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Abstract 

In this paper, the design of an integer lifting wavelet transform (IWT) architecture is presented. An efficient design method is proposed to construct a programmable integrated VLSI architecture that can operate as a forward or backward IWT at speeds up to 194.3 MHz. The layout of the integrated VLSI structure is simple, modular, and cascadable for computing a wavelet transform based on 5/3 biorthogonal filters. The architecture is optimal with respect to both area and time and independent of the size of the input signal without requiring additional memory. The lifting steps are adapted to be causal with the ability to execute lifting steps on a continuous flow of input data samples. The critical path of the architecture is equal to the critical path of one lifting step. The numerical precision and experimental results have been established with 8-bit signed two's complement integer numbers. Based on the experimental results, fixing the wordlength of the proposed architecture at 11 bits gives the best results in both forward and reverse wavelet transform modes.
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1. Introduction 

The Discrete Wavelet Transform (DWT) is a very computationally intensive process. Hardware acceleration is therefore desirable, but the design of a VLSI realization of the DWT is a major task. The lifting scheme presented by Sweldens [3] led to an efficient implementation of the DWT. Using the integer wavelet transform (IWT) as a lifting scheme was first proposed in 1996 [4][5]. The IWT is a form of linear transform, where each filter output is approximated to the bordering integer. The IWT is suitable for hardware implementations, in which integers are used instead of real numbers.

In the lifting scheme it is possible to maintain the integer data after a filtering operation if the input data are integers. This can be achieved very simply by progressive rounding at each lifting step. Consequently the linear lifting steps are replaced by their non-linear approximations. This is known as the reversible IWT. It is important to note that it is not necessary for the filter coefficient to be an integer in the IWT [1].

A number of papers have been published concerning traditional convolution design for DWT implementations [17][18]. The architecture can be broadly classified in the range from single-instruction-multi-data (SIMD) arrays to folded architectures such as systolic arrays and parallel filters. Folded architectures implement on-line versions of the recursive pyramid algorithm (RPA) [6]. These architectures support single chip implementations in VLSI and are optimal with respect to both area and time under the word serial model [7][8][9].

A number of papers have been published for efficient VLSI architectures of 1-D and 2-D lifting DWTs. In [10], a lifting scheme architecture is proposed that performs the forward and inverse DWT for a set of filters anticipated in JPEG2000. In [12], a systematic design method for efficient pipeline VLSI architectures for the lifting scheme is proposed, which includes specific lifting factorization, dependence graph formation, and systolic array mapping. A VLSI architecture is proposed in [13] for implementing the IWT, capable of achieving very high frame rates with moderate gate complexity. A digital signal processor (DSP) type architecture for IWT is presented in [14], dealing with optimal factorization and finite precision effects. In [26] a discrete wavelet transform algorithm based on the lifting scheme is presented, in which a unique lifting filter is designed for in-place computation. The 2D lifting based architecture in most cases is an extension of 1D; in [21] this idea is applied by using a line buffer to store the data.

The architecture proposed in [20] is a direct mapping of the data dependency diagram into a pipelined architecture. There are four lifting stages in the architecture, designed with 8 adders, 4 multipliers, 6 delay elements and 8 pipeline registers. A lifting-based recursive architecture is introduced in [28], which interleaves all levels of 1D DWT computations. In [24] an efficient VLSI architecture for the implementation of 1D multilevel lifting discrete wavelet is proposed using two folded and flexible architectures for analysis and synthesis lifting – (5, 3) DWT, respectively. 

The authors in [25] focus on analyzing DWT architectures with respect to tradeoffs between critical path and internal buffer implementations. Such a critical path can be shortened using pipelining with additional registers or using a so-called flipping structure with a fixed number of registers. This is introduced in [11], in which an efficient lifting scheme VLSI architecture is implemented by flipping conventional lifting structures to improve and minimize the critical path and memory requirements. In [31] a high-performance and low-memory pipeline architecture for 2-D lifting-based DWT of the 5/3 and 9/7 filters is proposed.

Recently many papers have been published concerned with lifting scheme hardware VLSI architectures that focus on computational speed, power and area constraints. For example, [22] proposes a VLSI architecture for the lifting scheme; the architecture is developed for lossy compression. Another proposed pipelined architecture is presented in [27] for high-speed and low-power applications. Recent work in [23] proposes VLSI architectures to compute a 1-D DWT for real-time multichannel streaming data under stringent area and power constraints. The implementations are based on the lifting-scheme for wavelet computation and integer fixed-point precision arithmetic, which minimize the computational load and memory requirements. In another recent work [18], a high-level compilation tool is proposed that generates VLSI architectures at the register transfer level.

Although the lifting scheme has been widely studied, most of the literature considers non-causal systems where the whole signal is buffered.

