

TIMING DIAGRAMS REQUIREMENTS MODELING USING

EVENT-B FORMAL METHODS

Tossaporn Joochim, Colin F. Snook, Michael R. Poppleton and Andy M. Gravell

School of Electronic and Computer Science,

University of Southampton,

United Kingdom

{tj04r, cfs, mrp, amg}@ecs.soton.ac.uk

ABSTRACT

Timing diagrams provide an intuitive graphical

specification for time constraints and causal dependencies

between a system’s objects. Such a view can provide

useful insight during Requirements Engineering (RE).

Formal Modeling techniques allow abstract system level

models to be explored in revealing detail and provide

feedback via verification and validation methods such as

proofs of consistency, model checking and animation.

Here, we bring these two modelling approaches together.

In particular we present techniques to extend a graphical

modeling capability for formal modeling into the real-

time domain by developing a Timing diagram view for

the Event-B formal method and its graphical front-end,

UML-B. Translation schemes to Event-B and UML-B are

proposed and presented. A case study of a lift system is

used to demonstrate the translation in practice.

KEY WORDS

Visual and Formal modeling, Timing diagram, Event-B,

UML-B

1. Introduction

Event-B [1] is a formal language for state-based modeling

and verification of systems. An extensible, open-source

platform for Event-B modelling and verification has been

developed in the context of RODIN [2], a European IST

project. Event-B enables a precise system requirements

specification to be developed and verified using set-

theoretic notation. However, Event-B has no explicit

support for specifying timing constraints and causal

dependencies within system requirements. Moreover,

using FMs, such as Event-B, can involve a costly learning

curve as effective modelling requires training of engineers

[3]. Research [4] shows that this learning curve is easier

to overcome if more intuitive graphical modelling

interfaces are used. The UML-B [5] is a UML-like

graphical front-end for Event-B. The UML-B uses Class

diagrams and Statemachines to generate system

specification models. Additional textual guards, actions

and invariants can be added in the Event-B notation. The

UML-B models are then automatically translated into

Event-B using the U2B translator where the Rodin

verification tools perform static (type and syntax)

checking and any problems are annotated back on the

UML-B diagrams

To some extent, the requirements of timing constraints

and causal dependencies among system’s objects can be

expressed using Statemachines in UML-B. However,

there are limitations to this approach. For instance, in

general, causal interactions will exist between the

transitions of several statemachines and cannot be seen on

one diagram or view making them hard to visualise. It is

not helpful for the users in term of modeling. In a Timing

diagram (TD), we can describe the causality explicitly in

the arrows between events and have them all in the same

screen. The TD notations include graphically described

timing constraints. It is very natural to form expressions

as timing constraints.

Our contribution focuses on how the parts of a system’s

requirements concerned with timing constraints and

causal dependencies between a system’s objects, are

generated into FM models. That is, adding to Event-B and

UML-B the ability to express timing constraints and event

dependency requirements. A lift system based on

Jackson’s work [6] (in which there is one lift in the

system) is used as a primitive case study. The case study

has been modified by adding timing constraints to event

dependency requirements to demonstrate the issue of this

paper. The TD we use is a variation of the OMG’s TD

[7]. It has been amended to include features that simplify

translation into Event-B.

There exist TD editors such as TimeGen [8], TimingTool

[9], and SynaptiCAD [10]. In general, those editors are

engineering computer-aided design (CAD) software tool

that helps draw Timing diagrams. The output Timing

diagrams are then exported to other applications, such as

PDF, HTML and GIF for use in writing design

specifications. Although these editors can identify clock

and use arrows to show a cause and effect, they do not fit

with our research since they are not suitable to define

simultaneous events nor complex combinations of causal

relationships as in our TD. Moreover, they are not written

on the Eclipse framework making tooling more difficult

to achieve. Thus, they would not easily fit as a plugin

extension of RODIN and UML-B.

The rest of the paper is structured as follows. Section 2

gives an overview of the research. Section 3 presents

transformation rules for TD to Event-B and UML-B.

Section 4 compares and evaluates the technique for the

two translations techniques. Finally, section 5 concludes

our work and defines future research directions.

