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ABSTRACT 

Timing diagrams provide an intuitive graphical 

specification for time constraints and causal dependencies 

between a system’s objects. Such a view can provide 

useful insight during Requirements Engineering (RE). 

Formal Modeling techniques allow abstract system level 

models to be explored in revealing detail and provide 

feedback via verification and validation methods such as 

proofs of consistency, model checking and animation. 

Here, we bring these two modelling approaches together. 

In particular we present techniques to extend a graphical 

modeling capability for formal modeling into the real-

time domain by developing a Timing diagram view for 

the Event-B formal method and its graphical front-end, 

UML-B. Translation schemes to Event-B and UML-B are 

proposed and presented. A case study of a lift system is 

used to demonstrate the translation in practice. 
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1.  Introduction 
 

Event-B [1] is a formal language for state-based modeling 

and verification of systems. An extensible, open-source 

platform for Event-B modelling and verification has been 

developed in the context of RODIN [2], a European IST 

project. Event-B enables a precise system requirements 

specification to be developed and verified using set-

theoretic notation. However, Event-B has no explicit 

support for specifying timing constraints and causal 

dependencies within system requirements. Moreover, 

using FMs, such as Event-B, can involve a costly learning 

curve as effective modelling requires training of engineers 

[3]. Research [4] shows that this learning curve is easier 

to overcome if more intuitive graphical modelling 

interfaces are used. The UML-B [5] is a UML-like 

graphical front-end for Event-B. The UML-B uses Class 

diagrams and Statemachines to generate system 

specification models. Additional textual guards, actions 

and invariants can be added in the Event-B notation. The 

UML-B models are then automatically translated into 

Event-B using the U2B translator where the Rodin 

verification tools perform static (type and syntax) 

checking and any problems are annotated back on the 

UML-B diagrams 

 

To some extent, the requirements of timing constraints 

and causal dependencies among system’s objects can be 

expressed using Statemachines in UML-B. However, 

there are limitations to this approach. For instance, in 

general, causal interactions will exist between the 

transitions of several statemachines and cannot be seen on 

one diagram or view making them hard to visualise. It is 

not helpful for the users in term of modeling. In a Timing 

diagram (TD), we can describe the causality explicitly in 

the arrows between events and have them all in the same 

screen. The TD notations include graphically described 

timing constraints. It is very natural to form expressions 

as timing constraints.  

 

Our contribution focuses on how the parts of a system’s 

requirements concerned with timing constraints and 

causal dependencies between a system’s objects, are 

generated into FM models. That is, adding to Event-B and 

UML-B the ability to express timing constraints and event 

dependency requirements. A lift system based on 

Jackson’s work [6] (in which there is one lift in the 

system) is used as a primitive case study. The case study 

has been modified by adding timing constraints to event 

dependency requirements to demonstrate the issue of this 

paper.  The TD we use is a variation of the OMG’s TD 

[7]. It has been amended to include features that simplify 

translation into Event-B. 

 

There exist TD editors such as TimeGen [8], TimingTool 

[9], and SynaptiCAD [10]. In general, those editors are 

engineering computer-aided design (CAD) software tool 

that helps draw Timing diagrams. The output Timing 

diagrams are then exported to other applications, such as 

PDF, HTML and GIF for use in writing design 

specifications. Although these editors can identify clock 

and use arrows to show a cause and effect, they do not fit 

with our research since they are not suitable to define 

simultaneous events nor complex combinations of causal 

relationships as in our TD. Moreover, they are not written 



on the Eclipse framework making tooling more difficult 

to achieve. Thus, they would not easily fit as a plugin 

extension of RODIN and UML-B. 
 

The rest of the paper is structured as follows. Section 2 

gives an overview of the research. Section 3 presents 

transformation rules for TD to Event-B and UML-B. 

Section 4 compares and evaluates the technique for the 

two translations techniques. Finally, section 5 concludes 

our work and defines future research directions. 

