
End-to-End QoS Support for a Medical Grid Service Infrastructure 1

End-to-End QoS Support for a Medical
Grid Service Infrastructure

Siegfried BENKNER, Gerhard ENGELBRECHT

Institute of Scientific Computing, University of Vienna, Nordbergstrasse
15/C/3, 1090 Vienna, AUSTRIA.

sigi@par.univie.ac.at

Stuart E. MIDDLETON

IT Innovation Centre, University of Southampton, 2 Venture Road,
Chilworth Science Park, Southampton, SO16 7NP, UK.

sem@it-innovation.soton.ac.uk

Ivona BRANDIC, Rainer SCHMIDT

Institute of Scientific Computing, University of Vienna, Nordbergstrasse
15/C/3, 1090 Vienna, AUSTRIA

Abstract Quality of Service support is an important prerequisite for
the adoption of Grid technologies for medical applications. The GEMSS
Grid infrastructure addressed this issue by offering end-to-end QoS in the
form of explicit timeliness guarantees for compute-intensive medical simu-
lation services. Within GEMSS, parallel applications installed on clusters
or other HPC hardware may be exposed as QoS-aware Grid services for
which clients may dynamically negotiate QoS constraints with respect to
response time and price using Service Level Agreements. The GEMSS
infrastructure and middleware is based on standard Web services tech-
nology and relies on a reservation based approach to QoS coupled with
application specific performance models. In this paper we present an
overview of the GEMSS infrastructure, describe the available QoS and
security mechanisms, and demonstrate the effectiveness of our methods
with a Grid-enabled medical imaging service.

Keywords Grid middleware, Web services, Quality of service, Medical
simulation services.



2 Ivona BRANDIC, Rainer SCHMIDT

§1 Introduction
The GEMSS Project 17) has developed a secure, service-oriented Grid

infrastructure for the provision of advanced medical simulation applications as
Grid services 4, 22). The medical prototype applications considered in GEMSS
include maxillo-facial surgery simulation 23), neuro-surgery support 36), radio-
surgery planning 16), inhaled drug-delivery simulation 24), cardio-vascular simu-
lation 25) and advanced image reconstruction 3). At the core of these bio-medical
simulation applications are computationally demanding methods such as parallel
Finite Element Modeling, parallel Computational Fluid Dynamics and parallel
Monte Carlo simulation, which are realized as remote Grid services running on
clusters or other parallel computing platforms. To enable the use of Grid services
in a clinical environment, predictability of response times is of utmost impor-
tance. Addressing this issue, we have developed a flexible end-to-end Quality of
Service (QoS) infrastructure for providing explicit response time guarantees for
simulation services which are executed remotely on a Grid host. Response time
guarantees are usually negotiated dynamically between a client and potential
service providers on a case-by-case basis.

The GEMSS project went beyond a model of cost free sharing of Grid
resources, to a business oriented Grid model, where services are offered by ser-
vice providers within an economic context. Therefore, GEMSS also addresses
the realization of Grid business models, and services may be configured to sup-
port dynamic price negotiation as well. QoS guarantees agreed between a ser-
vice consumer and a service provider are expressed in form of a Web Service
Level Agreement (WSLA) 40). Besides explicitly negotiable QoS guarantees, the
GEMSS infrastructure provides implicit QoS by realizing highest security levels
and by supporting error recovery.

The GEMSS Grid infrastructure and middleware has been built on top
of standard Web services technologies 35, 39, 41) ensuring future extensibility and
interoperability. Furthermore, GEMSS addresses privacy, security and other le-
gal concerns by examining and incorporating into its Grid services the latest laws
and EU regulations related to providing medical services over the Internet 29).

In this paper we present an overview of GEMSS, outline the provision
of parallel simulation codes running on clusters as Grid services, and describe
the QoS support infrastructure in more detail. Section 2 presents an overview
of the GEMSS Grid infrastructure and discusses the provision of applications as
Grid services. Section 3 describes the GEMSS QoS infrastructure and the basic



End-to-End QoS Support for a Medical Grid Service Infrastructure 3

strategy for QoS negotiation. Section 4 discusses security and legal issues per-
taining to the Grid provision of medical simulation services. Section 5 presents
a case study of a medical image reconstruction service. Finally, a discussion of
related work and conclusions are presented in Sections 6 and 7, respectively.

