in lo-
cal minima, although the much improved speed of computation al-
lows for additional searches to be made to increase the confidence
in the solution. The hybrid GA–PS–SQP algorithm, on the other
hand, does not require the user to specify the starting point as it
is generated automatically for the final SQP stage by the initial
GA–PS phase. Moreover, the performance of the proposed hybrid
method improves with the increase of size and complexity of the
system. Overall, the proposed algorithm has been shown to per-
form extremely well for solving economic dispatch problems.
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