 

 

2.  Overview and Background 
 

2.1 Contribution Overview 

 

We show how to generate Event-B models from TD as 

shown in Fig. 1. Requirements are partitioned into other 

requirements (non-timing), and timing and causal 

dependency requirements. The causal dependency and 

timing constraints requirements are modeled by TD. As a 

precursor to tool development, rules were specified for 

mapping TD to Event-B in order to gain experience and to 

formalise the definition of TD. The rules were based on 

TD Backus-Nuar Form (BNF) definitions that we have 

generated. Moving towards practical tool development we 

transform TD to UML-B using a model-to-model 

transformation written in Atlas Transformation Language 

(ATL) [11]. Other requirements are used to manually add 

the remainder of the Event-B and UML-B models for 

completion. Next, Event-B and UML-B models are 

analysed/verified by the RODIN Toolkit. Any errors may 

lead to revisions of the system requirements, the TD 

models or the manually added parts of the models 

depending on the source of the problem. 

 

Fig. 1.  Contribution Overview 

 

This step is repeated until the models are correct by 

means of proof. This process has a beneficial effect on 

system requirements as it increases the degree of 

confidence that the output system has few errors, is 

unambiguous and consistent. 

 

2.2 Timing Diagram 

 

Timing diagrams (TDs) model changes to an object’s 

state through time. Our TD notations are based on the 

UML Robust TD notations [7] which shows the state of 

each object on the Y-axis while timing constraints are on 

the X-axis. A subset of the UML TD notation is selected 

and some notations are adapted so that they are more 

suitable for generating expressions in Event-B.  

 

To illustrate our TD notation, we use the lift system 

example described below and its corresponding TD 

shown in Fig. 2. 

“The relation between lift movement and the floor sensors 

is: whenever a user presses a button to request a lift, the 

lift starts moving departing up (a) or departing down (b) 

from the current floor. Within between 2-5 seconds after 

the lift starts moving departing up/down, the current floor 

sensor will turn off. At the same point of time, if the lift 

starts moving departing up say, the up lamp changes its 

status to activate (d) while the down lamp changes its 

status to deactivate (c)” 

 

In our TD for this example, we show four Timelines 

which represent the state changes in time for the objects: 

floorsensor, lift, uplamp, and downlamp, belonging to 

classes FLOORSENSOR, LIFT, UPLAMP and 

DOWNLAMP respectively. The solid arrowed line (called 

CauseAffectArrow) represents the cause-effect 

relationships among objects. A compound cause-effect 

can be specified using 
�

 and � symbols which represent 

disjunction and conjunction respectively.  

 

Fig. 2.  A lift Timing diagram 

 

In Fig. 2, the floorsensor Off2 segment has a 

CauseEffectArrow that consists of a disjunctive 

combination of two CauseEffectArrow. This means the 

floorsensor� is set to Off if the lift is in either the state 

MovingDepartingUp or MovingDepartingDown. 

Predicates such as f = currentFl & dir = Up are additional 

conditions on the CauseEffectArrow where f represents 

a floor and is a dynamic state parameter that can change 

in time. Here, f is also the object index for class 

FLOORSENSOR.The currentFl represents the present 

floor for the lift, while dir represents the direction of the 

lift. The curved, dashed-lines (c and d) represent 

SimultaneityArrow. They are used to synchronize the 



liftMovingDepartingUp segment with the uplamp and 

downlamp objects to indicate that the occurrences of these 

events happen arbitrarily close to each other with no 

particular constraint (at this level of abstraction). A timing 

constraint is defined using symbols, i.e. [t1, t2] indicates 

the time constraint > t1 and < t2. 

 

2.3 Event-B 

 

An Event-B model comprises static and dynamic parts, 

which are called CONTEXT and MACHINE respectively. A 

machine SEES at least one context. The CONTEXT may 

contain carrier sets, constants, axioms and theorems. The 

MACHINE defines the behavior of the Event-B model. 