In this paper, a VLSI architecture for IWT is proposed. An efficient design method is suggested to construct an integrated programmable VLSI architecture that can operate as a forward or backward IWT.  The architecture is causal and no memory is needed for buffering. The paper is organized as follows. In Section 2, the concepts of the lifting scheme are reviewed. The design of proposal of VLSI for forward and backward IWT is introduced in section 3.  In section 4 the performance analysis and implementation results are given. Comparison of performance with other lifting based architectures is discussed in section 5. Finally, the conclusion is presented in Section 6.

2. Lifting DWT Scheme 

Daubechies and Sweldens were the first to derive the lifting-based discrete wavelet transform [5]. The lifting scheme realizes analysis or synthesis filter banks as factorized polyphase matrices, which are convenient both for design and implementation of the wavelet transform.  In the last few years, due to increasing interest in JPEG2000, lifting scheme architectures have been proposed [2]. The 5/3 bi-orthogonal is a default filter employed by JPEG2000 for lossless transforms. 

The general block scheme of the DWT is analogous to a classical sub-band system as shown in Figure 1. The sets of filters {Ha(z), Ga(z)} and {Hs(z), Gs(z)} represent analysis and synthesis lowpass and highpass filters respectively. The analysis and synthesis biorthogonal 5/3 filters have the following coefficients [1, 5, 17]:
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Figure 1. DWT filter bank scheme.
Analysis Lowpass Ha(z) = –1/8 z-2+ 1/4 z-1 + 3/4 + 1/4 z – 1/8 z2 

Analysis Highpass Ga(z)= –1/2 z-2 + z-1 – 1/2                                                             (1)

Synthesis Lowpass Hs(z)= 1/2 z-1 + 1 + 1/2 z  

Synthesis Highpass Gs(z) = –1/8 z-3 – 1/4 z-2 + 3/4 z-1  – 1/4  –  1/8 z
The lifting scheme can decompose a DWT filter bank into several lifting steps. The forward lifting scheme is composed of three stages: splitting, S, predicting, P, and updating, U.  The input sequence aj-1(k) is split into even and odd parts, aj(2k) and aj(2k+1). The even and the odd sequences are processed by the P and U steps, resulting in the high-pass and the low-pass wavelet coefficients dj(k) and aj(k) respectively, according to following equations [5]:


[image: image2.wmf](

)

)

2

2

(

)

2

(

2

1

)

1

2

(

)

(

1

1

1

+

+

-

+

=

-

-

-

k

a

k

a

k

a

k

d

j

j

j

j

                                                         (2)


[image: image3.wmf](

)

)

(

)

1

(

4

1

)

2

(

)

(

1

k

d

k

d

k

a

k

a

j

j

j

j

+

-

+

=

-

 ,                                                                      (3)

where k=0, 1, 2,…, N/2j -1, and N is the length of input sequence aj-1(k).  
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 Figure 2. Forward and backward Wavelets transform using the lifting scheme.

One of the main advantages of the lifting scheme is that the backward transform is simply realised by reversing the order of the forward lifting steps. The inversion rules are: revert the order of the operations, invert the signs in the lifting steps, and replace the split phase by a merge phase M as shown in the right side of Figure 2. The formulae to reconstruct even and odd coefficients can be deduced respectively from equations (2) and (3) as:
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3. Proposed VLSI Architecture 

The DWT filter banks and lifting scheme are multi-rate systems; the input sampling rate is Fs, while the output sampling rate is Fs/2. It is apparent that each of the lifting steps has a similar computational structure; the difference is in the values of sample inputs, sample rates and multiplier factors. 

Looking at the lifting scheme analysis and synthesis equations (2), (3), (4) and (5) respectively, it is apparent that they are non-causal. This means that the calculation of an output may require data from future computation cycles. To hold causality the design of proposed architecture should be such that in any current computation cycle all contribution from prior computations must be available. As a result, each step in the computation cycle should rely only on previously calculated data provided these steps are performed sequentially [23].

3.1. Prior Design Issues

The proposed architecture is designed with the ability to execute the entire set of lifting steps on a continuous flow of input data samples. The split stage of the forward lifting scheme is realized with a commutator switch [30]. The commutator switch at level j-1 distributes the data input aj-1, into odd 
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 samples each with Fs/2 sampling rate. The schedule of data order computations of the predict and update lifting steps in both forward and backward lifting scheme is shown in Table 1. The input data samples are assumed to be at level 0, so a0 (k) = x(k):

a0(k) = {x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10)}

The decomposed lowpass and highpass filter outputs are a1(k) and d1(k), respectively. The reconstructed odd and even samples are 
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, respectively. A commutator switch sweeps through the odd and even samples respectively at sampling rate Fs. 

Table 1. Forward and backward lifting steps data computation schedule for j=1.
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From the data schedule shown in Table 1, the analysis equations can be written as
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The synthesis equations can be determined from the analysis equations as:
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A direct mapping of equations (6), (7), (8) and (9) results in a cascaded forward and backward lifting scheme architecture as shown in Figure 3.  


