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ABSTRACT

This paper proposes a new technique for auto-annotation and semantic retrieval based upon the idea of linearly
mapping an image feature space to a keyword space. The new technique is compared to several related techniques,
and a number of salient points about each of the techniques are discussed and contrasted. The paper also discusses
how these techniques might actually scale to a real-world retrieval problem, and demonstrates this though a
case study of a semantic retrieval technique being used on a real-world data-set (with a mix of annotated and
unannotated images) from a picture library.
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1. INTRODUCTION

“I need some pictures of agricultural scenes, but preferably without any machinery or horses in it. It needs to be
timeless.” The previous quotation is of a real request to a picture librarian at a large archive. The query is typical
of the kinds of things professionals search images for. If an image corpus is fully indexed using some or all of
the words in the query, then the retrieval problem can be solved using existing text indexing and understanding
techniques. Unfortunately, providing this kind of annotation and indexing for large collections of images is a
slow and expensive task when performed manually.

Current research on automatic annotation and semantic retrieval aims to work towards finding a solution
to the problem of automatically indexing unannotated image collections with the aim of making the corpus of
images as accessible to retrieval and semantic understanding as a text corpus is now. The problem of how to get
from the raw pixel content of images to semantic meaning has become known as the problem of the semantic
gap in image retrieval.l™*

Techniques for attempting to bridge the semantic gap in image retrieval have mostly used an auto-annotation
approach, in which keyword annotations are applied to unlabelled images (e.g. Ref. 5-8). The basic premise
of these automatic annotation approaches is that a model can be learnt from a training set of images that
describes how low-level image features are related to higher-level keywords. This model can then be applied to
unannotated images in order to automatically generate keywords that describe their content. In essence, the
process of auto-annotation is analogous to translating from one language to another.”® In fact, many of the
state-of-the-art techniques for encoding low-level image content are based around the idea of transforming or
quantising the features to a vocabulary of visual terms, which represent a purely visual language.®1? A recent
review of a number of automatic annotation and semantic retrieval techniques can be found in Ref. 11.

One of the problems with current auto-annotation approaches with regard to multimedia retrieval is that they
can seriously harm retrieval effectiveness if the annotations they provide are wrong. This problem is partially
addressed with relatively recent probabilistic auto-annotation® 2 and our own semantic space'® approaches to
retrieval, which do not actually assign keywords to multimedia documents, but instead rank them by their likely
similarity to a textual query. Fundamentally, a semantic space is a large multidimensional space in which objects
are placed. In terms of image retrieval, these objects fall into three classes: keywords, visual-terms, and images.
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The placement of these objects into the space is such that items that are semantically related will appear in
similar spatial locations.!?

This paper introduces a new technique for automatic annotation and semantic retrieval that is based on the
idea of deriving a transformation from the visual-term space formed by an image directly to the keyword space
formed by annotations. The paper then describes and illustrates how this technique performs with reference
to other pre-existing but related techniques. The advantages and disadvantages of each of the techniques are
discussed. A discussion of the application of one of the semantic retrieval techniques to a real image collection
is also included.

2. VECTOR-SPACES FOR SEMANTIC RETRIEVAL

As mentioned, it has become popular to transform image features into discrete elements or terms. These so-called
“visual terms” are elegant because they enable image content to be described in much the same way as a text
document. Techniques for creating visual terms from features almost always revolve around the idea of quantising
the features into a fixed number of discrete values. At the simplest level, this can mean creating a visual term
of each pixel in an image by quantising its colour value to say one of sixty-four allowed values. At the other
end of the spectrum, visual terms may be created from SIFT features'® created from the pixel content of salient
regions, by quantizing them using a vocabulary learned by clustering an exemplar set of features (e.g. Ref. 9,10),
or by segmenting an image into multiple segments and quantising these segments to a discrete vocabulary, again
learnt through some form of clustering (e.g. Ref. 7,8,15).

The problem of automatically annotating images with keywords has often been approached from the problem
of building a machine capable of translating from visual-terms to keyword annotation-terms. In particular, a
bag-of-words model is often used in which the occurrences of terms in a given image are represented by term-
occurrence vectors or histograms. The use of a bag-of-words model has one small limitation in that it implies
that any image containing the same semantics and visual features is equivalent; that is to say the position of
visual elements in an image is not important. In the following subsections we describe a number of relatively
simple techniques for building such a machine. All of these techniques in their current form assume that their
internal models are learnt in a batch mode from a large set of training examples that include occurrence vectors
from both the visual-terms and keyword terms.

