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Abstract—The work describes an improved 2-D model for 
a thin annulus by using a modified assumption with regard to 
coupled vibration. With this approach, the impedance spec-
trum and displacements due to radial modes, both in radial 
and thickness direction of a thin ring, are obtained. Bending 
displacement is investigated by finite element analysis (FEA) 
and matches our model. The bending in the thickness direction 
is coupled to radial modes and shows several node circles in the 
high radial overtone frequency range. The model is validated 
by FEA with excellent agreement between the new theory and 
FEA results.

I. Introduction

Piezoelectric ring transducers are widely used in the 
fields of underwater and medical applications [1]. Ra-

dial (R) only modes for thin ring structures have been well 
developed in the past decades and illustrated in previous 
literature [1]–[3]. Whereas, in these previous models, the 
R modes included no out-of-plane vibration (apart from 
Poisson effects), the more accurate model presented in 
this paper does and discovers that the modeled R modes 
effectively have a certain amount of bending in their mode 
shape, which is caused by the R mode and enhanced by 
the increase of the order of the R mode.

In our analytical model, the technique is based on a 
new assumption made from the kinematic relationship. 
The assumption presented here considers the coupled vi-
bration in both thickness and radial direction; previous 
work [4]–[7] has used relationships that decouple the vi-
brations in thickness and radial direction and thus leads 
to inaccurate results. By finite element analysis (FEA) 
simulation (using ANSYS 11.0 software, ANSYS Inc., 
Canonsburg, PA), which has been shown to produce re-
sults close to experimental data [8], the analytical results 
from our model show a very good agreement with FEA 
results, with the coupled bending vibration obtained ac-
curately in the thickness direction.

In addition, this bending is believed to be the main 
reason for the nonuniform thickness extensional (TE) vi-
bration that is excited in the far frequency range that 
is often associated with high overtones of the R mode; 
the enhanced bending due to high-order R modes is thus 
strongly coupled into TE vibration. The assumption al-

lowing coupled vibration still may be valid for the TE 
mode and could serve as a step to obtain accurate results 
for the coupled TE vibration, but this has yet to be dem-
onstrated.

II. Model of Thin Ring Using a Modified 
Assumption

Fig. 1 shows the structure of a ring defined within axis-
symmetric cylindrical coordinates. The angular displace-
ment in θ direction (cylindrical coordinates) can be ig-
nored due to symmetry [1]. The governing equations for 
piezoelectricity in cylindrical coordinates are given below:
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where Ti,j is the stress in the defined direction, Si,j is the 
strain, φ represents the electrical potential, E is the elec-
trical field, and D is electric displacement; c11

E, c12
E, … 

c44
E are the elastic stiffness constant; e31, e33, e15 are the 

dielectric constants, ε11
S and ε33

S are the permittivity, ur 
and uz are the radial and thickness displacements, respec-
tively. The differential equations for the 2-D problem are 
also given:
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Because the polarization is in the thickness direction 
and the ring is supposed to be thin, the classic Kirch-
hoff’s theory is used, and several assumptions are made 
and summarized as follows [1], [9]:
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These assumptions are reasonable because the top 
and bottom surfaces of the thin ring hold the stress free-
boundary condition. Because the thickness is also small, 
the stress quantities cannot depart much from zero. Like-
wise, the linear approximation to voltage through the 
thickness is also a result of the thin nature of the disk. 
The zero shear deformation Srz can be deduced by (1d). 
By the zero shear deformation, the relationship of both 
radial and thickness displacements can be obtained by 
classic kinematic relation [10], as expressed in following 
equation:

	 u
v z
z

w r u v z
w r
rz r=

¶
¶

× = - ×
¶
¶

( )
( ) ( )

( )
,, 	 (4)

where v and w are the functions dependent on z and r, re-
spectively. For the conventional assumption used in [4]–[7], 
the displacements ur and uz are decoupled and assumed 
to be functions only of radius r and thickness z, respec-
tively. The modified assumption made in (4) realizes the 
coupled vibration; both r and z determine the displace-
ments. The new, coupled assumption is expected to offer 
more accurate results. FEA study is used here to verify 
the analytical model. The FEA representation is modeled 
in ANSYS and essentially 2-D, consisting of a rectangular 
element using Solid PLANE13 denoting the piezoelectric 
resonator, and with an axis-symmetric boundary at the 
circle center to represent the 3-D annular structure. A 
1-V harmonic voltage is applied onto the top surface of 
the resonator, and the bottom surface is grounded. Thus 
harmonic analyses can be applied to obtain impedance 
and displacement responses. The parameters of the FEA 
model are listed in Table I.