§2 GEMSS Grid Infrastructure
The GEMSS infrastructure is based on a service-oriented architecture

comprising multiple clients and services, one or more service registries, and a
certificate authority. Service registries maintain a list of service providers and
the services they support. The certificate authority provides the basis for an
operational PKI infrastructure based on X.509 certificates for establishing an
identity for clients and service providers as well as for realizing transport and
message layer security. Grid Clients are usually Internet-enabled PCs or work-
stations with GEMSS client software installed that permits communication with
a service provider through the GEMSS middleware. The client side applications
handle the creation of service input data and visualization of service output
data. GEMSS services encapsulate native HPC applications (usually parallel
simulation kernels written in Fortran or C and MPI) and provide support for
QoS negotiation, data staging, job execution, job monitoring, and error recov-
ery. GEMSS services are defined via WSDL and securely accessed using SOAP
messages. For large file transfers SOAP attachments are utilized.

2.1 Service Access Model
GEMSS supports a three step process to job execution. First there is an

initial business step, where accounts are opened and payment details fixed. Next
there is a quality of service negotiation step, where a job’s quality of service and
price, if not subject to a fixed price model, is negotiated and agreed. Finally,
once a QoS contract is in place, the job itself can be submitted and executed.
Since GEMSS supports a client driven approach for accessing services, it is not
required that holes be tunneled through site firewalls. End-to-end security is
realized on top of transport layer security (HTTPS, SSL) and message layer
security utilizing WS-Security standards 41).

2.2 Service Provision Infrastructure
Figure 1 depicts the main architectural components of the GEMSS ser-

vice provision infrastructure. Medical simulation applications are exposed as



4 Ivona BRANDIC, Rainer SCHMIDT

Fig. 1 GEMSS service provider infrastructure.

Web Services and hosted using a Web server and a service container (Apache
and Tomcat/Axis). The quality of service management component handles reser-
vation with the resource manager and provides input to the quality of service
negotiation process. The error recovery component handles check pointing and
re-starting of applications if required. The logger manages a database for logging
auditable information and a low level system log for event logging. The session
management component manages a state database that contains information
about any client-service interaction allowing it to be resumed at a later time if
the user logs off.

The provision of medical simulation applications as Grid services is based
on the concept of generic application services 5). A generic application service
comprises configurable software components with common methods for data
staging, remote job management, error recovery, and QoS support, which are
to be supported by all GEMSS services. In order to customize the behavior of
these methods for a specific application, an XML application descriptor has to
be provided. The application descriptor usually specifies the input/output files,
the script for initiating job execution, and, as described in Section 3, a set of
QoS parameters and corresponding QoS models.

In order to provide support for automatic service deployment, a corre-
sponding deployment tool has been developed. The deployment tool enables
the user to enter the information required in an application descriptor via a
GUI and to control the deployment process. Internally, the deployment tool
creates the XML application descriptor, generates an appropriately customized



End-to-End QoS Support for a Medical Grid Service Infrastructure 5

Web service which encapsulates the application, publishes the corresponding
WSDL document in a registry service, and finally deploys the service within
the GEMSS hosting environment which is based on Apache Tomcat/Axis 1, 38).
Usually during this process no application code changes are required, provided
the application can already be executed in batch mode and that files in I/O
operations are not accessed with absolute path names.

2.3 Client Infrastructure
The main architectural components of the GEMSS client infrastructure

are shown in Figure 2.

Fig. 2 GEMSS client infrastructure

The client-side application code usually relies on the GEMSS client ap-
plication programming interface (API) which hides most of the complexity of
dealing with remote services from the client-side application developer by pro-
viding appropriate service proxies. The high-level client API provides several
different methods for discovering and selecting services. All these methods re-
turn service proxies, which can then be used to interact with services without
having to deal with the complexities of client-side stub generation. Service prox-
ies are in charge of discovering services and negotiate with Grid services to run
jobs. The session management component manages client sessions, and a se-
curity context is maintained allowing authentication of the current user and
providing the access criteria for the certificate and key stores. A service discov-
ery component is provided for looking up suitable services in a service registry.
Marshalling and security is handled transparently to the client application at the



6 Ivona BRANDIC, Rainer SCHMIDT

lowest two layers of the API and completely hidden from the user. This prevents
the user from dealing with low-level issues such as message generation, signing,
and encryption. However, each client is required to obtain a valid certificate
from the GEMSS CA in order to access GEMSS services.

The client typically runs a business workflow to open negotiations with
a set of service providers for a particular application. The quality of service
negotiation is then run to request bids from all interested service providers who
can run the clients jobs subject to QoS criteria required by the client; this results
in a contract being agreed with a single service provider. The client then uploads
the job input data to the service provider and starts the server side application
by calling appropriate methods of the service.

The client infrastructure is centered on a pluggable client side component
framework which provides support for dynamic configuration and replacement
of client-side components.