The first technique proposes a novel linear-transformation based approach to the problem in which an optimal
direct mapping between the space spanned by the visual-term occurrence vectors and the space spanned by the
(key)word occurrence vectors is learnt. The second set of techniques described were proposed by Pan et al;'® the
techniques work by learning a translation table that gives the probability of a word given a visual-term. These
techniques are very similar to the first technique in that a direct mapping from visual-term space to word space
is deduced. In order to perform semantic retrieval with all these techniques, images can be ranked based on the
(decreasing) magnitude of the element of predicted words vector corresponding to a given query word.

The final technique discussed is the linear algebraic semantic space proposed by Hare et al.'® This technique
produces a vector space into which both visual-terms and keyword terms are mapped along with the images.
Unannotated images can then be projected into this space. Semantic retrieval can be performed directly in this
space by determining the location of a query word and ranking images based on their increasing distance from
the query coordinates within the space.

2.1 Singular Value Decomposition

All of the techniques described in this section make use of a mathematical factorisation called the Singular Value
Decomposition (SVD). Briefly, SVD is used to decompose matrix A into the product of three separate matrices,
U, x VT

A =UxV" (1)

The monotonically decreasing (in value) diagonal elements of the matrix 3 are called the singular values of
the matrix A. These matrices represent the breakdown of the original relationships into linearly-independent
vectors or factor values. By selecting the first (largest) k singular values of A, it is possible to construct a rank-k
approximation to A via Ay = UpX, V] . A theorem by Eckart and Young!® suggests that the Ay, constructed



from the largest k singular values of A is the closest rank-k approximation (in the least squares sense) to A. By
reducing the dimensionality of A, it is possible to reduce the amount of “noise” in the original matrix. This is
especially useful when the input matrix is formed from real world data, such as image features,' 17 or the
counts of words from text documents.'8

2.2 Linear-transformation

In this section we propose a simple model that is capable of learning the translations or transformations of
vectors of visual term occurrences to vectors of word occurrences. We formulate the problem as thus:

Assume F is an ny X m matrix of m training images represented by n; visual terms. Each element f; ; of F
represents the number of times visual-term ¢ occurs in image j. Similarly assume W is an n,, X m matrix of the
same m training images represented by n,, annotation words, and that the element w; ; represents the number
of occurrences of word ¢ in image j. With most current image data-sets W is most probably binary in nature.
Now assume that there exists a purely linear mapping between F and W. This in itself is not an unreasonable
assumption; we are only mandating that a linear combination of visual terms maps a given linear combinations
of annotation words. This can be formulated mathematically as:

FT =W 2)

If we can solve Equation 2 for T, we then have a way of estimating the vector of words, @ belonging to an
unannotated document « by calculating:
uT =w (3)

Given the nature of the data, in all likelihood the system is over-determined, so there exist many possible
solutions to T, however we can select a solution that is in some sense optimal. A common approach is to choose
to minimise the Euclidean norm, ||[FT — W||?, using the Moore-Penrose pseudoinverse, F*:

T =F+tW (4)

The pseudoinverse F* can easily be calculated using the Singular Value Decomposition F = UXVT of F, such
that FT = VX1TUT where X1 is formed by simply replacing the non-zero elements of the diagonal matrix
with their reciprocal.

2.2.1 Noise reduction

The use of SVD in calculating the pseudoinverse gives an additional advantage in that the dimensionality of the
F matrix can be reduced by setting small singular values in the ¥ matrix to zero as described earlier. Previous
work on content-based image retrieval has shown that reducing the dimensionality of a feature space can be
advantageous in terms of promoting better semantic similarity of images.'®

2.2.2 Weighting

Often, it can be prudent to weight the term-occurrence data matrices to reduce the effect of terms that occur
commonly in lots of documents. Such terms tend not to have much discriminative power. Terms that occur
rarely in only a few documents (and are thus more “unique”) are obviously more discriminatory and useful in
the analysis. One way to weight a matrix of term-occurrences is as follows; If we let z; be the number of images
that contain the term ¢;, the 4, j-th element, e; ; of a term-occurence matrix can be weighted as:

N
eweightedi,j =€, X log(i) (5)
Zj

where N is the total number of images. The weighting could be applied to either or both of W or F. In
text-retrieval the factor log(£") is commonly used and is known as the Inverse Document Frequency (IDF).
J



2.3 Correlation and Similarity

Pan et al.'> described four techniques for estimating a translation table Ty whose (i, j)-th element can be viewed
as p(w;|f;), the probability of a particular word w; given a visual-term f;. In order to estimate the likelihood
of each word for an unannotated visual-term occurrence vector ¢, the word-likelihood vector p = T,q can be
calculated. The elements of P, p;, indicate the predicted likelihood of the word w;.

Each of the four techniques assumed that the training matrices W and F (using the same definitions for W
and F as in Section 2.2) have been weighted using inverse document frequency as described above.

The first technique, Corr, builds a correlation-based translation table such that Tcorro = WTEFE. The
columns of T¢opr 0 are then normalised to sum up to unity, thus forming the table Ty

The second technique, Cos, uses the overall occurrence pattern of each word and visual-term to estimate the
similarity between each word and visual-term. These occurrence patterns are of course encoded in the columns
of W and F. The similarity of the column vectors can, amongst other techniques, be estimated through the
cosine of the angle between the vectors. If we refer to the i-th column of the training matrices W and F by ;
and f; respectively, we can calculate the cosine, cos; ;, as the angle between column vectors w; and f_; If we now
define Teos 0 such that the 4, j-th element is Tcos,0(4,j) = cos; j, then we can calculate a translation table Tog
by normalising the columns of Tcos,0 to sum to unity.

The final two techniques, SvdCorr and SvdCos are variations on the first technique; translation tables
Teorr,sva and Teos svq are generated using the same approach as described above, but instead of using the raw
training matrices W and F, matrices W4 and F,4 are used instead. Wg,q and Fy,q are formed by using the
SVD to reduce the dimensionality (and thus noise) in the original matrices. In Pan et al’s work, the number of
singular values retained for the reconstruction, k, is selected so that 90% of the variance of the distribution of
singular values is preserved.!®

2.4 Semantic Spaces

Our Linear-Algebraic Semantic Space approach®? is a generalisation of a text-retrieval technique called Cross Lan-
guage Latent Semantic Indexing,'¥ which is itself an extension of Latent Semantic Indexing/Analysis (LSI/LSA).18

In general, any document (be it text, image, or even video) can be described by a series of observations, or
measurements, made about its content. We refer to each of these observations as terms. Terms describing a
document can be arranged in a vector of term occurrences, i.e. a vector whose i-th element contains a count of
the number of times the i-th term occurs in the document. There is nothing stopping a term vector having terms
from a number of different modalities. For example a term vector could contain term-occurrence information for
both ‘visual’ terms and textual annotation terms. Given a corpus of documents, it is possible to form a matrix
of observations or measurements (i.e. a term-document matrix), O. Using the nomenclature adopted earlier, in
our case O = [TT|WT].

Fundamentally, the Semantic Space technique works by estimating a rank-reduced factorisation of a term-
document matrix of data, O, into a term matrix T and a document matrix D:

O~TD . (6)

The two vector bases created in the decomposition form aligned vector-spaces of terms and documents. The
rows of the term matrix, T, create a basis representing a position in the space of each of the observed terms.
The columns of the document matrix, D, represent positions of the observed documents in the space. Similar
documents and terms share similar locations in the space.

Assume that we have two collections of images; a training set with keyword annotations and a test set without.
The content of each image can be represented by a vector of ‘visual-term’ occurrences. A cross-modality term-
document matrix, Oy¢-qin can be created for the training set of images by combining the visual-term occurrence
vector with the keyword-term occurrence vector for each image. This can then be factorised according to Equation
6 into a term matrix T4.qsn, and a document matrix Dy,qin by using the truncated singular value decomposition
and letting T = Uy, and D = £,V (the k refers to the number of singular values selected).