2. Overview and Background

2.1 Contribution Overview

We show how to generate Event-B models from TD as

shown in Fig. 1. Requirements are partitioned into other

requirements (non-timing), and timing and causal

dependency requirements. The causal dependency and

timing constraints requirements are modeled by TD. As a

precursor to tool development, rules were specified for

mapping TD to Event-B in order to gain experience and to

formalise the definition of TD. The rules were based on

TD Backus-Nuar Form (BNF) definitions that we have

generated. Moving towards practical tool development we

transform TD to UML-B using a model-to-model

transformation written in Atlas Transformation Language

(ATL) [11]. Other requirements are used to manually add

the remainder of the Event-B and UML-B models for

completion. Next, Event-B and UML-B models are

analysed/verified by the RODIN Toolkit. Any errors may

lead to revisions of the system requirements, the TD

models or the manually added parts of the models

depending on the source of the problem.

Fig. 1. Contribution Overview

This step is repeated until the models are correct by

means of proof. This process has a beneficial effect on

system requirements as it increases the degree of

confidence that the output system has few errors, is

unambiguous and consistent.

2.2 Timing Diagram

Timing diagrams (TDs) model changes to an object’s

state through time. Our TD notations are based on the

UML Robust TD notations [7] which shows the state of

each object on the Y-axis while timing constraints are on

the X-axis. A subset of the UML TD notation is selected

and some notations are adapted so that they are more

suitable for generating expressions in Event-B.

To illustrate our TD notation, we use the lift system

example described below and its corresponding TD

shown in Fig. 2.

“The relation between lift movement and the floor sensors

is: whenever a user presses a button to request a lift, the

lift starts moving departing up (a) or departing down (b)

from the current floor. Within between 2-5 seconds after

the lift starts moving departing up/down, the current floor

sensor will turn off. At the same point of time, if the lift

starts moving departing up say, the up lamp changes its

status to activate (d) while the down lamp changes its

status to deactivate (c)”

In our TD for this example, we show four Timelines

which represent the state changes in time for the objects:

floorsensor, lift, uplamp, and downlamp, belonging to

classes FLOORSENSOR, LIFT, UPLAMP and

DOWNLAMP respectively. The solid arrowed line (called

CauseAffectArrow) represents the cause-effect

relationships among objects. A compound cause-effect

can be specified using
�

 and � symbols which represent

disjunction and conjunction respectively.

Fig. 2. A lift Timing diagram

In Fig. 2, the floorsensor Off2 segment has a

CauseEffectArrow that consists of a disjunctive

combination of two CauseEffectArrow. This means the

floorsensor� is set to Off if the lift is in either the state

MovingDepartingUp or MovingDepartingDown.

Predicates such as f = currentFl & dir = Up are additional

conditions on the CauseEffectArrow where f represents

a floor and is a dynamic state parameter that can change

in time. Here, f is also the object index for class

FLOORSENSOR.The currentFl represents the present

floor for the lift, while dir represents the direction of the

lift. The curved, dashed-lines (c and d) represent

SimultaneityArrow. They are used to synchronize the

liftMovingDepartingUp segment with the uplamp and

downlamp objects to indicate that the occurrences of these

events happen arbitrarily close to each other with no

particular constraint (at this level of abstraction). A timing

constraint is defined using symbols, i.e. [t1, t2] indicates

the time constraint > t1 and < t2.

2.3 Event-B

An Event-B model comprises static and dynamic parts,

which are called CONTEXT and MACHINE respectively. A

machine SEES at least one context. The CONTEXT may

contain carrier sets, constants, axioms and theorems. The

MACHINE defines the behavior of the Event-B model.

Machine variables are used to maintain state information

while performing events. Invariants define properties over

the state of the variables that must be satisfied by all

events. Events define spontaneously occurring atomic

units of behavior that make state changes. An event has a

name and is composed of guards G and actions S. Guards

identify lists of conditions for the event to occur, while

actions identify how the state variables evolve when the

event occurs. The general form of an event with event

local variables l is shown in Fig. 3 (as highlighted). Note

that this paper presents only an example of generating

parts of an event’s guard from the TD as described in

section 3.1.

Fig. 3. The structure of an Event-B model

2.4 UML-B

UML-B is a tool that supports the construction of an

Event-B graphical model. An UML-B project is contained

in a package diagrams. A package diagram is used to

describe the association between component, CONTEXTS

and MACHINES, in an UML-B project (see Fig. 4. top for

an example of a package diagram). The CONTEXTS are

used to define constant data while the MACHINES are

described by Class diagrams and Statemachines to

represent variables and events.