§3 QOS Support
Using the GEMSS infrastructure, medical simulation applications avail-

able on clusters or other parallel hardware may be exposed as QoS-aware services
which are capable of negotiating with clients QoS guarantees on execution time,
price and others. The GEMSS QoS negotiation mechanisms enable a client to
negotiate with one or more service providers the required end-time at which
the results of a time-critical simulation job have to be ready. Service providers
utilize machine-specific application performance models in order to estimate the
required execution time for a specific job based on input meta-data supplied by
the client during QoS negotiation. In order to ensure the availability of appro-
priate computing resources for a service request, the QoS infrastructure relies
on a scheduling system that provides support for advance reservation 34).

3.1 QoS Infrastructure
Figure 3 presents the main parts of the GEMSS QoS infrastructure sep-

arated into client-side and service-side parts. The service-side QoS management
module is centered around the QoS manager, which interacts with the resource
manager, the application performance model and the business model. The QoS
infrastructure relies on four different XML schemata for the specification of QoS
descriptors, request descriptors, performance descriptors and machine descrip-
tors. The QoS event database is utilized by the QoS manager and the QoS



End-to-End QoS Support for a Medical Grid Service Infrastructure 7

Fig. 3 GEMSS QoS infrastructure.

monitoring service to store and query specific QoS events. A client-side QoS
negotiation component is provided for the development of client applications
that interact with remote Grid services. It offers the QoS Proxy interface with
methods for requesting, confirming and for canceling QoS contracts.

3.2 QoS Management Module
The QoS manager is the central server-side module of the QoS support

infrastructure and provides the interface QoS with basic QoS negotiation oper-
ations. The QoS manager receives a QoS request from a client, checks whether
the client’s QoS constraints can be met, and generates a corresponding QoS offer
which is returned to the client.

The QoS manager utilizes the application performance model to estimate
the performance requirements (runtime, memory and disc requirements). The
performance model takes as input a request descriptor and a machine descriptor
and returns a performance descriptor. A request descriptor contains meta-data
about a specific service request (e.g. mesh size, image resolution, etc.) supplied
by the client during QoS negotiation. A machine descriptor contains machine
specific information, usually specifying the number of processors, or a range of
feasible processor numbers that should be used for executing an application.
A performance descriptor comprises information on job capacity estimations
including runtime, disc requirements and memory requirements.

Since in general, it will not be possible to build an analytical model which
allows for precise predictions of memory and computing time requirements for all



8 Ivona BRANDIC, Rainer SCHMIDT

applications, GEMSS does not prescribe the nature of a performance model. For
applications where an analytical performance model is not feasible, for example,
a data base may be used, relating typical problem parameters to resource needs
like main memory, disk space and runtime.

The resource manager module realizes a high level interface to an under-
lying scheduling system which has to provide support for advance reservation,
The GEMSS infrastructure currently supports the use of two schedulers that of-
fer advanced reservation, NEC’s COSY scheduler 11) and the Maui scheduler 27).
The resource manager provides methods for requesting and for confirming tem-
porary reservations, for canceling reservations, for job submission and for inquir-
ing information about a submitted job.

The service provider’s business model defines a generic mechanism to cal-
culate a price based on estimated resource allocation. A concrete business model
implementation has to be provided by the service provider. Within GEMSS two
different pricing models have been realized, a fixed price telephone pricing model
where users are charged at a prearranged CPU hour rate, and a dynamic pric-
ing model where the CPU hour rate is dependent on the current load levels the
service provider is experiencing.

It should be noted that advance reservation may be in conflict with a
service provider’s desire to maximize the utilization of its resources. In GEMSS,
however, the focus has been on the realization of mechanisms to ensure a client’s
QoS requirements with respect to response time and price. As a consequence,
mechanisms for balancing the tradeoff between advance reservation and resource
utilization have not been addressed within the GEMSS project.

3.3 Basic QoS Negotiation
The basic QoS negotiation as shown in Figure 4 is based on a request-

offer model where a client requests offers from service providers. If the client
agrees to an offer, it is signed by both parties resulting in a QoS contract.