The FEA results show that the displacement uz in the 
thickness direction at fixed radius appears as linear func-
tion. This is because, although the component ∂v(z)/∂z 

of uz may take the form of a sinusoidal function for thin 
rings, thickness z is quite small compared with the radial 
wavelength, and this small range of z allows a linear ap-
proximation.

As verified in Fig. 2, uz for fixed radius r and fixed ap-
plied voltage V is linear, which means uz can be expressed 
as
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where the linear coefficient of z is absorbed into w(r) be-
cause this is constant at fixed r. Thus, by the deduction 
from (4), the radial displacement is obtained,
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where C is an unknown constant generated from the inte-
gration. The elastic governing equations from (1a) to (1f) 
can be simplified through Kirchhoff’s theory listed in (3). 
The simplified governing equations are obtained,
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where the parameters with superscript p are given as fol-
lows:
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TABLE I. Ring Transducer Parameters. 

PZT ceramic Inner radius (a) Outer radius (b) Width (w = b − a) Thickness (d)

PZT-8 250 µm 500 µm 250 µm 5 µm

Fig. 2. uz at fixed radius r.

Fig. 1. The geometric structure of a thin ring.
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To satisfy the constraint of dielectric displacement Di,j 
expressed in (1i), the differential of Dz is required to be 
zero. Considering Kirchhoff’s theory (Dr = 0), we get a 
constraint from (7c),
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using the conventional assumption with decoupled ur and 
uz. Eq. (9) is easy to satisfy because the component 
(¶ ¶ ¶u r zr

2/  + (1/r)(∂ur/∂z)) is obviously zero, but this 
results in disagreement between model and experiment re-
sults. However, in our new assumption, only suitable val-
ues of ur and uz are able to make that component zero. A 
potential solution is apparent if e31

p is set to be zero. Eq. 
(9) is satisfied, but it leads to no piezoelectricity of the 
material. To avoid this problem, we can make another ap-
proximation for radial displacement ur to satisfy (9):
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It is assumed that (Z 2/2) is very small compared with 
the unknown constant C. The validity of this approxi-
mation will be demonstrated later. Therefore, the radial 
displacement ur is only a function of the variable radius r, 
and thus ∂Dz/∂z = 0 is satisfied. Using (2)–(8) and (10), 
we can then get
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where k2 = ρω2/c11
p is the wave number. The general solu-

tion of (11) is

	 u AJ kr BY krr = +1 1( ) ( ),	 (12)

where J1 is the Bessel function of the first kind and first 
order, Y1 is the Bessel function of the second kind and first 
order. A and B are constants determined by the bound-
ary conditions. The stress-free boundary condition is that 
Tr = 0 at the inner and outer surface (at r = a, b). By 
using the boundary condition, we obtain
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where V is applied voltage, and other constants except A 
and B are expressed as
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From (13) and (14), constants A and B can be deter-
mined,

	 A A V B B V= =0 0, ,	 (15)

where the value of constants A0 and B0 is calculated from 
the following equation:
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To verify the approximation used in (10), the unknown 
constant C needs to be defined from the zero thickness 
stress (Tz = 0) assumption in Kirchhoff’s theory:
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From (10) and (12), w(r) can be deduced,
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where D is another unknown constant from integration. 
Substituting ur and uz into (17),
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To make (19) valid, the components ( )c k c kCE E
13 33+ /  

and ( )e V d c DE
33 33/ -  need to be zero, thus, the constants C 

and D are obtained:
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It can be seen that C is a frequency-dependent con-
stant. Remembering that, in the approximation made in 
(10), (Z 2/2) is assumed to be a small value that can be 
ignored. It is essential to check if it is valid. Fig. 3 illus-
trates the influence of function Y = (Z 2/2) + C compared 
with function Y = C, demonstrating that the component 
(Z 2/2) is sufficiently small to be ignored.