Fig. 4. UML-B floor sensor Class and Statemachine

For example, Fig. 4., there are two classes:

FLOORSENSOR and FLOOR. The association

floorsensorAtFloor represents the link from each floor

sensor to its corresponding floor. The association’s

multiplicities show that each floor sensor belongs to

exactly one floor and each floor has one floor sensor. The

Statemachine attached to classes (as shown in Fig. 4.,

floorsensor_stmch) is used to describe behavior of an object

in that class, in this case is the floor sensor. The

Statemachine’s transitions (as shown in Fig. 4.,

floorsensorOff) represent events in which the additional

behavior associated with the change of states can be

identified by using properties windows (as show in Fig. 4.

bottom). UML-B models can then be automatically

translated to Event-B using the U2B translator. The

Event-B model is then verified by the RODIN toolkit for

static checking and proof obligations (POs) are

automatically generated by the RODIN tools.

2.5 ATL

ATL [11] is a model to model transformation language

that was developed for the Eclipse Modelling Framework

(EMF) [12]. We select ATL since UML-B is built on the

same EMF and ATL provides a declarative notation to

define the transformation and good tool support for

generating usable tools. An ATL transformation module

is composed of rules that define how source model

elements are matched and navigated to create and

initialize the elements of the target model. An ATL

module is consists of 2 parts: header and transformation

rules. The header declares the source and target models

used for the transformation. For example, in our work, TD

is used as a source model to generate a target model,

UML-B. The transformation rules express the

transformation logic and provide the means for ATL

developers to specify the target model elements to be

generated from the source model elements. The full ATL

declaration can be found at [11]. Here, we provide

examples of ATL transformation rules, that are used in

this research, as described in section 3.2.

3. Transformation of Timing Diagrams

We present two approaches to linking timing diagrams

with Event-B. In the first approach we manually

translated TD into Event-B in one step. This approach

was useful as a learning stage and to provide a formal

definition of TD (leveraged from the corresponding

Event-B). However, for tool supported translation and

verification a more pragmatic approach is to provide TDs

as an extension to UML-B. UML-B already provides

support for the underlying features such as classes,

objects, states and transitions. In the second approach

described in this section, we describe a translation from

TD into UML-B.

3.1 Direct translation into Event-B

We firstly provide a definition of TD in Backus-Nuar

form (BNF) and then identify translation rules using the

TD BNF definition. Parts of the TD BNF are illustrated

below:

��������		
�������
�����
�
����		
��
���������������������
����		�
��������������������
����
����
����		
���������������
��������		
������������������
�������������� ��!"#�
����������� ��!"�		
��!���������

�!���������		
��!$��%&��
�!$��%&��		
����&
��'��(��!$��'� ����!$��
�(��!$��		
��!$��%&�����!$��%&��
 ����!$��		
��!$��%&�����!$��%&��
���&
��		
�������������������#��)��$������#�
�������		
�*�+�
!"��
�����*,+��&&��
�����*#+�

!"��
�����		
�Ζ �,��&&��
�����		
�Ζ ��

A TD machine has a (unique) name and one or more

classes. A class consists of a name (�
�������), at least

one object (���- and an object definition (�������). An

object has a name (�������), at least one state (�����)

and a�����
���. A ����
��� consists of at least one segment.

A segment represents one of its owner object’s states in a

particular sequence of state changes and is therefore

always associated with a unique state transition by which

it can be reached. Hence an state value could be

represented by several different segments.. For example

in Fig. 2., �������	
��
����
� which is reached from �
�
�
������� is a different segment from

�������	
��
����
� which is reached from

���������������
�. A segment may own a

����������� ��!" which defines a constraint (�!��������)

on the transition to reach that segment. The constraint is

defined by a type (�!$��%&�) which can be a simple

(���&
�) or a grouping of either OR nodes (�(��!$�) or

AND nodes (����!$�). Those grouping nodes allow one

to create compound cause conditions. A ���&
� constraint

consists of a cause segment (����������), which is the

source of the ����������� ��!", an optional timing

constraint (������) and an optional string condition

()��$�����). A timing constraint provides bounds to the

time interval between the cause segment being entered

and the target segment being reached. To simplify the

expression of rules, we provide a set of basic ‘accessor’

translation rules that extract a sub-clause from a

compound one. For example:

�������(���&
�) → �������; this rule produces the ������

value for an input ���&
�.