In an initial task the client may access a GEMSS registry service to
obtain a list of candidate services. The client then invokes for each candidate
service the operation requestQosOffer, passing along a request descriptor with
input meta data and a QoS request document with the required QoS constraints.
On the service side, the QoS manager executes the performance model with the
request descriptor as input and compares the estimated execution time in the
resulting performance descriptor with the time constraints specified in the QoS



End-to-End QoS Support for a Medical Grid Service Infrastructure 9

Fig. 4 Basic QoS Negotiation Scenario

request. If the client’s execution time constraints can be met, the QoS manager
instructs the resource manager to check whether the required resources can be
made available by invoking the operation getResourceDsc passing along the
performance descriptor and the QoS request document. The resource manager
contacts the scheduler to check whether the required resources as specified in the
performance descriptor (number of processors for the estimated runtime) can be
made available within the time frame (begin time, end time) specified in the
client’s QoS request. If this is possible, a temporary reservation is made with
the scheduler and a corresponding resource descriptor is returned. The QoS
manager then executes the business model, passing as argument the resource
descriptor, to determine if the price for the required resources is within the
client’s price constraints. If the price constraints can be met, the QoS manager
generates a corresponding QoS offer, and returns it to the client. If the time or
price constraints cannot be met, the QoS manager may repeatedly execute the
performance model with a different number of processors. If the client’s QoS
constraints cannot be met at all, no offer is generated.

On the client side, the QoS offers from different service providers are
received and analyzed. The client confirms the best offer, or, if it is not satisfied



10 Ivona BRANDIC, Rainer SCHMIDT

with the offered QoS constraints, may set up a new QoS request with different
constraints and start a new negotiation. If the client confirms an offer, the QoS
manager confirms the temporary resource reservation made for the offer, signs
the QoS contract and returns it to the client.

Within the GEMSS project also more sophisticated negotiation strate-
gies based on auction models have been realized, a description of which is beyond
the scope of this paper.

3.4 QoS Descriptors - WSLAs
A QoS descriptor, as used in GEMSS during QoS negotiation, is an

XML-based document representing a (potential) agreement on a single service
usage between a service consumer (client) and a service provider, following the
Web Service Level Agreement (WSLA) specification 40) developed by IBM. De-
pending on the state of a QoS negotiation, a QoS descriptor either is a QoS
request, a QoS offer, or a QoS contract.

QoS descriptors consist of three main parts: parties, service definition,
and obligations. The parties section comprises information about the signatory
parties involved, which is usually extracted from the GEMSS certificates of users
and service providers, respectively. The service definition section contains the
actual subject matter of the agreement by defining all operations subject to
the agreement and a set of SLA parameters, usually comprising the begin time,
end time, and price of a job execution. Furthermore, the service definition
section specifies the overall contract duration and a metric for each parameter.
The obligations section contains a list of objectives. Each objective is linked
to an obliged party, has an according validity and defines an expression that
is associated with a defined SLA parameter. For example, the SLA parameter
price has to be equal to 5 EUR or the end time of the job execution must not
exceed 19 May 2007, 11:00 CET.

§4 Security and Legal Aspects
The use of Grid technology in the life sciences sector raises significant

legal and security issues. The GEMSS project examined both the legal and
security framework in which Grid technology may be exploited 29). Our legal
study analyzed the pertinent European regulations from the viewpoint of privacy
protection with regards to the processing of patient data by means of Grid
services. This analysis allowed us to draw up the common legal framework



End-to-End QoS Support for a Medical Grid Service Infrastructure 11

under which GEMSS applications can be developed in Europe. Moreover, we
developed technical and procedural security solutions for GEMSS, and proposed
a methodology for assessing a specific site’s security.

4.1 EU Privacy law regarding medical services
The EU Directive 95/46 applies to medical simulation services since,

according to its article 3.1, it applies to wholly or partly automated processing
of personal data 20). According to this directive, a medical imaging service,
for example, would contain a patient, some personal data (images that need
reconstruction), a controller (eg. legal representative from a UK hospital), a
processor (eg. legal representative from an Austrian service provider) and an
electronic register (Grid service registry). Directive 95/46 makes it clear that
any patient data, sent to the service provider via the Internet, is personal data
since it is related to a well-identified natural person. If the data sent via the
Internet is not directly nominative, but can via some code be attributable to
an identified person, it is also personal data. The transmission via the Internet
and subsequent processing by a service provider constitute sets of operations
performed upon personal data by automated means.

When processing personal data on behalf of the controller, the GEMSS
service provider acts as a processor. The controller must thus choose a processor
who provides sufficient guarantees in respect of the technical and organizational
measures governing the processing to be carried out. The controller must ensure
compliance with those measures. All processors must therefore be governed by
a contract or legal act binding the processor to the controller, and stipulating in
particular that the processor shall act only on instruction from the controller.

4.2 Best practice security for a medical Grid
The GEMSS Grid infrastructure is capable of providing a high degree

of security for the processing of personal data. Our security mechanisms ensure
the confidentiality and integrity of personal data, and that data processors are
identified, authenticated and authorized. Our security solutions are based on a
public key infrastructure, transport level security protocols, end to end message
security standards and an authorization mechanism. Clients are not allowed
shell access or to upload software, since the costs involved in securing this level
of access to the service provider hardware are too severe. Along with an intrusion
detection system these solutions provide GEMSS with security in depth.