Therefore, ur and uz, meeting the constraints and Kirch-
hoff’s theory, are successfully deduced as
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As far as the electric part is concerned, by using the 
equation below,

	
I j Q j rD rz

a

b
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(22)
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the admittance Y and impedance Z can be obtained,

	 Y j C Y Y Z Y= + + =w 0 1 2 1, ,/ 	 (23)

where the parameters are shown as follows. C0 is clamped 
capacitance and S is surface area of the ring:
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III. Theoretical and FEA Results

Calculation of the resonant frequency of a ring is not 
trivial. We can get an estimate by using the rule obtained 
by Lula et al. [1], fm < f0 < fd, where f0 is the fundamental 
resonant frequency of ring, fd is the resonances of a disk 
membrane with the same outer radius as the ring, and 
fm is the resonance of a thin ring whose inner radius ap-
proaches its outer radius (i.e., a very small width); fm can 
be obtained by the Berlincourt model [11]. If the radius 
of a ring membrane needs to be about 500 µm, then the 
fundamental frequency fm for the example ring can be 
calculated as 1 MHz, while for a disk through the theory 
described in [9], the fundamental frequency fd is found to 
be around 2 MHz. According to (24), f0 ranges from 1 to 

2 MHz. Thus, for the ring as designed in Table I we would 
expect a fundamental resonance of about 1.5 MHz.

Fig. 4 shows the theoretical results of impedance from 
our model, compared with the FEA results from ANSYS. 
The correlation is very good, and it can be seen that the 
fundamental resonance is indeed at about 1.5 MHz. Table 
II lists the value of the resonant and antiresonant peaks 
from calculation and FEA simulation. Higher R modes 
also show good agreement, but are not listed here.

In the following figures, simulation results by FEA and 
computation results by the theory developed in this paper 
are illustrated for both ur and uz in the radial direction. 
All the displacements are for an applied voltage source 
of 1 V, and the figures show the results for the surface of 
half the ring, starting from a inner radius of 250 µm and 
finishing at an outer radius of 500 µm. In Fig. 5, theory 
and FEA results of displacement at the 1st R mode are 
given. Both of the figures show good agreement between 
the theory and FEA results. Likewise, Figs. 6 and 7 show 
these displacements for the 2nd and 3rd R mode, respec-
tively.

Both the FEA and theory results are well matched; ur 
displacement at these R modes agrees with the typical 
thin ring vibrations analyzed by Iula [1]. More impor-
tantly, the expected displacement uz is shown well by 
the analytical model and shows a sinusoidal-shape bend-
ing vibration, especially for the high-order resonance. 
Fig. 7(b) illustrates the resonant mode having nodal cir-
cles, for example, at a radial position of 0.375 mm, which 
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Fig. 3. Comparison of C and (Z2/2 + C) at thickness Z = ± d/2. Fig. 4. The impedance from analytical theory and finite element analysis 
(FEA).

TABLE II. Values of Resonant Frequencies From Theoretical Model and Finite Element Analysis 
(FEA). 

Mode
Resonance by  
theory (MHz)

Resonance by  
FEA (MHz)

Antiresonance by  
theory (MHz)

Antiresonance by 
FEA (MHz)

1st mode 1.495 1.475 1.609 1.570
2nd mode 7.445 7.365 8.044 7.983
3rd mode 14.50 14.35 14.58 14.40

Authorized licensed use limited to: UNIVERSITY OF SOUTHAMPTON. Downloaded on February 19,2010 at 10:16:39 EST from IEEE Xplore.  Restrictions apply. 



is generated by the coupled vibration due to R modes. 
More nodal circles can be found by increasing the order 
of resonance. At higher frequencies where the TE mode 
can be generated, the uz bending obtained from the cou-
pling of higher order R modes in this model will couple 
into the TE vibration.

IV. Conclusion

To conclude, a new 2-D model of a thin ring transducer 
has been presented, and both radial and thickness dis-
placements are expressed and shown to match the results 
given by FEA. This validates the new modified assump-
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Fig. 5. Theory and inite element analysis (FEA) results of (a) ur and (b) uz along radial direction at 1st R mode.

Fig. 6. Theory and inite element analysis (FEA) results of (a) ur and (b) uz along radial direction at 2nd R mode.

Fig. 7. Theory and inite element analysis (FEA) results of (a) ur and (b) uz along radial direction at 3rd R mode.
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tion in our analytical model to realize a coupled 2-D vi-
bration, instead of the assumption of decoupled ur and uz 
used by previous work. This new approach shows excellent 
agreement with FEA solutions when considering radial 
modes. The proposed radial vibration is reasonable, and 
the bending is discovered and analyzed well by our model. 
At higher order modes in particular, it also shows nodal 
circles formed as a result of the coupling of ur and uz from 
R modes, implying that the sinusoidal-shape bending will 
have an impact on the TE mode in far-frequency range. 
This effect has been associated with high order R modes, 
but this paper shows a possible mechanism that adds 
credibility to this thesis. In addition, because the assump-
tion here is based on coupled vibration, it is quite promis-
ing to extend this model into 3 dimensions and consider 
coupling between TE and R modes in far-frequency range 
to investigate this point further.
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