Machine variables are used to maintain state information 

while performing events. Invariants define properties over 

the state of the variables that must be satisfied by all 

events. Events define spontaneously occurring atomic 

units of behavior that make state changes. An event has a 

name and is composed of guards G and actions S. Guards 

identify lists of conditions for the event to occur, while 

actions identify how the state variables evolve when the 

event occurs. The general form of an event with event 

local variables l is shown in Fig. 3 (as highlighted). Note 

that this paper presents only an example of generating 

parts of an event’s guard from the TD as described in 

section 3.1. 

 

 

Fig. 3. The structure of an Event-B model 

 

2.4 UML-B 

 

UML-B is a tool that supports the construction of an 

Event-B graphical model. An UML-B project is contained 

in a package diagrams. A package diagram is used to 

describe the association between component, CONTEXTS 

and MACHINES, in an UML-B project (see Fig. 4. top for 

an example of a package diagram). The CONTEXTS are 

used to define constant data while the MACHINES are 

described by Class diagrams and Statemachines to 

represent variables and events.  

 

 

 
 

 
 

Fig. 4. UML-B floor sensor Class and Statemachine 

 

For example, Fig. 4., there are two classes: 

FLOORSENSOR and FLOOR.  The association 

floorsensorAtFloor represents the link from each floor 

sensor to its corresponding floor. The association’s 

multiplicities show that each floor sensor belongs to 

exactly one floor and each floor has one floor sensor. The 

Statemachine attached to classes (as shown in Fig. 4., 

floorsensor_stmch) is used to describe behavior of an object 

in that class, in this case is the floor sensor. The 

Statemachine’s transitions (as shown in Fig. 4., 

floorsensorOff) represent events in which the additional 

behavior associated with the change of states can be 

identified by using properties windows (as show in Fig. 4. 

bottom). UML-B models can then be automatically 

translated to Event-B using the U2B translator. The 

Event-B model is then verified by the RODIN toolkit for 

static checking and proof obligations (POs) are 

automatically generated by the RODIN tools. 

 

2.5 ATL 

 

ATL [11] is a model to model transformation language 

that was developed for the Eclipse Modelling Framework 

(EMF) [12]. We select ATL since UML-B is built on the 

same EMF and ATL provides a declarative notation to 

define the transformation and good tool support for 

generating usable tools. An ATL transformation module 

is composed of rules that define how source model 

elements are matched and navigated to create and 

initialize the elements of the target model. An ATL 

module is consists of 2 parts: header and transformation 

rules. The header declares the source and target models 

used for the transformation. For example, in our work, TD 

is used as a source model to generate a target model, 

UML-B. The transformation rules express the 

transformation logic and provide the means for ATL 

developers to specify the target model elements to be 

generated from the source model elements. The full ATL 

declaration can be found at [11]. Here, we provide 

examples of ATL transformation rules, that are used in 

this research, as described in section 3.2.  



3.  Transformation of Timing Diagrams 
 

We present two approaches to linking timing diagrams 

with Event-B. In the first approach we manually 

translated TD into Event-B in one step. This approach 

was useful as a learning stage and to provide a formal 

definition of TD (leveraged from the corresponding 

Event-B).  However, for tool supported translation and 

verification a more pragmatic approach is to provide TDs 

as an extension to UML-B. UML-B already provides 

support for the underlying features such as classes, 

objects, states and transitions. In the second approach 

described in this section, we describe a  translation from 

TD into UML-B. 
 

3.1 Direct translation into Event-B 
 

We firstly provide a definition of TD in Backus-Nuar 

form (BNF) and then identify translation rules using the 

TD BNF definition. Parts of the TD BNF are illustrated 

below: 
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A TD machine has a (unique) name and one or more 

classes. A class consists of a name (�
�������), at least 

one object (���- and an object definition (�������). An 

object has a name (�������), at least one state (�����) 

and a�����
���. A ����
��� consists of at least one segment. 