12 Ivona BRANDIC, Rainer SCHMIDT

A public key infrastructure (PKI) uses certificates to identify parties,
employing asymmetric public key encryption and a trusted third party to con-
trol certificate issue and revocation. All GEMSS certificates are X.509 com-
pliant 12) and are used by people or machines for authentication, identification
and authorization purposes on the GEMSS Grid. The certificate policy and
the certification practice statement of the GEMSS certificate authority ensure
that certificates issued to people are in line with directive 1999/93EC of the
European parliament and the council on a community framework for electronic
signatures 13).

We have set-up intermediate demilitarized zones (DMZ’s) at our ser-
vice provider’s sites, which forward relevant messages to more protected internal
network domains. Demilitarized zones provide a buffer zone, so should a hacker
gain access to computers with public IP addresses they would still need to dis-
cover and access computers with private internal IP addresses. Transport level
security involves the basic security and encryption mechanisms involved with
transmitting data over the Internet. We authenticate our communication paths
using the HTTPS protocol, allowing our data to be transmitted confidentially.
Within the GEMSS Grid both clients and service providers are protected by
firewalls, and as such belong to different trust domains.

End-to-end security protocols apply a security policy to ensure that the
message originator is authenticated, that the message itself has not been tam-
pered with and for mutual authentication. Our end-to-end security mechanisms
are based on the Web Service Security specifications 41). In GEMSS we use certi-
fied identities to determine the right of access to selected services and resources.
The access rights associated with a certified identity are assigned according to
the applied business process, and enforced through a service-level dynamic access
control module. The GEMSS end-to-end security mechanisms are established
between a client and a service. It is thus up to the service provider, to ensure
appropriate security standards for accessing its local compute resources. As
mentioned before, the compute resources used by a service provider to fulfill a
service request are not visible to a client. Delegation of security credentials be-
tween different GEMSS service is not supported by GEMSS. For a more detailed
description of the GEMSS security mechanisms the reader is referred to 29).



End-to-End QoS Support for a Medical Grid Service Infrastructure 13

§5 Case Study - Medical Image Reconstruction

This section presents experimental results for a set of infrastructure tests
performed with medical image reconstruction services for single photon emis-
sion computer tomography (SPECT). The parallel reconstruction kernel utilized
within the SPECT service is based on a compute-intensive fully 3D ML-EM re-
construction algorithm 3), which has been implemented in C/MPI.

Small Medium Big

Resolution 128 128 - 256 256

Projections 60 60 - 120 120

Slices 8 - 32 64 - 128 8 - 32

Iterations 5 - 25 5 - 25 5 - 25

Table 1 Job characteristics

For the evaluation we utilized 24 different SPECT jobs with varying
job characteristics and input data, as listed in Table 1, which cover a range
of use-cases an end-user wants to perform with the help of a medical Grid. A
SPECT image reconstruction job can be characterized by its image resolution,
the number of projections acquired from the CT or MRI scanner, the number
of slices that should be computed for the output image volume, and the number
of iterations to be performed. These parameters are the main input for the
performance model and supplied by the client during QoS negotiation. Note
that the QoS manager attempts to automatically determines the number of
processors that should be used for a certain SPECT job in order to meet a
client’s time constraints by repeatedly executing the performance model with
varying numbers of processors. Our test infrastructure comprised three 16 CPU
clusters in different administrative domains for the deployment of the SPECT
service and up to 10 different workstations and PCs for running SPECT clients.
Table 2 shows the average measured runtime in minutes for the different classes
of SPECT jobs on 2, 4, 8, and 16 processors, respectively.

In order to demonstrate the rational behavior of our QoS infrastructure
we have devised a scenario with a single service provider, with a 16 CPU cluster,
and clients submitting concurrently medium-sized SPECT jobs with the same
characteristics. The runtime of these jobs is about 40 minutes on 2 processors,
21 minutes on 4 processors, and 12 minutes on 8 processors. All clients started



14 Ivona BRANDIC, Rainer SCHMIDT

Nodes# Small Medium Big

2 13 40 130

4 8 21 80

8 5 12 53

16 4 8 41

Table 2 Average job runtimes in minutes

submitting jobs at time t0. As expected the QoS manager schedules the first
eight jobs on 2 processors and starts them immediately. Since after 8 jobs the
cluster is fully utilized, the QoS manager schedules the next four jobs on 4
processors, but with a later start time t1 ≥ t0 + 40 minutes. Finally, two more
jobs are scheduled on 8 CPUs and an even later start time t2 ≥ t0+52 minutes.
After this, no more offers were generated within this time slot.

