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Abstract—The Izhikevich neuron model reproduces the
spiking and bursting behaviour of certain types of cortical
neurons. This model has a second order non-linearity
that makes it difficult to implement in hardware. We
propose a simplified version of the model that has a
piecewise-linear relationship. This modification simplifies
the hardware implementation but demonstrates similar
dynamic behaviour.

Index Terms—Neural networks, Neural network hard-
ware.

I. INTRODUCTION

Spiking neural networks have received much attention
in the artificial neural network community during the
past few years, due to their behavioural resemblance
to real life neurons. Motivated by biological discov-
eries, pulse-coupled neural networks with spike-timing
are considered an essential component in information
processing by the brain. Accordingly, many different
models have been presented for spiking neural networks
to reproduce their dynamical behaviour. These models
are based on a bio-chemical inspection of the neurons’
structures and mostly are expressed in the form of
differential equations. Although detailed neuron models,
[1], can imitate most experimental measurements to a
high degree of accuracy, these models are difficult to
use in large scale artificial spiking neural networks, due
to their complexity, [2]. Consequently, simplified models
are highly popular for studies of neural information
coding, memory and network dynamics. Lapicque, [3],
proposed that spikes are generated when the integrated
sensory or synaptic inputs to a neuron reach a threshold
value; this model is called Integrate and Fire (IF).
IF has become one of the most influential models in
neurobiology, giving a simple mechanistic explanation
for basic neural operations. Advances in experimental
techniques have shown, however, that the IF model is far
from accurate in describing real neurons. Izhikevich, [4],

has developed a class of models of spiking neurons that
balances the computational efficiency of IF models with
the biological plausibility and versatility of Hodgkin-
Huxley type models [1].

VLSI systems are considered to be strong choices for
the direct implementation of neuro-inspired systems. In
this approach, electronic components and circuits are
utilised to mimic neurological dynamics. Because of
the high performance and well developed technology,
a VLSI implementation enables rapid prototyping of
neural algorithms to test theories of neural computation,
structure, network architecture, learning, and plasticity
and also simulation of biologically inspired systems
in real-time operation. This is of particular interest
for sensory processing systems and biologically-inspired
robotics.

A variety of analogue, digital and software-based
implementations of spiking neural networks has been
presented. While analogue implementations can replicate
neural dynamics down to the ion channels in the neural
membrane and are fast and efficient, they are inflexible
and require a long development time [5], [6]. On the
other hand, software-based systems implement neurobi-
ological functions using standard microprocessors [7].
These systems are flexible and biologically realistic,
but are often large, computationally slow, and have
a high power consumption. Recently, as a midpoint
in the design space, FPGAs have been used to build
spiking neurons, [8]-[10]. This approach uses digital
computation to emulate individual neuron behaviour,
but a parallel and distributed network architecture to
implement the system behaviour. Having a model which
is implementable as well as accurate is the most essential
criteria in all these approaches.

In this paper we offer a piece-wise linear modi-
fication of the Izhikevich model which is efficiently
implementable in both analogue and digital schemes,



yet accurate and with similar behaviour to the original
model. This model uses the same approach as Izhike-
vich with a simple modification by which the squaring
function is replaced with a “comparison” or “abstract
value” both of which are far less expensive, compared
to the square function, in either the analogue or digital
implementations. The paper is organized as follows:
section II provides a brief explanation of the problem
background. Section III introduces the modified model
while simulation results for single neuron behaviour are
presented in section IV. The group dynamic of neurons
is compared with the Izhikevich model in section V and
the paper is concluded in section VI.