A segment represents one of its owner object’s states in a 

particular sequence of state changes and is therefore 

always associated with a unique state transition by which 

it can be reached. Hence an state value could be 

represented by several different segments.. For example 

in Fig. 2., �������	
��
����
� which is reached from �
�
�
������� is a different segment from 

�������	
��
����
� which is reached from 

���������������
�. A segment may own a 

����������� ��!" which  defines a constraint (�!��������) 

on the transition to reach that segment. The constraint is 

defined by a type (�!$��%&�) which can be a simple 

(���&
�) or a grouping of either OR nodes (�(��!$�) or 

AND nodes ( ����!$�). Those grouping nodes allow one 

to create compound cause conditions. A ���&
� constraint 

consists of a cause segment (����������), which is the 

source of the ����������� ��!", an optional timing 

constraint (������) and an optional string condition 

()��$�����). A timing constraint provides bounds to the 

time interval between the cause segment being entered 

and the target segment being reached. To simplify the 

expression of rules, we provide a set of basic ‘accessor’ 

translation rules that extract a sub-clause from a 

compound one. For example: 
 

�������(���&
�) → �������; this rule produces the ������ 

value for an input ���&
�. 

 

Generally, a translation rule is composed of a sequence of 

basic rules which may have sub-rules. For example, in 

Fig. 5, we show the top-level translation rule �����	 that 

is used to iteratively create all the Event-B events in a 

Machine. 

 

The rule �����	 uses a TD ������� for an� input 

parameter. Segments that are the target of a 

SimultaneityArrow do not generate a new event. 

Instead they contribute actions to the event generated 

from the segment that is the source of the 

SimultaneityArrow. A top-level rule, such as �����	, 

constructs the structure of an Event-B element using mid-

level rules. The mid-level rules produce text fields by 

concatenating strings that are obtained from parts of the 

TD model using the basic accessor rules.  

An Event-B event is created from 4 groups of the rules as 

shown in Fig. 5. The first group creates the event name 

from the Segment definition. The second group generates 

the event’s local variables (parameters) and their 

constraints (including type information). The third group 

is for creating an event’s guards which includes imposing 

the timeline sequence of the segments as well as the 

additional constraints of the CauseEffectArrow. The 

fourth group generates the event’s actions which include 

the effect of the transition to the new segment and any 

simultaneous transitions. 

 
→

Fig. 5. Top-level translation rule to create Event-B event 
 

Here, we show only how a rule �������
��
�� is used to 

generate an event’s guard from timing constraints. Note 

that we do not explain how to pass parameters from the 

earlier processes to the rule �������
��
�. This can be 

found in [13].  The rule �������
��
� uses ���&
� as an 



input parameter. The detail of the rule is shown below. 

Note that string literals are shown in italics and string 

concatenation is denoted by ‘+’. The literal gclock is an 

Event-B variable used to model the passing of time. 

�������
��
�(�������	(���&
�),��������(���&
�)) =     

�������
��
�(�������,�������)�→ �

� “(gclock - ” + ����(�����	(�������))�

� +������	(�������)) + “Time � ” 

� �������
��	(������) +“)” + “& (gclock - ”�

� +�����(�����	(�������)) �

� +������	(�������))�

� + “Time � ” + �����
��	(������) + “)”�
 

For example, from Fig. 2, the segment ���� is defined 

with a CauseEffectArrow. Thus, there is an event, 

floorsensorOff, generated by this segment. This 

CauseEffectArrow is a disjunction (�(��!$�) of two 

���&
� constraints. Using the BNF definition for ���&
� 

(���&
��		
��������������������#��)��$������#) these are: 
 

���&
�.: �!/�����&������0&1 �1,2#� �
�������3
� 4� $��� 
� 0&, 

���&
�1: �!/�����&�������!"�5 �1,2#� �
�������3
� 4� $��� 
�

�!"�.  
 