In order to make the unannotated test images search-able, we can project them into the semantic space
described by Tirain (and Dypgin). Firstly, a cross-modality term-document matrix, Oy.s¢ must be created for
the test set of images by setting the number of occurrences of each (unknown) keyword to 0. It can be shown
that it is possible to create a document matrix, D;.,; for the test documents as follows:

_ T
Dtest - Ttrainotest . (7)
In order to query the test set for images relevant to a term, we just need to rank all of the images based on their
position in the space with respect to the position of the query term in the space. The angle between the vectors
or cosine similarity is a suitable measure for this task.

3. EXPERIMENTS

Our previous work?” has demonstrated that the semantic space technique can be quite effective at image retrieval.
In this paper we investigate and compare the performance of the semantic space technique, the linear transform
technique, and the correlation approaches defined by Pan et al.'> Each of the approaches is applied to the same
image dataset using exactly the same features (W and F matrices). The techniques reliant on the use of a
truncated SVD have their optimal dimensionality selected by maximising the overall mean average precision of
a retrieval experiment on a validation set of images, as described below.

3.1 Dataset

The Corel dataset has been criticised in the past as both being “too easy”, and as too small for proper retrieval
evaluation.?! 22 However, that being said, it is still used as the defacto standard in most auto-annotation papers.
In this study, we believe that the choice of this data-set is reasonable because the experiments will be repeatable
and comparable. Also, we don’t believe that the dataset is quite as easy as has sometimes been suggested
since the state-of-the-art techniques struggle to annotate it effectively. One reason for this is that the dataset is
actually quite representative of other real-world datasets in that it contains many errors, and strange keyword
choices. These factors confound the problem of training a machine to learn how to annotate image content
effectively, but are realistic of training data in the real world.

We have split the dataset into three subsets for experimental purposes; a 4000 image training set, a 500 image
validation set, and a 500 image test set. The 500 image test set is the same as used in Ref. 7. As described
above, the optimal number of dimensions for techniques using the SVD to reduce noise is selected such that the
mean average precision, averaged over all possible queries, of a hypothetical retrieval experiment carried out on
the validation set is maximised (with just the training set used for training). Once an optimal dimensionality
has been found, the system is re-trained using both the training and validation data before being tested on the
test data.

3.2 Image features

A large part of how well a particular technique is able to learn the relationships between and image and its
semantics is directly a function of the descriptors or feature-vectors used to represent the pixel content of the
image and build the visual-term representations. In this paper, we choose to use two different techniques for
building visual-terms.

3.2.1 Blobs

The blobs feature is the same as found in Ref. 7. The feature was created by segmenting each image into a
number of blobs, and then calculating a descriptor using various colour, texture and shape attributes of each
blob in the respective image. The set of descriptors was then clustered using k-means to create a vocabulary
of 500 visual-terms. Each blob was then converted to a visual term by vector quantising its descriptor into the
nearest visual term. Term-occurrence vectors were finally calculated by counting the occurrences of each visual
term in each image.



Figure 1. Example of a visual vocabulary from clustered DCT blocks

3.2.2 Clustered DCT Features

Carneiro et al*? demonstrated a system for automatic annotation that works well on the Corel dataset. One
of the reasons suggested for this is that the Discrete Cosine Transform (DCT) features used in the work were
particularly powerful. In this work we cannot use quite the same feature as'? because of the requirement that
we have discrete visual-terms, rather than a continuous feature; however, it is possible to use the DCT to create
a visual vocabulary by clustering image blocks in the DCT domain, and then applying vector quantisation to
create lists of visual-terms for each image. In our previous work we demonstrated such a feature, which we will
again use here.??

In our implementation of a DCT-based feature, we split each image into a sequence of overlapping 8 x 8
blocks. We also left a 4-pixel border around the edge of each image in order to reduce the likelihood of problems
occurring due to the black borders in many of the Corel images. For each of the Red, Green and Blue planes of
the block we calculated the DCT, and ordered the DCT coefficients from highest to lowest frequency. It is well
known that the lowest frequency coeflicients are less important visually, so of the 64 DCT coefficients, we kept
only the highest 10 coefficients from each plane (including the DC coefficient). The selected coefficients from
each plane were appended together to form a feature vector for the respective image block.