For proving the evidence that the infrastructure works properly in a
more complex setting, we conducted a stress test with three service providers
and ten concurrently running clients. These clients randomly picked up a job
set, defined their QoS constraints, queried a registry in order to determine the
endpoints of our service providers, performed a sequential QoS negotiation with
the service providers, agreed to the first matching offer, and initiated the transfer
of input data and job execution. For this scenario we have performed three
different test runs with clients requesting small (1), medium (2) and big (3) jobs
as characterized in Table 1. Moreover, we have configured the clients to select
their QoS constraints randomly from 3 different types of preferences: (a) request
a fast job execution, (b) request a medium time job execution or (c) request just
the execution with a long time constraint. This scenario reflects three different
kinds of user groups: one with a high priority of a fast job execution, one group
with medium time constraints, and one group with no hard time constraints.
Using this strategy, we concurrently started ten clients for each test (1) to (3)
for a longer time period.

Table 3 summarizes the main results of these tests. The requested job
count indicates how many jobs have been requested by all clients. The rejected
job count indicates how many jobs the system was not able to provide an offer for
because the QoS manager was not able to fulfill a client’s time constraints. The
number of errors shows how many jobs failed due to technical reasons explained
later. Robustness is defined as the number of completed jobs divided by the



End-to-End QoS Support for a Medical Grid Service Infrastructure 15

number of submitted jobs, and throughput as the number of successfully finished
jobs per hour. Moreover, the average accuracy of the performance model for
estimating the required runtime has been measured.

Small Jobs Medium Jobs Big Jobs

Testbed uptime (h) 8,4 25,7 21,4

Jobs requested 401 401 401

Jobs rejected 0 1 319

QoS contract 401 400 82

Errors 5 3 4

Jobs completed 376 397 78

Robustness 98.75% 99.25% 95.53%

Throughput (Jobs/h) 46.94 15.42 3.66

Avg. Perf. Model Acc. 97.28% 97.62% 97.57%

Table 3 Summary of experimental results.

We can see from these experiments that the system operates stable over
a longer period of time and handles most of the requests properly (i.e. robustness
is high). The few errors that occurred can be attributed to two different problems
that arose during the tests. The first problem was related to network timeouts
while querying the QoS event database (i.e. on status queries). This may happen
when other threads (associated with a different client) concurrently write to this
database. As writing threads have priority, reading processes may time out too
soon. A potential solution to this would be a fine tuning of the timeout settings.
Another problem occurred on the client side if an interaction with the service
could not be performed within the validity time frame of the security token. A
solution to this problem would be to extend the validity of the security tokens of
our end-to-end security implementation. Despite these few problems, our system
shows satisfying behavior. The system was also able to cope with a number of
errors. General network timeouts have been handled transparently by retries
and failed negotiations have been balanced by other service providers.

As can also be seen from Table 3, the throughput tends to be higher
when submitting a lot of small jobs, which also indicates a rational behavior,
because smaller jobs are executed faster than bigger ones. The varying average
utilization correlates to the number of requested jobs and the number of actually
started jobs. In test 1, where all requested jobs could be handled by the system,



16 Ivona BRANDIC, Rainer SCHMIDT

the total utilization is smaller than in test 3, where a lot of jobs have been
rejected by the system because of capacity constraints. Finally, our results show
that the accuracy of the SPECT performance model is very high and the system
has not failed due to inaccurate performance predictions.

§6 Related Work
Standard Web Service technologies have now been adopted as the base

middleware technology by many Grid computing environments including Globus
GT4 18), gLite 15), OMII 31) and Unicore 37). The Open Grid Service Architecture
(OGSA 14)) outlines the vision for a service level management and attainment
model based on a generic control loop pattern, however, this vision has not yet
been realized in available Grid environments. The OGSA specification mainly
discusses system-level QoS assurance (i.e. of the overall Grid infrastructure)
while our work presented here focuses on end-to-end QoS support at the appli-
cation level for individual Grid services.

The work presented in 28) deals with a QoS based Web services archi-
tecture. The system consists of QoS-aware components which can be invoked
using a QoS negotiation protocol. As opposed to our work, this system does
not deal with the Grid-provision of HPC applications. Several projects have
proposed economy-based Grid systems 10, 19). Buyya proposed a Grid Archi-
tecture for Computational Economy (GRACE) providing a generic way to map
an economic model into distributed system architecture and the Grid resources
broker (Nimrod-G) supporting deadline and budget based scheduling of Grid
resources. The GRIA 33) QoS infrastructure utilizes a performance estimation
service which relies on a workload estimation model to predict the execution
time of a job using application specific parameters, and on a capacity estimation
model to estimate the execution time of a submitted job using resource specific
parameters.