[image: image20.emf]odd

even

x(1)

x(0) x(2)

x(3)

x(2) x(4)

F

S

F

S

odd

even

a

0

+

–

+

+

+

-1

2

–

z

-1

+

-2

2

+

z

-1

z

-1

z

-1

a

1

(2)

d

1

(2)

F

S

/2

ar

0

d

1

(1)

d

1

(1)

-2

2

-1

2


Figure 3: Forward and back lifting scheme architecture.

3.2. Programmable Lifting step PE

The predict and update lifting steps have similar computing patterns. It is therefore possible to design a single programmable process element (PE) with control inputs such that the PE can implement both the predict and update lifting steps. In order to configure the PE, two control inputs, denoted as m (shift) and s (add/subtract), are supplied as 
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Table 2 shows the settings used in the case of the forward/backward predict and update lifting steps.

The detailed structural design of the lifting step PE is shown in Figure 4. Each of the four modes: forward predict, forward update, backward update and backward predict can be implemented using the given PE by selecting the corresponding control inputs m and s. The symbol » means arithmetic right shift.

Table 2: The setting of control signals s and m for forward/backward lifting
	s
	m
	Add/

Subtract
	Shift right

by
	Lifting 

step

	1
	1
	Subtract
	1-bit
	Forward Predict

	0
	0
	Add
	2-bit
	Forward Update

	0
	1
	Add
	1-bit
	Backward Predict

	1
	0
	Subtract
	2-bit
	Backward Update
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Figure 4: Programmable lifting step PE.

The programmable lifting step PE can be extended as a regular unit in the overall system design. Hence, the implementation of the forward lifting IWT is straightforward, as shown in Figure 5. The input commutator switch shown in Figure 3 is realized by adding a register triggered at the sample rate Fs. This register holds the odd input samples in synchronization with the direct feed of even input samples at a rate of Fs/2. PE0 and PE1 represent the predict and update stages respectively. A better performance can be achieved by using a pipeline structure, adding two latches between PE0 and PE1. Now the critical path delay is equal to that of the critical path delay of one PE.

As mentioned before, the backward transform can be realized using the inverse elementary operations of the forward transform, but in reverse order. Applying this idea and using the derived backward equations, the pipelined backward IWT is shown Figure 6. The output commutator switch shown in Figure 3 is implemented by appending a multiplexer to select one of two outputs from the predict stage at the rate Fs achieving the merge stage. The select input to the multiplexer comes from the timing clock Ck/2: when the clock is high the multiplexer select the even samples, when low it selects the odd samples; consequently the output rate is Fs. 
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Figure 5: Pipelined forward IWT
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Figure 6: Pipelined backward IWT

3.3. Integrated architecture 

It is clear that the functional block diagrams of the proposed forward and backward IWTs differ in the way the input data is supplied to the processing elements PE0 and PE1 (see the bold boxes in Figures 5 and 6). 

It is possible to build an integrated structure that can function as a forward or backward IWT architecture by adding multiplexers with a control signal. The block diagram of the programmed forward/backward IWT architecture is shown in Figure 7. In the forward mode, u=0, the input multiplexers select the input aj-1 and the buffers corresponding to the aj and dj outputs are active. At the same time, the control selections of the PEs are set as m0=1, m1=1, s0=0 and s1=1. In the backward mode, u=1, m0=1, m1=0, s0=1 and s1=0, the input multiplexers route aj and dj to be the inputs. At the same time the multiplexer output buffer is active to deliver the output arj-1.

The basic cells of the proposed structure were implemented on a Xilinx Virtex IV. The results are summarized in Table 3. VHDL code for the PE block is also presented in Appendix A.
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Figure 7: The integrated architecture for forward and backward IWT.
Table 3: LUT numbers and usage % for basic blocks of the proposed structure

	Cell Type
	Total LUTs
	Maximum Frequency

	Forward  IWT Cell
	42
	230.0 MHz

	Backward IWT Cell
	52
	230.0 MHz

	Forward and Backward IWT Cell
	102
	194.3 MHz


4. Performance Analysis and implementation results
The invertible transform means that the transform is calculated using exact arithmetic. In practice, finite-precision arithmetic is usually employed, and such arithmetic is inherently inaccurate due to rounding errors. In general, such transforms are invertible only using infinite-precision arithmetic. Importantly, however, it is possible to create transforms that are not only invertible, but also reversible in the sense that the inverse transform can be calculated using finite-precision arithmetic [15]. The reversible transform maps integers to integers, and approximates the linear wavelet transforms. Although reversible wavelet transforms map integers to integers, such transforms are not fundamentally integral in nature. That is, these transforms are based on arithmetic using real numbers in conjunction with rounding operations [16].