Generally, a translation rule is composed of a sequence of

basic rules which may have sub-rules. For example, in

Fig. 5, we show the top-level translation rule �����	 that

is used to iteratively create all the Event-B events in a

Machine.

The rule �����	 uses a TD ������� for an� input

parameter. Segments that are the target of a

SimultaneityArrow do not generate a new event.

Instead they contribute actions to the event generated

from the segment that is the source of the

SimultaneityArrow. A top-level rule, such as �����	,

constructs the structure of an Event-B element using mid-

level rules. The mid-level rules produce text fields by

concatenating strings that are obtained from parts of the

TD model using the basic accessor rules.

An Event-B event is created from 4 groups of the rules as

shown in Fig. 5. The first group creates the event name

from the Segment definition. The second group generates

the event’s local variables (parameters) and their

constraints (including type information). The third group

is for creating an event’s guards which includes imposing

the timeline sequence of the segments as well as the

additional constraints of the CauseEffectArrow. The

fourth group generates the event’s actions which include

the effect of the transition to the new segment and any

simultaneous transitions.

→

Fig. 5. Top-level translation rule to create Event-B event

Here, we show only how a rule �������
��
�� is used to

generate an event’s guard from timing constraints. Note

that we do not explain how to pass parameters from the

earlier processes to the rule �������
��
�. This can be

found in [13]. The rule �������
��
� uses ���&
� as an

input parameter. The detail of the rule is shown below.

Note that string literals are shown in italics and string

concatenation is denoted by ‘+’. The literal gclock is an

Event-B variable used to model the passing of time.

�������
��
�(�������	(���&
�),��������(���&
�)) =

�������
��
�(�������,�������)�→ �

� “(gclock - ” + ����(�����	(�������))�

� +������	(�������)) + “Time � ”

� �������
��	(������) +“)” + “& (gclock - ”�

� +�����(�����	(�������)) �

� +������	(�������))�

� + “Time � ” + �����
��	(������) + “)”�

For example, from Fig. 2, the segment ���� is defined

with a CauseEffectArrow. Thus, there is an event,

floorsensorOff, generated by this segment. This

CauseEffectArrow is a disjunction (�(��!$�) of two

���&
� constraints. Using the BNF definition for ���&
�

(���&
��		
��������������������#��)��$������#) these are:

���&
�.: �!/�����&������0&1 �1,2#� �
�������3
� 4� $���
� 0&,

���&
�1: �!/�����&�������!"�5 �1,2#� �
�������3
� 4� $���
�

�!"�.

Timing guards are recursively generated by the rule

�������
��
�. The recursion expands compound

constraint nodes (�(��!$� and ����!$�) until a ���&
�

constraint is reached. The simple constraint is expanded

into a text string representation which is used as the

guard. Thus, for the event floorsensorOff the first disjunct,

���&
�.,�is generated as shown below.

�������
��
�(�!/�����&������0&1,��1,�2#)�→ �

� “(gclock - ” + ����(�����	(�!/�����&������0&1))�

� +������	(�!/�����&������0&1)) + “Time � ”

� +������
��	(�1,2#) +“)” + “& (gclock - ”�

� +�����(�����	(�!/�����&������0&1)) �

� +������	(�!/�����&������0&1))�

� + “Time � ” + �����
��	(�1,�2#) + “)”

The output is (gclock - liftMovingDepartingUpTime � 2)

& (gclock - liftMovingDepartingUpTime � 5).

Fig. 6 shows the position of the timing constraints guard

which is created for the event floorsensorOff.

≥

≤

≥

≤

∨

Fig. 6. A floorsensorOff event

There are some events which cannot be created by

translation rules, for example, an event that changes the

direction of the lift i.e. from up to down and vice versa.

That is because this information cannot be represented by

TD notations but it needs to be generated by hand.

3.2 Translation into UML-B

UML-B is implemented using the EMF which requires a

metamodel to define the abstract syntax. Fig. 7 shows a

small part of the UML-B metamodel for classes and state-

machines.

Fig. 7. Parts of UML-B Metamodel

A UML-B class may own statemachines which may own

zero or more transitions and states (the latter is not shown

in Fig. 7). Each transition references a source state and a

target state. Each state references its incoming and

outgoing transitions. Transitions are implicitly guarded by

their source state and act to alter the statemachine to their

target state. They may also have additional guards which

are defined in a predicate string.