Once sets of feature-vectors were calculated for each image, a random sample was drawn and clustered using
K-means. The cluster centres formed a codebook, or vocabulary, of visual-terms which was then used to assign
a visual term to each feature-vector by finding the closest term in the codebook (using Euclidean distance). An
example of the representative image blocks found in a typical 500 term vocabulary generated from the Corel set
is shown in Figure 1.

For the experiments described in this paper, we used the optimal feature settings found in Ref. 20: i.e. a
vocabulary size of 500 visual-terms, and a maximum overlap of 6 pixels per block (the blocks were extracted
using a sliding-window approach, moving the window by an offset of 2 pixels in each step).

3.3 Optimal dimensionality for reducing noise

In addition to selecting the number of singular values as those that preserve 90% of the variance for the Cos
and Corr approaches,'® we also tried to find an actual optimum value. The linear-transform and semantic space
techniques also need to have a suitable number of dimensions chosen by optimising an objective function, such
as the mean average precsion on the validition data. Figure 2 shows how the number of singular values selected
during the truncated SVD of each approach affects the mean average precision of the validation data-set using
the blob feature. The plots show that the SvdCos, SvdCorr and linear-transform techniques are all relatively
insensitive to the choice of dimensionality, whereas the semantic space approach is relatively sensitive. This is
important as any choice of dimensionality on the validation set will be sub-optimal when applied to the test-set;
when the curve is flatter, this is less of an issue.

3.4 Semantic retrieval

Semantic retrieval performance of the different techniques and visual-terms features is compared by training each
of the techniques using the training and validation sets and then using the trained keywords to attempt retrieval
of the images in the test set. Since the ground truth annotations of the test set are known, it is possible to
determine which images are relevant to a particular keyword query and thus calculate precision and recall.
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Figure 2. Plot of dimensionality (k) versus mean average precision of the validation data. (a) shows unweighted blob
data; (b) shows the use of the idf weighting on the blob data.

Table 1 summarises the mean average precision for all the retrieval experiments. It should be noted that
these precision-recall scores are perhaps a little misleading as each of the techniques perform unequally for
different queries. The different machine learning approaches learn different underlying relationships between the
visual-term features and the annotation keywords.

The results in Table 1 show a number of findings. Firstly, as expected from prior work the clustered DCT
features perform better than the blob features for all annotation algorithms. The inverse document frequency
weighting scheme applied to the blob features helps both the semantic space technique and linear-transform
technique, but doesn’t give much of an improvement for the correlation based methods. With the clustered DCT
feature the weighting tends to hinder the performance consistently for all the techniques, albeit with differing
amounts. The semantic space and linear-transform techniques are particularly badly affected by the weighting
with the DCT feature. All the correlation techniques (Cos, Corr, SvdCos and SvdCorr) appear to perform very
similarly to each other.

4. DISCUSSION

On the whole, there isn’t much variation in performance amongst the techniques described, however, under
certain conditions certain techniques perform with a considerable relative improvement. In particular both the
linear-translation and semantic space approaches outperform the correlation-based approaches with the more
complex DCT data. Conversely, with the unweighted blob data, the optimised SvdCos method works best.

The observation that the IDF weighting hampers the machine learning with the DCT data mirrors the findings
in?° where an entropy-based weighting scheme was found to boost semantic space retrieval with blobs, but hinders
it when clustered DCT features are used. The results presented in this paper also back-up the assertion made
in our previous work?® that the semantic space technique performs better than a PLSA-based approach?? even
though the PLSA approach was shown to outperform an approach based on SvdCos and SvdCorr.?3

Table 1. Summary of retrieval performance with the different methods.