4.1 Critical Path Analysis

The 5/3 transforms are truly multiplier-less (i.e. their underlying lifting filters all have coefficients that are strictly powers of two). Clearly, the resultant architecture in Figure 3 has a computation complexity of 4 additions and 2 shifts. The critical path of each architecture is equal to the delay of the predict step plus the delay of the update step. The critical path of each lifting step PE as shown in Figure 6 is given by:

TL = 2 TA + TS ,                                                                                                         (11)

where TA is the latency of the adder, and TS is the latency of the arithmetic shifter.

The implementations of the forward and backward operations of equations (6), (7), (8), and (9) are approximated by nonlinear operations which map integers to integers. The forward IWT equations are implemented as:
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While the backward IWT equations are implemented as:
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In this work, all the arithmetic operations are in fixed-point arithmetic and the operands are represented as two’s complement signed integers. Under these conditions the arithmetic right shift (symbolized by ») of a number V by p bits is equivalent to 
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4.2 Numerical precision analysis
The BIBO (Bounded Input Bounded Output) gain of a lifting implementation of the 5/3 biorthogonal filters is now examined. The cascade equivalence relations obtained by means of the interchange between a filter and down sampling facilities are used to compute the BIBO [2]. The equivalent low-pass filter obtained after stage j of the basic filter bank structure is
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and the equivalent high-pass filter is
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The BIBO analysis gain for lowpass and highpass output sub-bands at stage j are given, respectively, by 
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and
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haj[n] and gaj[n] are the inverse z-transforms of Haj(z) and Gaj(z), respectively.

Using the above equations, the estimated values of BLj and BHj for up to five levels of decompositions are shown in Table 4. The bit-depth expansion is defined as the number of extra bits required and is the base 2 logarithm of the BIBO gain. The bit-depth figures at each level are also illustrated in Table 1.

It is apparent from Table 4 that the worst-case bit-depth expansion intended for lifting implementation of the 5/3 biorthogonal filters is 2 bits for up to five levels of decomposition. 

                       Table 4: BIBO gains and bit-depth expansions 

	level j
	BLj
	BHj
	log2(BLj)-bit
	log2(BHj)-bit

	1
	1.5000
	2.0000
	0.5850
	1.0000

	2
	1.6250
	2.5000
	0.7004
	1.3219

	3
	1.6875
	2.7500
	0.7549
	1.4594

	4
	1.6963
	2.8047
	0.7624
	1.4878

	5
	1.7067
	2.8198
	0.7712
	1.4956


The computed values, above, at different levels refer to filter bank or lifting implementations of the wavelet transform using 5/3 biorthogonal filters. Now the case of the integer-to-integer mapping wavelet transform IWT is taken into account for the purpose of hardware completion of the proposed architecture. If the sample values of the original input signal are b-bit two's complement integer numbers in the range

−2b−1  ≤  x[n] ≤   2b −1 −1                                                                                           (20)

then the sample values range IWT lowpass and highpass subband outputs at level j are also integer numbers bounded by 
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where 
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 bounds the effect of the floor operations used in each lifting step. It is noted in [2] that 
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 has a negligible impact on the number bits required for representing the sub-band sample values. Consequently, if the signal input samples are b-bit two’s complement integer numbers, then (b+2)-bit integers are sufficient to represent the reversibly transformed sub-band outputs at up to five levels of decomposition. 

The word length (b+2) bits estimated from equations (21) and (22) are sufficient to cover the output values in 2’s complement representation at the end of the filtering operation of the lifting scheme. However, there is the possibility that intermediate data output from the add or subtract circuits of the proposed PE will be greater than the final output values of the forward or backward lifting scheme. Indeed, this is true because in the case of adding or subtracting two input numbers in 2’s complement representation there is possibility that overflow occurred. To stay away from the overflow occurring an extra bit is required to cover all possibility of output result. Therefore, the wordlength of the add/subtract circuit of PE is maintained at (b+3) bits.

4.3 Experimental Results   

Four input test signals are used to extract the performance of the proposed IWT architecture. The implementation is achieved on signals given by Donoho and Johnstone that have become standard tests for wavelet applications. The signals are shown in Figure 8 and called blocks, bumps, and quadchirp [19]. The white Gaussian noise signal is also used. The input samples of each tested signal are represented as 8-bit signed two’s complement integer numbers. All signals were 1024 samples long. The test signals are analyzed and reconstructed with double precision and w-bit fixed-point signed two’s complement integers using the implemented design. The mean-square-error accuracy performances are measured for multilevel lifting-based wavelet transform using the proposed IWT architecture and up to five levels of forward and reveres modes.
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Figure 8. The test signals.

First, the accuracy performance is measured for five levels (J=5) of decomposition/ reconstruction model. The measurements are performed on the outputs in each level, j, within the model for different wordlengths, w, according to the following formulae:
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Another measurement is performed, like the previous one, but for individual fixed models at levels J = 1, 2, 3, 4, 5. The accuracy is measured between the original and reconstructed signal for each model at different wordlengths according to the expression:
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where

k is the index of coefficient output,

j is the level number 

Nj is the length of output at level j. 