In order to define a model-to-model transformation we

also need to express the abstract syntax of TD in a similar

EMF metamodel. Some parts of the TD EMF metamodel

are illustrated in Fig. 8. There are some classes in the

UML-B metamodel and TD metamodel that are similar

and have an obvious correspondance. For example,

UMLBClass with TDClass, UMLBStatemachine with

TDTimeline, and UMLBTransition with

TDTimelineTransition. Other parts such as

CauseEffectArrow, SimultaneityArrow, and timing

constraints exist only in the TD metamodel and have no

corresponding modelling concept in UML-B. These are

new modelling concepts that TD provides. During

translation these concepts will be translated down into

textual guards in a similar way to that described for the

direct translation to Event-B.

Fig. 8. Parts of Timing diagram Metamodel

Those TD meta-classes that have a correspondence with

UML-B meta-classes are directly mapped using ATL

rules to generate UML-B elements as shown below:

rule Class {

from t : TDMetamodel!TDClass

to u : umlbMetamodel!UMLBClass

 (name <- t.name,

 selfName <- t.name + 'Self',

 statemachines <- t.timeline), …

rule StateMachine {

from t : TDMetamodel!TDTimeline

to u : umlbMetamodel!UMLBStatemachine

 (name <- t.name + '_state',

 states <- t.states,

 transitions <- t.timelinetransitions)}

rule Transition {

from t : TDMetamodel!TDTimelineTransition

to u : umlbMetamodel!UMLBTransition

 (name <- t.target.getTransitionName(),

 …
Fig. 9. ATL rules: Class, Statemachine and Transition

From the rule, Class, the keyword rule is used to

identify a rule name while the from and the to are used

to define local names for the source element (t :

TDMetamodel!TDClass) and for the generated target

element (u : umlbMetamodel!UMLBClass). Properties

of the target element are then defined using a syntax

target_property_name <- expression. For

example, selfName <- t.name + 'Self' generates a

name for the local variable used to represent contextual

instances of a UML-B class (represented by selfName in

the UML-B metamodel, see Fig. 7.) The contextual

instance is similar to ‘this’ in Java, but since UML-B has

less encapsulation it is often necessary to choose unique

identifiers to be used in each UML-B class. The

selfName is constructed by concatenating the TD class

name with a literal string ’Self’. The clause,

statemachines <- t.timeline maps the

containment of TD timeline to the conatinament of

UMLB statemachines. Note that this only maps the

containment (ownership) features. It is also necessary to

define another rule that gives the details of mapping a TD

timeline to a UMLB statemachine. Similarly, the

clause, transitions <- t.timelinetransitions

links the TD timelinetransitions containment to the

UMLB transitions containment.

When the TD as shown in Fig. 2 is used as a source

model, the ATL rules above (with the hidden sub-rules

not illustrated here) automatically generate UML-B

classes, statemachines and transitions as shown in Fig. 4

(but not the associations between classes).

There are parts of the UML-B metamodel and TD

metamodel that cannot be mapped so simply. For

example, the UML-B Statemachine transitions’ guards are

generated from several TD meta-classes (i.e.

TDConstraint, TDNodeType, Simple, OR_node,

AND_node, and TDTiming) by the rule Constraint.

This rule calls other sub-rules as shown below.

Fig. 10. Rule Constraint and sub-rules

We do not show the detail of these rules in this paper but

an example of the transition guards created by the rule

Constraint from the transition floorsensorOff is shown

in Fig. 11. Notice that the figure is similar to Fig. 4. but

the guard is incomplete (xAssociationx is a placeholder for

additional information). TD is a partial view of a system

and not designed to model the relationships between

variables. Thus, there are some UML-B model features,

such as associations among classes, that cannot be created

from the TD model. For example, the marker

xAssociationx is used as a placeholder for users to add the

corresponding associations (if any) to complete the

model. In this example the missing relationship might be

needed to select the correct instance of Lift that is

associated with the current contextual instance of

FloorSensor. In the previous example of Fig. 4, we chose

to model an implicit singleton Lift and therefore did not

need any association.

As with the direct translation to Event-B, in UML-B,

some information may need to be added. Apart from the

associations among classes, the same events that are

added in the direct translation Event-B, i.e. lift changes

directions of movement, are also added by hand here.