There are a number of other Grid projects related to life sciences that
deal with bio-medical applications, including the EU BioGrid Project 6), the
OpenMolGRID Project 32), EU MammoGrid Project 26), the UK e-Science my-
Grid Project 30) and the US BIRN initiative 9), too name a few. While most of
these projects focus on data management aspects, the GEMSS project focuses
on the computational aspect of the Grid, with the aim to provide hardware re-
sources and HPC service across wide area networks in order to overcome time or
space limitations of single HPC systems. Other projects in the bio-medical field



End-to-End QoS Support for a Medical Grid Service Infrastructure 17

which also focus more on the computational aspect of the Grid include the Swiss
BiOpera Project 7), the Japanese BioGrid Project 6), and the Singapore BioMed
Grid 8). However, none of these Projects addresses the issues of application-level
end-to-end QoS support.

§7 Conclusions
In this paper we presented a generic QoS support Grid infrastructure

targeting the on-demand provision of medical simulation applications that has
been realized in the context of the EU Project GEMSS. The QoS infrastructure
relies on a reservation based approach to QoS coupled with application specific
performance models, advance reservation mechanisms, and client-driven negotia-
tion of service level agreements. The GEMSS Grid provides guarantees to clients
regarding quality of service, and the legal and security framework needed to pro-
vide a platform for future exploitation. The GEMSS project has demonstrated
the potential of Grid technology to provide medical practitioners and researchers
with access to advanced simulation and image processing services for improved
pre-operative planning and near real-time surgical support. However, more work
with respect to security, trust and business models will be required until Grid
technologies can be utilized within day-to-day clinical practice.

The Grid technology developed in the course of the GEMSS project is
being utilized and further developed within the EU Project Aneurist 2), which
aims to create an IT infrastructure for the management of all processes linked to
research, diagnosis and treatment development for complex and multi-factorial
diseases. Although the GEMSS infrastructure has been developed with a focus
on medical applications, it is applicable to other application domains in science
and engineering where compute intensive applications should be provided as
services that are accessible on-demand by clients over the Internet.

References
1) Apache Tomcat. http://jakarta.apache.org/tomcat/

2) Aneurist - Integrated Biomedical Informatics for the Management of
Cerebral Aneurysms. EU IST Integrated Project IST-2004-027703.
http://www.aneurist.org/

3) W. Backfrieder, M. Forster, S. Benkner, G. Engelbrecht. Locally Variant VOR
in Fully 3D SPECT within A Service Oriented Environment. Proceedings of
the International Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences, CSREA Press, p. 216-221, Las Vegas, USA,
June 2003.



18 Ivona BRANDIC, Rainer SCHMIDT

4) S. Benkner, G. Berti, G. Engelbrecht, J. Fingberg, G. Kohring, S.E. Middleton,
R. Schmidt. GEMSS: Grid Infrastructure for Medical Service Provision. Journal
of Methods of Information in Medicine, Vol. 44, 2005.

5) S. Benkner, I. Brandic, G. Engelbrecht, R. Schmidt. VGE - A Service-Oriented
Grid Environment for On-Demand Supercomputing. Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing (Grid 2004), Pitts-
burgh, PA, USA, November 2004.

6) The BioGrid Project. http://www.bio-grid.net/index.jsp

7) BiOpera - Process Support for BioInformatics. ETH Zrich, Department of Com-
puter Science. http://www.inf.ethz.ch/personal/bausch/bioopera/main.html

8) BiomedGrid Consortium. http://binfo.ym.edu.tw/grid/index.html

9) The Biomedical Informatics Research Network. http://www.nbirn.net

10) R. Buyya. ”Economic-based Distributed Resource Management and Scheduling
for Grid Computing”, Ph.D Thesis, Monash University, Melbourne, Australia,
2002.

11) J. Cao, F. Zimmermann. ”Queue Scheduling and Advance Reservations with
COSY”, Proceedings of the International Parallel and Distributed Processing
Symposium, Santa Fe, New Mexico, 2004

12) S. Chokhani, W. Ford, R. Sabett, C. Merrill, S. Wu. Internet X.509 Public
Key Infrastructure Certificate Policy and Certification Practices Framework,
http://www.ietf.org/rfc/rfc3647.txt, The Internet Society, 2003.