The outputs aj, dj, arj and xrj are double precision calculations, 

The outputs afj, dfj, afrj and xfrj are fixed-point calculations 

For five levels of the decomposition/reconstruction model, the resulting graphs of mseaj, msedj and msearj with a wordlength of w bits for the test signals are shown in Figures 9 to 12. Figures 13 to 16 shows 3-D graphs, with levels of decomposition on the x-axis, wordlength, w, on the y-axis and the mean-square-error, msexrj, on the z-axis, for reconstructed test signals.

As shown in Figures 9 to 12 the mean-square-error accuracy depends on the type of test signal, intermediate data and the wordlength precision. However, the overall performance depends significantly on the precision of the intermediate data coefficients.

For all test signals, it is observed that the mean-square-error accuracies mseaj, msedj and msearj worsen as the level of decomposition, j, increases. The perfect reconstruction of ar0 is obtained for 9 bits of wordlength precision for the blocks and bumps test signals and for a 10 bit wordlength for quadchirp and white Gaussian noise test signals.

For the blocks test signal (Figure 9), which contains high frequency corners, and for the bumps test signal (Figure 10), which contains high peaks, the accuracy stays unchanged above a 10 bit wordlength precision in the forward mode. While in the reverse mode, the accuracy remains unchanged above a 9 bit wordlength precision. The blocks test signal has better performance than bumps test signal. 

For the quadchirp test signal (Figure 11), which contains low and high frequencies with time and for the white Gaussian noise test signal (Figure 12), which has a constant spectrum, the accuracy stays unchanged above an 11 bit wordlength precision in the forward mode. In the reverse mode, the accuracy remains unchanged above 10 bits of wordlength precision. The quadchirp test signal has better performance than the White Gaussian noise test signal. For the reconstructed block signal (Figure 13) and bumps signal (Figure 14), perfect reconstructions are achieved with a wordlength of 9 bits. For the reconstructed quadchirp signal (Figure 15) and the reconstructed white Gaussian noise signal (Figure 16), perfect reconstructions are achieved with a wordlength of 10 bits.
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Figure 9 Accuracy for the blocks test signal.
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Figure 10 Accuracy for the bumps test signal.
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Figure 11 Accuracy for the quadchirp test signal.
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Figure 12 Accuracy for the white Gaussian noise test signal.
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Figure 13. Accuracy of the reconstructed blocks signal.
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Figure 14. Accuracy of the reconstructed bumps signal.
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Figure 15. Accuracy of the reconstructed quadchirp signal.
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Figure 16. Accuracy of the reconstructed white Gaussian noise signal.

5. Comparison of Performance 

5.1 Multilevel Scalability and computational complexity

The proposed IWT integrated architecture is easily scalable to different levels by connecting the required number of integrated architectures in cascade. When expanding the IWT to multiple levels, the computation complexity will depend on the number of levels. At each lifting stage, the down sampling of the splitting step reduces the number of approximation coefficients to half the number of input samples from the preceding stage. Further, because only the approximation coefficients are further decomposed in the dyadic manner, the total number of samples nJ to be processed by the J-stage 1-D lifting scheme is [28]
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where N is the number of input samples. The number of samples nJ to be processed at level J is always less than twice the number of input samples. In each lifting stage there are four addition operations and two shift operations. Therefore, the number of additions, na, and the number of shifts, ns, per stage, J, are na = 4nJ and ns=2nJ, respectively.

5.2 Hardware utilization 

The hardware utilization of the multilevel IWT proposed design can be estimated as [24] 
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Obviously, the higher the number of stages, the higher the hardware utilization. As the number of stages increases, UJ approaches 100 percent, for example hardware utilization reaches about 97 percent for five levels.

The latency of the proposed IWT integrated architecture is totally independent of the number of levels due to its regular structure design. Consequently, the proposed architecture does not affect the speed when stages are connected in cascade.

5.3 Comparisons

In this paper, a proposed design is introduced for computing a forward and backward 1D multilevel IWT that can operate with a frequency up to 194.3 MHz. The design is based on a VLSI single programmable PE for executing lifting steps, which can be integrated to form a lifting scheme architecture. Two PEs can be connected to form a single programmable integrated architecture that can function as a single forward or backward IWT. The integrated architecture can be connected repetitively with simple interfaces to form a multilevel IWT. This means, simplicity, regularity and modularity in the system design. Like most lifting structures, the proposed architecture also uses a pipeline technique to increase the speed of computation [31]. In addition, its area is independent of the input length and its latency is independent of the number of levels. 

The proposed design can implement a 1D multilevel IWT concurrently. It does not use any external memory to store the intermediate results and thus avoids the delays caused by memory access. Both the input and output data rates to the PE core are one sample per clock cycle. For the IWT, computation of N samples with J levels takes N clock cycles. This means that the proposed architecture can be used in real-time processing applications.