Timing guards are recursively generated by the rule 

�������
��
�. The recursion expands compound 

constraint nodes (�(��!$� and  ����!$�) until a ���&
� 

constraint is reached. The simple constraint is expanded 

into a text string representation which is used as the 

guard. Thus, for the event floorsensorOff the first disjunct, 

���&
�.,�is generated as shown below. 
 

�������
��
�(�!/�����&������0&1,��1,�2#)�→ �

� “(gclock - ” + ����(�����	(�!/�����&������0&1))�

� +������	(�!/�����&������0&1)) + “Time � ” 

� +������
��	(�1,2#) +“)” + “& (gclock - ”�

� +�����(�����	(�!/�����&������0&1)) �

� +������	(�!/�����&������0&1))�

� + “Time � ” + �����
��	(�1,�2#) + “)” 
 

The output is (gclock - liftMovingDepartingUpTime � 2) 

& (gclock - liftMovingDepartingUpTime � 5). 
 

Fig. 6 shows the position of the timing constraints guard 

which is created for the event floorsensorOff.  
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Fig. 6. A floorsensorOff event 

There are some events which cannot be created by 

translation rules, for example, an event that changes the 

direction of the lift i.e. from up to down and vice versa. 

That is because this information cannot be represented by 

TD notations but it needs to be generated by hand. 

 

3.2 Translation into UML-B 

 

UML-B is implemented using the EMF which requires a 

metamodel to define the abstract syntax. Fig. 7 shows a 

small part of the UML-B metamodel for classes and state-

machines. 

 

 
Fig. 7. Parts of UML-B Metamodel 

 

A UML-B class may own statemachines which may own 

zero or more transitions and states (the latter is not shown 

in Fig. 7). Each transition references a source state and a 

target state. Each state references its incoming and 

outgoing transitions. Transitions are implicitly guarded by 

their source state and act to alter the statemachine to their 

target state. They may also have additional guards which 

are defined in a predicate string. 

 

In order to define a model-to-model transformation we 

also need to express the abstract syntax of TD in a similar 

EMF metamodel. Some parts of the TD EMF metamodel 

are illustrated in Fig. 8. There are some classes in the 

UML-B metamodel and TD metamodel that are similar 

and have an obvious correspondance. For example, 

UMLBClass with TDClass, UMLBStatemachine with 

TDTimeline, and UMLBTransition with 

TDTimelineTransition. Other parts such as 

CauseEffectArrow, SimultaneityArrow, and timing 

constraints exist only in the TD metamodel and have no 

corresponding modelling concept in UML-B. These are 

new modelling concepts that TD provides. During 

translation these concepts will be translated down into 

textual guards in a similar way to that described for the 

direct translation to Event-B. 



 
Fig. 8. Parts of Timing diagram Metamodel 

 

Those TD meta-classes that have a correspondence with 

UML-B meta-classes are directly mapped using ATL 

rules to generate UML-B elements as shown below:  
 
rule Class { 

from t : TDMetamodel!TDClass 

to u : umlbMetamodel!UMLBClass 

  (name <- t.name, 

   selfName <- t.name + 'Self', 

   statemachines <- t.timeline), … 
 

rule StateMachine { 

from t : TDMetamodel!TDTimeline 

to u : umlbMetamodel!UMLBStatemachine  

  (name <- t.name + '_state', 

   states <- t.states, 

   transitions <- t.timelinetransitions)} 
 

rule Transition {  

from t : TDMetamodel!TDTimelineTransition  

to u : umlbMetamodel!UMLBTransition  

  (name <- t.target.getTransitionName(), 

   … 
Fig. 9. ATL rules: Class, Statemachine and Transition 

 

From the rule, Class, the keyword rule is used to 

identify a rule name while the from and the to are used 

to define local names for the source element (t : 