II. BACKGROUND

By generating sequences of action potentials, nerons
process data. Neurons encode computations into se-
quences of spikes which are biophysically determined by
the cell’s action-potential-generating mechanism. Izhike-
vich proposed a simplified model, [4], [11]. This model
contains two coupled differential equations, but is able
to reproduce complex neural behaviour. This model is
based on the following ODE:s:
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with the auxiliary after-spike resting equations:
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Here, v represents the membrane potential of the neuron
and u represents a membrane recovery variable, which
accounts for the activation of K ionic currents and in-
activation of Na™ ionic currents, and it provides negative
feedback to v. After the spike reaches its apex (V},), the
membrane voltage and the recovery variable are reset
according to the equations above. If v skips over Vi,
then it first is reset to V}, and then to c so that all spikes
have equal magnitudes. The part 0.04v2 4 5v + 140 is
chosen so that v is in the mV scale and time is in ms.

Rewriting the Izhikevich model as in [12], [13] we
have:
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If u > Upear then u <« Upeser. It can be simplified
by applying a first-order Euler approximation to the
quadratic model, resulting in:
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Fig. 1. Equilibrium locus of the Izhikevich model.

If wpt1 > Upeak then w1 < Ureser; Where k is the step
number. The last term can be approximated using two
taps:
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where P, = (—1)% . 2P with p; and s; being the
parameters of the it" tap.

On the other hand, in equilibrium (without input), the
Izhikevich model is:
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These equations, from a geometrical viewpoint, represent
a parabolic curve and a line, as depicted in Fig.1. The
crossing points of these curves give the equilibrium
points of the system (neuron). Different spiking patterns
are produced by changing these crossing points and the
threshold action potential.

The crossing points in Fig. 1 (equilibrium points) can
be calculated as Fy = (ey1,ey1) and Ea = (ey2, €y2),
where:
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Although this is known as the most practical, yet accu-
rate, available model; still there are several challenges
in realising the model on fixed-point machines or using
analogue circuits. The difficulty of implementation arises
from the quadratic part of the model, shown by the
parabolic curve in Fig. 1.
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III. MODIFIED NEURON MODEL

To improve the computational efficiency of the model
we propose a piecewise-linear replacement for the
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Fig. 2. Piecewise-linear approximation of the second order part of
the model.

quadratic part in the equation. We propose the following
function:

d
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where ki, ko and k3 are constant values, which can
be pre-calculated by simulation. This new nonlinear
function is depicted in Fig. 2.

As can be seen, this approximation provides three
degree of freedom for achieving the closest behaviour
to the original model. To find values of k;, ko and ks,
three equations are required. The new equilibrium points
in this approximation are:
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According to the values for £ and Fs for the original
model, parameters: ki, ko and k3 have to satisfy:
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while the third equation can be based on error min-
imisation in the model when compared to the original.
To minimise this error we have to bear in mind that
v > Vi, which means that v and u are limited and
this approximation needs to be valid within these limits.
Furthermore, to simplify the implementation, we can
chose values for k; which can be multiplied such as
powers of 2.

Since the model consists of simple arithmetic opera-
tions (addition/subtraction and shift) a large number of
neurons can be implemented on one FPGA.
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Fig. 3. Equivalent circuit model for neurons.
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Fig. 4. Example MATLAB simulations showing spiking behaviours.

IV. SINGLE NEURON BEHAVIOUR

It is also useful to be able to implement neurons using
analogue circuits. Our new model is compatible with a
simple analogue implementation. The piece-wise linear
function can be implemented using a full-wave rectifier
circuit, Fig. 3. Since this circuit has a very simple struc-
ture, it could be used in a large-scale implementation on
an analogue fabric. Fig. 4 shows a few samples of the
output spike patterns produced by this model.

V. NETWORK DYNAMICS

To investigate the network dynamics of neurons with
this model and compare it with the Izhikevich neuron
model, the neural network of Fig. 5 is used. This network
represents a simple creature’s neural system with very
simplified visual input, locomotion and decision sub-
networks. It simply searches for food and moves toward
it when in the vision range. The raster plots of the simu-
lations are presented in Fig. 6. The network activities of
the two models are very similar in structure, but differ in
the precise details. Since the statistical nature of neural
behaviour is generally of interest, these differences may
not be significant.



is relatively easy to implement. We have shown that the
statistical behaviour of our model is compatible with that
of the Izhikevich model.
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