Table 5 shows the comparison of the proposed architecture and other lifting-based designs, for an N-sample 1D 5-level N-sample analysis (5, 3) DWT. The individual architectures proposed in [10] [12] perform only one-level lifting DWT at a time, so the computation time for an N-sample input sequence is about 2N clock cycles. To achieve better timing performance, both [24] and [28] designs interleave all levels of 1D DWT computations and thus require roughly half the computation time (≈ N clock cycles). 

Compared with [10, 12, 24, 28] our architecture requires an identical number of adders and shifters but no multipliers, while achieving identical hardware utilization and computation time. Moreover, our architecture is more regular than the others, so it requires a simpler switching circuit and is easier to scale for different resolution levels. 

Table 5 comparisons of architectures with lifting-based DWT.

	
	Multipliers
	Adders
	Shifters
	Computation

time
	Hardware

utilization
	Switching

complexity
	Memory usage

	[10]
	2
	4
	2
	≈ 2N
	≈ 50%
	simple
	yes

	[12]
	2
	4
	2
	≈ 2N
	≈ 50%
	simple
	yes

	[28]
	2
	4
	2
	≈ N
	≈ 97%
	High
	yes

	[24]
	2
	4
	2
	≈ N
	≈ 97%
	Moderate
	No

	Ours
	-
	4
	2
	≈ N
	≈ 100%
	Simple
	No


6. Conclusions

In this paper, the design of a programmable modular VLSI integrated architecture for computing a 1-D IWT has been proposed. The proposed architecture is simple and may be cascaded for computing multi-level decompositions and can be programmed to operate as a 1-D forward or backward IWT. The integrated architecture is independent of the size of input signal because it is does not require any memory and thus is advantageous in VLSI design with respect to both area and time. The proposed architecture is capable of operating with frequency up to 194.3 MHz in an FPGA implementation.
The wordlength of the registers within the architecture was selected as 11-bits for integer input samples of 8-bits using two’s complement representations to avoid intermediate data overflow. However, a wordlength of 10-bits is sufficient for lossless reversible transforms and up to five levels of IWT.

The architecture is suitable for use in real-time processing systems. A better arrangement is obtained by using a pipelined configuration, which reduces the critical path delay of the architecture to the critical path delay of one lifting step and consequently increases the speed of processing. With simple modifications the proposed architecture can also be used as a 2-D IWT.
Appendix A

VHDL code for PE block

	library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity PE is

  generic ( n : NATURAL := 10);

  port (In1           : in    std_logic_vector(n-1 downto 0);

          In2           : in    std_logic_vector(n-1 downto 0);

          Out1         : out  std_logic_vector(n-1 downto 0);

          Out2         : out  std_logic_vector(n-1 downto 0);

          m,s           : in    std_logic;

          clock,reset : in    std_logic);

end entity PE;

architecture RTL of PE is

begin

 process(clock,reset) is

   variable Q1,Q2 : signed(n-1 downto 0);

   begin

     if reset='1' then

         Q1 := (others=>'0');

         Q2 := (others=>'0');

     elsif rising_edge(clock) then

         Q2 := signed(In1) + Q1;

         Q1 := signed(In1);

         Q2 := Q2 SRA 2-m;

         if s='0' then Q2:=Q2+signed(In2);  elsif s='1' then  Q2:=Q2-signed(In2); end if;

         Out1<=std_logic_vector(Q1);

         Out2<=std_logic_vector(Q2);

     end if;

   end process;       

end architecture RTL;


7. References

[1] T. Acharya and P.-S. Tsai "JPEG2000 Standard for Image Compression Concepts, Algorithm and VLSI Architectures" John Wiley & Sons, Inc., New Jersey, 2005

[2] D. S. Taubman and M.W. Marcellin "JPEG2000: Image Compression Fundamentals, Standards and Practice " Kluwer Academic Publishers, Massachusetts, 2002.

[3] W. Sweldens, “The lifting scheme: a custom design construction of biorthogonal wavelets,” Journal of Appl. and Comput. Harmonic Analysis, 3, 1996, 186-200.

[4] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. Yeo, “Wavelet transforms that map integers to integers,” Technical Report, Department of Mathematics, Princeton University, 1996.

[5] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” preprint, Bell Laboratories, Lucent Technologies, 1996.

[6] J. Fridman and E. S. Manolakos, " On the synthesis of regular VLSI architecture for the 1-D discrete wavelet transform" Proc. of SPIE conf. on Mathematical Imaging: Wavelet Applications in Signal and Image Processing II, San Diego CA, July 1994.