TDMetamodel!TDClass) and for the generated target 

element (u : umlbMetamodel!UMLBClass). Properties 

of the target element are then defined using a syntax 

target_property_name <- expression. For 

example, selfName <- t.name + 'Self' generates a 

name for the local variable used to represent contextual 

instances of a UML-B class (represented by selfName in 

the UML-B metamodel, see Fig. 7.) The contextual 

instance is similar to ‘this’ in Java, but since UML-B has 

less encapsulation it is often necessary to choose unique 

identifiers to be used in each UML-B class. The 

selfName is constructed by concatenating the TD class 

name with a literal string ’Self’. The clause, 

statemachines <- t.timeline maps the 

containment of TD timeline to the conatinament of 

UMLB statemachines. Note that this only maps the 

containment (ownership) features. It is also necessary to 

define another rule that gives the details of mapping a TD 

timeline to a UMLB statemachine. Similarly, the 

clause, transitions <- t.timelinetransitions 

links the TD timelinetransitions containment to the 

UMLB transitions containment. 

 

When the TD as shown in Fig. 2 is used as a source 

model, the ATL rules above (with the hidden sub-rules 

not illustrated here) automatically generate UML-B 

classes, statemachines and  transitions as shown in Fig. 4 

(but not the associations between classes).  

 

There are parts of the UML-B metamodel and TD 

metamodel that cannot be mapped so simply. For 

example, the UML-B Statemachine transitions’ guards are 

generated from several TD meta-classes (i.e. 

TDConstraint, TDNodeType, Simple, OR_node, 

AND_node, and TDTiming) by the rule Constraint. 

This rule calls other sub-rules as shown below. 

  

  
Fig. 10. Rule Constraint and sub-rules 

 

We do not show the detail of these rules in this paper but 

an example of the transition guards created by the rule 

Constraint from the transition floorsensorOff is shown 

in Fig. 11. Notice that the figure is similar to Fig. 4. but 

the guard is incomplete (xAssociationx is a placeholder for 

additional information). TD is a partial view of a system 

and not designed to model the relationships between 

variables. Thus, there are some UML-B model features, 

such as associations among classes, that cannot be created 

from the TD model. For example, the marker 

xAssociationx is used as a placeholder for users to add the 

corresponding associations (if any) to complete the 

model. In this example the missing relationship might be 

needed to select the correct instance of Lift that is 

associated with the current contextual instance of 

FloorSensor. In the previous example of Fig. 4, we chose 

to model an implicit singleton Lift and therefore did not 

need any association. 

 

As with the direct translation to Event-B, in UML-B, 

some information may need to be added. Apart from the 

associations among classes, the same events that are 

added in the direct translation Event-B, i.e. lift changes 

directions of movement, are also added by hand here. 



 
 

 
Fig. 11. Guards and actions for the floorsensorOff transition 

 

 

4.  Evaluation and Related Work 

 

The output of our translation can be automatically 

validated by the RODIN verification tools platform [2]. 

This includes an attempted automatic proof of consistency 

of implementation relative to high level specifications. 

The ProB model checker and animator [14] performs 

consistency checking (finding deadlocks and invariant 

violations) and animation for validation purposes. The 

generated Event-B models for the case study Lift system 

were proven with the following results: 

• For an Event-B model from the direct translation: 

Total POs: 135, Automatically discharged: 122, Manually 

discharged: 11, Reviewed: 2 and Undischarged: 0. 

• For an Event-B model generated via a UML-B 

model: Total POs: 142, Automatically discharged: 54, 

Manually discharged: 84, Reviewed: 4 and Undischarged: 

0.  

 

The number of POs automatically discharged in the 

UML-B model is fewer than in the Event-B model 

because the UML-B model contains more indirection in 

the modelling of relationships between objects. This may 

be a side effect of the current style of modelling used in 

the example rather than an inherent feature of the notation 

and requires further investigation. 

 

Since TDs express only a part of the whole system 

specifications, some events and variables must be added 

manually to the generated model. For example, in the lift 

case study, we added events: ChangeDirUp and 

ChangeDirDown while variables currentFl and dir were 

added to represent the current position and direction of 

the lift respectively. 