13) European Parliament. Directive 1999/93 on a Community Framework for Elec-
tronic Signatures. Official Journal of the European Communities, 19/01/2000 :
L013, 0012-0020.

14) I. Foster et al. The Open Grid Services Architecture, Version 1.5., Open Grid
Forum, GFD-I.080, July 2006. http://forge.gridforum.org/projects/ogsa-wg

15) F. Gagliardi, B. Jones, and E. Laure. The EU DataGrid Project: Building and
Operating a large scale Grid Infrastructure. In B. Di Martino, J. Dongarra,
A. Hoisie, L.Y. Yang, and H. Zima, editors, Engineering the Grid: Status and
Perspective. American Scientific Publishers, January 2006.

16) A. Gill, M. Surridge, G. Scielzo, R. Felici, M. Modesti, G. Sardu. RAPT: A
Parallel Radiotherapy Treatment Planning Code. In: Liddell H, Colbrook A,
Hertzberger B, Sloot P, editors. High Performance Computing and Networking
Europe, Lecture Notes in Computer Science: Springer; p. 183-193, 1996.

17) The GEMSS Project: Grid-Enabled Medical Simulation Services, EU IST
Project, IST-2001-37153, http://www.gemss.de/

18) The GLOBUS Toolkit, http://www.globus.org/

19) The GRASP Project. http://eu-grasp.net/

20) J.A.M Herveg, Y. Poullet. Directive 95/46 and the use of GRID technologies in
the healthcare sector: selected legal issues. Proceedings HealthGrid 2003, pp.
229-236, Lyon, France, January 16-17, 2003.

21) The Japanese BioGrid Project. http://www.biogrid.jp/

22) D. M. Jones, J. W. Fenner, G. Berti, F. Kruggel, R. A. Mehrem, W. Back-
frieder, R. Moore, A. Geltmeier. ”The GEMSS Grid: An evolving HPC En-
vironment for Medical Applications”, Proceedings HealthGrid 2004, Clermont-
Ferrand, France, 2004.



End-to-End QoS Support for a Medical Grid Service Infrastructure 19

23) Koch R.M., Roth S.H.M., Gross M.H., Zimmermann A.P., Sailer H.F. A frame-
work for facial surgery simulation. In: Proceedings of the 18th spring conference
on Computer graphics; ACM Press; p. 33-42, 2002.

24) S. Ley, D. Mayer, B. Brook, E. van Beek, C. Heusell, R. Hose, D. Rinck, H.
Kauczor. Radiological imaging as the basis for a simulation software to advance
individualised inhalation therapies. Eur Radiol 2001;11(Suppl):216-217, 2001.

25) Li JK-J. The Arterial Circulation: Physical Principles and Clinical Applications.
Totowa, NJ: Humana Press; 2000.

26) The MammoGrid project. http://mammogrid.vitamib.com/

27) Maui Cluster Scheduler. http://www.clusterresources.com/products/maui/

28) D. A. Menascé. ”QoS-Aware Software Components”, Internet Computing On-
line, Vol. 8, No. 2, pp.91-93, 2004.

29) S.E. Middleton, J. Herveg, F. Crazzolara, D. Marvin, Y. Poullet, GEMSS Se-
curity and Privacy for a Medical Grid, Methods of Information in Medicine,
2005.

30) The myGrid Project. http://mygrid.man.ac.uk/

31) The Open Middleware Infrastructure Institute. OMII 2.0 User Guide.
http://www.omii.ac.uk/docs/2.3.3/omii 2 user guide.htm

32) OpenMolGRID - Open Computing GRID for Molecular Science and Engineer-
ing. http://www.openmolgrid.org/

33) A. Panagakis, A. Litke, A. Doulamis, N. Doulamis, T. Varvarigou, E. Varvarigos.
An Advanced Grid Architecture for a Commercial Grid Infrastructure. The 2nd
European Across Grids Conference, Nicosia, Cyprus, Jan. 2004, Springer.

34) A. Roy, V. Sander. Advance Reservation API, GGF Scheduling Working Group,
2002. http://www.ggf.org/documents/GFD/GFD-E.5.pdf,

35) SOAP Version 1.2. http://www.w3.org/TR/soap/

36) Tittgemeyer M, Wollny G, Kruggel F. Visualising deformation fields com-
puted by non-linear image registration. Computing and Visualization in Science
2002;5(1):45-51.

37) The UNICORE Forum. http://www.unicore.org

38) WebServices - Axis. http://ws.apache.org/axis/

39) Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

40) Web Service Level Agreement (WSLA) Language Specification.
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf, IBM 2003.

41) Web Service Security. SOAP Message Security 1.0, OASIS Standard 200401,
2004.