Fig. 11. Guards and actions for the floorsensorOff transition

4. Evaluation and Related Work

The output of our translation can be automatically

validated by the RODIN verification tools platform [2].

This includes an attempted automatic proof of consistency

of implementation relative to high level specifications.

The ProB model checker and animator [14] performs

consistency checking (finding deadlocks and invariant

violations) and animation for validation purposes. The

generated Event-B models for the case study Lift system

were proven with the following results:

• For an Event-B model from the direct translation:

Total POs: 135, Automatically discharged: 122, Manually

discharged: 11, Reviewed: 2 and Undischarged: 0.

• For an Event-B model generated via a UML-B

model: Total POs: 142, Automatically discharged: 54,

Manually discharged: 84, Reviewed: 4 and Undischarged:

0.

The number of POs automatically discharged in the

UML-B model is fewer than in the Event-B model

because the UML-B model contains more indirection in

the modelling of relationships between objects. This may

be a side effect of the current style of modelling used in

the example rather than an inherent feature of the notation

and requires further investigation.

Since TDs express only a part of the whole system

specifications, some events and variables must be added

manually to the generated model. For example, in the lift

case study, we added events: ChangeDirUp and

ChangeDirDown while variables currentFl and dir were

added to represent the current position and direction of

the lift respectively.

There are related works which are trying to bridge the gap

among causal dependencies relationships, timing

constraints and B-method. For example, Abrial [15]

introduces patterns for state-based specifications in Event-

B and uses informal graphical notations similar to TD to

illustrate the patterns. This demonstrates the need for such

a visualisation. The patterns are useful for our research

but only support cause/effect relationships, not timing

constraints. Thus, we need to define more notations for

this. Cansell et al. [16] introduce a time constraints

pattern based on an Event-B model for distributed

applications. This work uses global time which interacts

with a number of active times as do our patterns. The

difference is that they introduce time in refinement steps

while we focus on time at the abstract stages. The work is

restricted to message passing between two devices in the

system while our work can handle many objects in the

same time. Moreover, this work uses informal graphical

notations which are not similar to TD for expressing

timing constraints. Bicarregui [17] extends Event-B

notations to three linear temporal logic (LTL) operators:

Next (�), Eventually (�) and Bounded eventually (� n)

where n denotes time units. The work proposes using

three new constructs that are to replace the standard

Event-B structure, WHEN…THEN…END, to represent

the three LTL operators. However, this work presents

models in textual form. Our work is unique in providing

techniques to create timing constraints from a TD to

Event-B and UML-B models by using the standard Event-

B notations provided.

KAOS [18] is a goal-oriented modelling technique for

requirements specification, in which a goal defines an

objective of the composite system. KAOS uses a Goal

model to declare the system requirements. The Goal

model is composed of a goal name, definition, and formal

definition, where the latter is written as a temporal logic

statement using LTL. Since the LTL can explain the

specification of some properties - for example, next (�)

and eventually (�) - those properties are similar to what

can be expressed by TD. Apart from our earlier work

[19] that investigates how to generate KAOS goals from

TD, there are a number of investigations that explore

possible techniques for translating KAOS framework to

other models. An attempt to combine KAOS with B is

introduced by Ponsard and Dieul [20]. However, this

work only focuses on traceability links. Other work has

been done by Hassan [21] to transform KAOS Operation

model to B specification language in security

requirements. There is no work try to generate KAOS

from TD.

5. Conclusion and Future directions

We provide a formal visual notation, based on the Robust

TD notations [7], for specifying causal dependencies with

timing constraints and link this to Event-B (via its UML-

B graphical front-end) for verification and validation

using the Rodin toolset. We propose systematic

translation rules to transform TD into Event-B and UML-

B models and demonstrate them using a real time case

study: a lift system. A subset of TD notations was

selected and some notations were adapted to make it

easier to generate Event-B and UML-B. Thus, instead of

manually generating these parts of the model in a textual

form, users can use the TD as a graphical front-end, and

these details are created automatically in UML-B and

Event-B. We provide multiple views of one system’s

requirements by expressing them in TD, Event-B and

UML-B models.

Some future directions are suggested as follows.

1. Currently no graphical editor exists to support the

drawing of our TD. They are entered using the

EMF model editors. We intend to develop a

graphical TD editor tool that integrates with the

UML-B tools

2. For large systems scalability may be an issue.

Future work will investigate techniques to

compose TD subsystems.