 

There are related works which are trying to bridge the gap 

among causal dependencies relationships, timing 

constraints and B-method. For example, Abrial [15] 

introduces patterns for state-based specifications in Event-

B and uses informal graphical notations similar to TD to 

illustrate the patterns. This demonstrates the need for such 

a visualisation. The patterns are useful for our research 

but only support cause/effect relationships, not timing 

constraints. Thus, we need to define more notations for 

this. Cansell et al. [16] introduce a time constraints 

pattern based on an Event-B model for distributed 

applications. This work uses global time which interacts 

with a number of active times as do our patterns. The 

difference is that they introduce time in refinement steps 

while we focus on time at the abstract stages. The work is 

restricted to message passing between two devices in the 

system while our work can handle many objects in the 

same time. Moreover, this work uses informal graphical 

notations which are not similar to TD for expressing 

timing constraints. Bicarregui [17] extends Event-B 

notations to three linear temporal logic (LTL) operators: 

Next (�), Eventually (�) and Bounded eventually (� n) 

where n denotes time units. The work proposes using 

three new constructs that are to replace the standard 

Event-B structure, WHEN…THEN…END, to represent 

the three LTL operators. However, this work presents 

models in textual form. Our work is unique in providing 

techniques to create timing constraints from a TD to 

Event-B and UML-B models by using the standard Event-

B notations provided.  

 

KAOS [18] is a goal-oriented modelling technique for 

requirements specification, in which a goal defines an 

objective of the composite system. KAOS uses a Goal 

model to declare the system requirements. The Goal 

model is composed of a goal name, definition, and formal 

definition, where the latter is written as a temporal logic 

statement using LTL. Since the LTL can explain the 

specification of some properties - for example, next (�) 

and eventually (�) - those properties are similar to what 

can be expressed by TD. Apart from our earlier work  

[19] that investigates how to generate KAOS goals from 

TD, there are a number of investigations that explore 

possible techniques for translating KAOS framework to 

other models. An attempt to combine KAOS with B is 

introduced by Ponsard and Dieul [20]. However, this 

work only focuses on traceability links. Other work has 

been done by Hassan [21] to transform KAOS Operation 

model to B specification language in security 

requirements. There is no work try to generate KAOS 

from TD. 

 

 

5.  Conclusion and Future directions 
 

We provide a formal visual notation, based on the Robust 

TD notations [7], for specifying causal dependencies with 

timing constraints and link this to Event-B (via its UML-

B graphical front-end) for verification and validation 

using the Rodin toolset. We propose systematic 

translation rules to transform TD into Event-B and UML-

B models and demonstrate them using a real time case 

study: a lift system. A subset of TD notations was 

selected and some notations were adapted to make it 

easier to generate Event-B and UML-B. Thus, instead of 

manually generating these parts of the model in a textual 



form, users can use the TD as a graphical front-end, and 

these details are created automatically in UML-B and 

Event-B. We provide multiple views of one system’s 

requirements by expressing them in TD, Event-B and 

UML-B models. 

Some future directions are suggested as follows. 

1. Currently no graphical editor exists to support the 

drawing of our TD. They are entered using the 

EMF model editors. We intend to develop a 

graphical TD editor tool that integrates with the 

UML-B tools 

2. For large systems scalability may be an issue. 

Future work will investigate techniques to 

compose TD subsystems. 

3. Identify refinement steps in the Event-B model. For 

example, in the lift case study, the abstract model 

has basic lift behavior while the timing constraints 

are introduced in the refinement steps 

4. Integrate KAOS framework with TDs. 

 

The goal to generate translation techniques to transform a 

TD to Event-B and UML-B was accomplished. The work 

provides a more intuitive approach to specifying timing 

constraints and causal dependencies of a system than 

Event-B and/or UML-B by using the graphical 

visualisation of TD.  
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