[7]A. Grzesczak, M.k.. Mandal, S. Panchanathan and T. Yeap "VLSI Implementation of Discrete Wavelet Transform" IEEE Trans. on VLSI systems, Vol.4, No.4, pp 421-433, Dec. 1996

[8] C. Chakrabarti, M. Vishwanath, and R.M. Owens , " Architectures for Wavelet Transforms: A Survey " Journal of VLSI Signal Processing , vol.14, pp171-192, 1996.

[9] C. Chakrabarti, M. Vishwanath, "Efficient Realization of the Discrete and Continuous Wavelet Transforms : from Single Chip Implementation to Mapping on SIMD Array computers" IEEE Transactions on Signal Processing ,vol. 43, No. 3, pp. 759-771, May 1995.

[10] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Transactions on Signal Processing, Vol. 50, Issue.4 , pp. 966-977, April 2002.

[11] C.T. Huang, P.C. Tseng, and L.G. Chen " Flipping structure: An Efficient VLSI Architecture for Lifting –based Discrete Wavelet Transform " IEEE Transactions on Signal Processing, Vol. 54. No. 4, pp. 1080-1089, April 2004.

[12] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Efficient VLSI architectures of lifting-based discrete wavelet transform by systematic design method,” in IEEE International Symposium on Circuits and Systems, 2002, vol. 5, pp. 565–568.

[13] M. Grangetto, E. Magli, M. Martina, and G. Olmo, " Optimization and Implementation of the Integer Wavelet Transform for Image coding", IEEE Transactions on Signal Processing, Vol. 11, June 2002.

 [14] M. Martina, G. Masera, G. Piccinini, and M. Zamboni, " A VLSI Architecture for IWT (Integer Wavelet Transform)", in Proc. 43rd Midwest Symp. Circuits, Lansing, MI, August, 2000.

[15] M. D. Adams, “Reversible Integer-to-Integer Wavelet Transforms for Image Coding” Ph.D. thesis, Department of Electrical and Computer Engineering , University of British Columbia (UBC), Canada, September 2002.

[16] M. D. Adams and F. Kossentini, “Reversible integer-to-integer wavelet transforms or image compression: Performance evaluation and analysis,” IEEE Trans. Image Processing, vol. 9, pp. 1010–1024, June 2000.

[17] T. Acharya and C. Chakrabarti, “A Survey on Lifting-based Discrete Wavelet Transform Architectures,” Journal of VLSI Signal Processing, vol. 42, No. 3 pp. 321-339, March 2006.

[18] R. Bartholoma, T. Greiner, F. Kesel, W. Rosenstiel, “A Systematic Approach for Synthesizing VLSI Architectures of Lifting-Based Filter Banks and Transforms,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 55, No. 7, pp. 1939-1952, August 2008.

[19] H. Krim, D. Tucker, S. Mallat and D. Donoho, "On Denoising and best signal representation" IEEE Trans. on Information Theory, vol.45, No.7, pp. 2225-2238, November 1999.

[20] C.C. Liu,Y.H. Shiau, and J.M. Jou, “Design and Implementation of a Progressive Image Coding Chip Based on the Lifted Wavelet Transform,” in Proc. of the 11th VLSI Design/CAD Symposium, Taiwan, 2000.

[21] Jiang W and Ortega A. “Lifting factorization based discrete wavelet transform architecture design” IEEE Transactions on Circuits and Systems for Video Technology, 11(5):pp.651-657,2001.

[22] Wenbing Fan, Ruilin Qin, Xiaoguang Cao “A New VLSI Architecture for Lifting-Based Wavelet Transform” ICSP2006 Proceedings.

A[23] K. G. Oweiss, A. Mason, Y. Suhail, A. M. Kamboh, and K. E. Thomson” A Scalable Wavelet Transform VLSI Architecture for Real-Time Signal Processing in High-Density Intra-Cortical Implants” IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 54, no. 6, JUNE 2007

[24] P. Y. Chen, “VLSI implementation for one-dimensional multilevel lifting-based wavelet transform,” IEEE Trans. Computers, vol. 53, no. 4, pp. 386–398, Apr. 2004.

[25] C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Analysis and VLSI architecture for 1-D and 2-D discrete wavelet transform,” IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1575–1586, Apr. 2005.

[26] H. Olkkonen, J. T. Olkkonen, and P. Pesola “Efficient Lifting Wavelet Transform for Microprocessor and VLSI Applications” IEEE Signal Processing Letters, vol. 12, no. 2, February 2005

[27] Cheng-Yi Xiong, Jin-Wen Tian, and Jian Liu “Efficient High-Speed/Low-Power Line-Based Architecture for Two-Dimensional Discrete Wavelet Transform Using Lifting Scheme” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, NO. 2, February 2006. 

[28] H. Liao, M.K. Mandal, and B.F. Cockburn, “Efficient Implementation of the Lifting-Based Discrete Wavelet Transform,” Electronics Letters, vol. 38, no. 18, pp. 1010-1012, Aug. 2002.