Blob Feature Clustered DCT Feature

Feature unweighted idf unweighted idf
kopt mAP kopt mAP kopt mAP kopt mAP
Linear-Transform || 315 0.144 100 0.164 275 0.189 425 0.184
Semantic Space 33 0.152 29 0.188 || 271 0.191 || 266 0.176
Corr n/a 0.158 || n/a 0.159 || n/a 0.165 || n/a 0.165
Cos n/a 0.158 || n/a 0.158 || n/a 0.162 || n/a 0.162
SvdCorr 90% of var | 0.158 || 90% of var | 0.159 | 90% of var | 0.167 | 90% of var | 0.165
SvdCos 90% of var | 0.157 || 90% of var | 0.157 | 90% of var | 0.164 | 90% of var | 0.163
SvdCorr 290 0.160 340 0.165 || 240 0.167 260 0.166
SvdCos 295 0.162 || 365 0.161 250 0.164 260 0.163




For a detailed understanding of how these techniques (in particular the semantic space approach) compare
to other state-of-the-art techniques (e.g. Ref. 12,24), the reader is encouraged to consult our previous work.2’
Whilst there are approaches that outperform the semantic space technique on the Corel dataset in terms of raw
annotation performance, we have to bear in mind that techniques are only directly comparable if they use exactly
the same image feature representation. In general, it appears that the semantic-space approach, and indeed the
other techniques described in this paper which perform similarly, can currently be seen as the best methods
to use when the image feature representation comsists of discrete visual terms.?? The techniques described in
this paper have two particular advantages over many of the other state-of-the-art techniques; firstly they are
relatively computationally inexpensive (for example, Carneiro et al'? reported that annotating the Corel set on
a 3000 node cluster could take about 1 hour; extracting DCT visual-terms and building a semantic space on the
other hand takes less than 20 minutes on a single workstation). Secondly, the methods presented in this paper
are deterministic, unlike may of the other state-of-the-art algorithms which often have random components, or
rely on the algorithms, such as EM, which can be prone to getting stuck in local minima in the high dimensional
spaces associated with image features.

4.1 Computational cost

The Cos and Corr techniques of Pan et al'® obviously have the least amount of computational complexity
of all the methods as they do not require computation of an expensive factorisation. However, the gain in
computational performance is offset by the relatively worse retrieval and annotation abilities. The standard
Lanczos techniques for calculating the SVD have a time complexity of O(pgr?), where p, ¢ and r are the number
of rows, columns and desired singular triples (singular values and corresponding left and right singular vectors)
respectively.?? The SvdCos and SvdCorr techniques require two decompositions each, and experimental results
show they tend to require relatively large dimensionality, r, compared to the small number of dimensions required
by the semantic space technique in some cases. The linear transform sits in-between these techniques in terms
of time complexity (relatively large number of dimensions for some features, but only one SVD is required). The
SVD carried out for the semantic space approach is applied to a larger matrix than for the other techniques,
however because fewer singular values are required, the decomposition actually requires less time than the other
techniques. Modern incremental SVD techniques can often have a lower time complexity, however, the number
of dimensions is still an important factor.?®

4.2 Practical real-world semantic retrieval

Very few papers on automatic annotation techniques discuss the applicability of the proposed technique to real-
world problems and data-sets, and instead just concentrate on the performance against standard test sets. Whilst
this is an important part of the scientific process, it can often be instructive to experiment with data-sets where
there is a real problem to be solved.

In the course of our research, we have worked closely with many organisations and archives that deal with
image search on a daily basis. By collaborating with the picture librarians at these organisations we have collected
sample queries, meta-data and imagery, which has enabled us to analyse some of the problems associated with
image retrieval. This analysis has led to a much greater understanding of the problem of the semantic gap from
the point-of-view of the image librarians and also from the point-of-view of the researchers in computational
image retrieval.*

In order to investigate the power of our semantic space technique in the real world, we applied the technique
to a test collection of images obtained from the Kennel Club picture library. In total, we have a collection of 7120
images, but only 2703 of the images are annotated with subject meta-data in the form of keywords. In order to
represent the visual features of the images, visual terms were created by quantizing SIFT features from salient
regions detected by the difference-of-Gaussian approach.”'* The visual vocabulary was set to a size of 3000
terms, and there was a total of 2003 distinct annotation keywords/phrases. Training of the semantic space was
performed using all of the annotated images, and all of the unannotated images were folded into the resultant
space.