3. Identify refinement steps in the Event-B model. For

example, in the lift case study, the abstract model

has basic lift behavior while the timing constraints

are introduced in the refinement steps

4. Integrate KAOS framework with TDs.

The goal to generate translation techniques to transform a

TD to Event-B and UML-B was accomplished. The work

provides a more intuitive approach to specifying timing

constraints and causal dependencies of a system than

Event-B and/or UML-B by using the graphical

visualisation of TD.

Acknowledgements

Colin Snook’s contribution to this work was funded by

the Deploy Project which is an EU, FP7 Integrated Project

(IP 214158).

References

[1] J.-R. Abrial & S. Hallerstede, Refinement

Decomposition and Instantiation of Discrete Models:

Application to Event-B, Fundamenta Informaticae, 77(1-

2), 2006, 1-28.

[2] RODIN. Development Environment for Complex

Systems (Rodin). 2009. http://rodin.cs.ncl.ac.uk/.

[3] N. Bashar & S. Easterbrook. Requirement

Engineering: A Roadmap. Proc.the Future of Software

Engineering, Limerick, Ireland, 2000, 35-46.

[4] M.A.Yoder & B.A. Black. A Study of Graphical vs.

Textual Programming for Teaching DSP. Proc. 36
th

Annual Frontiers in Education Conf., 2006, San Diego,

CA, 17-18.

[5] C. Snook & M. Butler, UML-B and Event-B: an

integration of languages and tools. Proc. IASTED

International Conf. on Software Engineering (SE2008),

Innsbruck, Austria, 2008.

[6] M. Jackson, Problem frames analysis and

structuring software development problems (Addison-

Wesley, 2001).

[7] OMG. UML 2.0. 2008.

http://www.uml.org/#UML2.0.

[8] Intel. TimeGen. 2009.

 http://www.xfusionsoftware.com/.

[9] MOHC. TimingTool. 2009.

 http://www.timingtool.com/.

[10] SynaptiCAD. 2009. http://www.syncad.com/.

[11] ATL. ATLAS Transformation Language. 2008.

 http://www.eclipse.org/m2m/atl/.

[12] Eclipse. Eclipse Modeling Framework Project

(EMF). 2008. http://www.eclipse.org/modeling/emf/.

[13] T. Joochim, Bringing Requirements Engineering to

Formal Methods: Timing diagrams for Event-B and

KAOS, PhD. thesis, School of Electronics and Computer

Science, Southampton University, Southampton, United

Kingdom, 2009.

[14] ProB. ProB 1.2. 2009.

 http://www.stups.uniduesseldorf.de/ProB/overview.php.

[15] J.-R. Abrial, Tutorial - Case study of a complete

reactive system in Event-B: A mechanical press

controller. Proc. 5th International Symposium on Formal

Methods (FM’2008), Turku, Finland, 2008.

[16] D. Cansell, D. Méry & J. Rehm, Time Constraint

Patterns for Event B Development. Proc. Formal

Specification and Development in B, 7th International

Conf. of B (B 2007), Besancon, France, 2007. 140-154.

[17] J. Bicarregui, et al, Towards Modelling Obligations

in Event-B. Proc. International Conf. of ASM, B and Z

Users, London, UK, 2008, 181-194.

[18] E. Letier & A.V. Lamsweerde, Agent-Based Tactics

for Goal-Oriented Requirements Elaboration. Proc. 24th

International Conf. on Software Engineering (ICSE’02),

Orlando, Florida, USA, 2002, 83-93.

[19] T. Joochim & M.R. Poppleton, Transforming

Timing Diagrams into Knowledge Acquisition in

Automated Specification. Proc. 2nd International Conf.

on Advance in Information Technology (IAIT2007), King

Mongkut's University of Technology, Bangkok, Thailand

2007, 103-110.

[20] C. Ponsard & E. Dieul, From Requirements Models

to Formal Specifications in B. Proc. International

Workshop on Regulations Modelling and their Validation

and Verification (REMO2V’06), Universitaires de Namur,

Luxemburg , 2006, 249-260.

[21] R. Hassan, et al, Integrating formal analysis and

design to preserve security properties. Proc. 42nd Hawaii

International Conf. on System Sciences (HICSS-42),

2009. Waikoloa, Hawaii, USA, 1-10.