[29] P. Pirsch "Architectures for Digital Signal Processing " John Wiley,1998.

[30] R.E. Crochiere and L.R. Rabiner “Multirate Digital Signal Processing” Prentice Hall,1983.

[31] B. F. Wu and C. F. Lin, “A High-Performance and Memory-Efficient Pipeline Architecture for the 5/3 and 9/7 Discrete Wavelet Transform of JPEG2000 Codec” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 12, December 2005.








































PAGE  

_1317060391.unknown

_1317061346.unknown

_1317108704.unknown

_1317108911.unknown

_1317109053.unknown

_1317110108.unknown

_1317110112.unknown

_1317110400.unknown

_1317110104.unknown

_1317109045.unknown

_1317108750.unknown

_1317108893.unknown

_1317108715.unknown

_1317108536.unknown

_1317108692.unknown

_1317061373.unknown

_1317061223.unknown

_1317061248.unknown

_1317061257.unknown

_1317061231.unknown

_1317060447.unknown

_1317060455.unknown

_1317060402.unknown

_1308349797.unknown

_1308400060.vsd
dj�

aj �

 �

aj-1 �

 �

 �

 �

      �

PE�

0�

 �

 �

m�

0�

 �

 �

 �

 �

s�

0�

 �

 �

C�

k�

 �

/2�

 �

Latch�

 �

Latch�

 �

Latch�

 �

Latch�

 �

 �

0�

 �

1�

 �

 �

 �

      PE1�

 �

 m�

1�

 �

 �

 �

 s�

1�

 �

 �

1�

 �

0�

 �

 �

 �

MUX�

 �

 �

C�

k�

 �

 �

 �


_1308666327.vsd
 �

ha(k)�

ga(k)�

hs(k)�

gs(k)�

aj-1(k)�

  2�

  2�

  2�

+�

aj(k)�

dj(k)�

arj-1(k)�

  2�


_1308412714.vsd
dj �

aj �

 �

Clock Ck�

 �

u=0 forward�

 �

u=1 backward�

 �

 �

Forward/Backward IWT�

 Integrated Architecture�

 �

 �

 �

dj �

aj �

aj-1�

 �

Register�

 �

                �

C�

k�

/2�

 �

 �

 �

 �

                 �

 �

 �

 �

PE�

0�

 and PE�

1�

 �

 �

 �

 �

 �

m�

0�

 �

 �

m�

1�

 �

  �

s�

0�

  �

 �

s�

1�

 �

 �

 �

MUX�

 �

 �

 �

 �

MUX�

 �

 �

aj-1�

u�

 �

 �

 �

MUX�

 �

 �

I�

0�

 �

I�

1�

 �

O�

0�

 �

O�

1�

 �

1�

 �

0�

 �


_1308399827.vsd
dj�

 �

aj�

aj-1�

 �

 �

      �

PE�

0�

 �

 �

m�

0�

 �

 �

 �

 �

s�

0�

 �

 �

Clock Ck�

 �

C�

k�

 �

/2�

 �

 �

Register�

 �

Latch�

 �

Latch�

 �

Latch�

 �

Latch�

 �

 �

1�

 �

1�

 �

 �

 �

      PE1�

 �

 m�

1�

 �

 �

 �

 s�

1�

 �

 �

0�

 �

0�

 �


_1307315425.unknown

_1307315489.unknown

_1308349016.unknown

_1307831074.vsd
�

�

�

�

�

�

�

�

�

z �

-�

1�

 �

�

 �

FS/2�

FS�

FS�

ar0�

�

x(4)�

�

�

z �

-�

1�

 �

�

�

+�

 �

�

�

�

-2�

2�

 �

�

�

-1�

�

�

�

��

 �

�

�

�

a0�

a1(2)�

even�



odd

�

d1(2)�

�

�

+�

 �

�

�

2�

 �

�

z �

�

�

+�

d1(1)�

-�

1�

�

�

x(2)�

d1(1)�

x(3)�

x(2)�

x(0)�

x(1)�

even�



odd

�

�

�

�

�

 �

�

�

+�

 �

�

�

�

�

-1�

2�

�

�

�

��

 �

�

�

�

�

�

�

�

�

�

z �

-�

1�

 �

�

�

+�

 �

�

�

�

-2�

2�

 �

�

�

�

+�

 �

�

�

 �

 �

 �

�


_1307315483.unknown

_1169044558.unknown

_1307315404.unknown

_1306702399.unknown

_1306940835.vsd
  Low pass
aj(k) �

S�

aj-1(k)�

+�

  even: 
  aj-1(2k) �

-P�

 odd: 
 aj-1(2k+1)�

+�

U�

dj(k)   
High pass
�

-U�

+�

+�

P�

M�

arj-1(k)�


_1306754493.unknown

_1306683744.unknown

_1169044392.unknown

_1169044551.unknown

_1169044385.unknown