Performance of the search technique on the Kennel Club data-set is difficult to judge quantitatively due to
the lack of ground-truth annotations from which to compare performance. However, we can make a number of



Figure 3. Searching for “dalmatians”. (a) Annotated training images; (b) Top 9 ranked retrieved (unannotated) images
(rank increases left-to-right, top-to-bottom). Images Copyright © 2009, The Kennel Club Picture Library, All rights
reserved.

observations. The first observation is that the retrieval performance can vary dramatically depending on the
query — some queries appear to work very well, with many relevant images retrieved near the top of the ranked
list, however other queries seem to return almost random results. The reasons for this are two-fold;2% firstly,
the training set may be deficient, and not contain enough exemplars of a given concept to accurately learn it’s
visual attributes (if any), and secondly, the choice of visual feature can have a large impact on performance. For
example, we would not expect our gray-level SIFT-based visual terms to be able to learn relationships between
colours. The discriminability of the visual features is also important as we may find a number of unrelated
textual terms represented by a set of similar visual features.

The ‘Dalmatian’ query illustrated in Figure 3 is an example of a query that works reasonably well. We
hypothesize that one of the reasons for this is that the visual features represent ‘spots’ quite well. All of the
top-ranked images include multiple dark spot-like features on a lighter background, just like the spots on a
Dalmatian, which indicates that the space has encoded a strong correlation between these spot-like features
and the word ‘Dalmatian’. Another interesting fact is that there are actually more than four training images
depicting Dalmatians in the training set, however, their key-wording has been misspelled as ‘Dalmation’. If
we search the semantic space using the misspelled term ‘Dalmation’ as a query, we interestingly get back the
same images as if we had spelled it correctly (albeit in a slightly different order). This indicates that the terms
‘Dalmatian’ and ‘Dalmation’ both occur at very similar points in the semantic space even though they do not
co-occur in any of the training data.

Another query of interest is that for the term ‘agility’. Generally speaking ‘agility’ does not have any particular
visual meaning, however, in the context of the Kennel Club data-set, it tends to refer to images of a particular
event at a dog show where dogs (and their owners!) run and jump over and though obstacles. The semantic
space performs quite well at retrieving these images. We hypothesise that it is a non-trivial combination of visual
features that enables these images to be associated with agility. For example, strong line-like features from the
obstacles, and fur texture on the dogs.

The above discussion is rather qualitative due to the lack of ground-truth. We were however able to get a
more quantitative idea of the performance by trying a number of queries and seeing how many results looked
relevant. In total we tried 31 queries, and analysed the first 20 results returned. The queries used were taken
from a set of actual request recorded by the Kennel Club’s picture librarian. If we take into account all of the
first 20 result images, then the overall precision Py (calculated as the number of relevant images in the top 20
divided by 20) is around 8.7%. This number seems low, but we have to bear in mind that we do not actually



know whether there were any relevant images in the set (or indeed how many relevant images there may have
been), so it is quite possible that in a number of cases the fact that no relevant images were retrieved is purely
down to the fact that there were no relevant images for the query. Of the 31 queries, only 12 actually returned
any relevant results (the number of relevant results varied between 1 and 13).

5. CONCLUSIONS AND FUTURE WORK

This paper has presented a new technique for automatic annotation and semantic retrieval. The new linear-
transform technique can perform well when compared to a similar class of techniques. The semantic space pro-
posed in previous work performs quite similarly to the linear-transform technique, however the linear-transform
approach has a small advantage in that the space into which unannotated images are projected has actual se-
mantic keyword terms as its axes. Contrast this to the semantic space approach where the axes of the space
are linear combinations of both textual and visual terms. Having the keyword terms as axes gives two possible
advantages; firstly, the space is easier to understand and search. Secondly keyword independence is enforced,
which can be useful if the keywords are known not to be synonyms.

Our plans for future work currently revolve around two important areas; firstly we wish to develop better
visual representations. This will involve both the fusion of more, different, types of visual features, but also
the development of better visual-term representations. In particular, current visual-term representations are
more synonymous with letters rather than words when compared to a human language — that is to say that
the individual visual-terms don’t really have any semantic meaning. However, groups of visual-terms in a
particular spatial arrangement may well have a semantic meaning. If these groups of visual-terms can be
extracted automatically, then a better, more semantically justified visual-term representation may be developed.

Secondly, we wish to explore how semantic retrieval techniques can be scaled-up to collections containing
perhaps hundreds-of-thousands, or even millions of images. In particular, we wish to explore how iterative
learning techniques can be applied to building semantic retrieval systems, rather than trying to train the system
in a batch mode.
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