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LMIBASED STABILITY AND STABILIZATION OF SECOND-ORDER
LINEAR REPETITIVE PROCESSES

Pawel Dabkowski, Krzysztof Gatkowski, Biswa Datta and Eric Rogers

ABSTRACT

This paper develops new results on the stability and control of a class
of linear repetitive processes described by a second-order matrix discrete or
differential equation. These are developed by transformation of the second-
order dynamics to those of an equivalent first-order descriptor state-space
model, thus avoiding the need to invert a possibly ill-conditioned leading

coefficient matrix in the original model.

Key Words: 1MI, discrete and differential second-order linear repetitive
processes, ill-conditioning, descriptor systems.

I. INTRODUCTION

Second order linear control systems arise in a
wide variety of practical applications involving, for
example, vibrating structures, power systems, eco-
nomics, and computer networks. One obvious way
to solve a control problem for a linear second-order
system is to transform the model to first-order state-
space form and then use any of the well known and
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tested computational methods. Unfortunately, such re-
duction requires explicit computation of the inverse of
the leading coefficient matrix, which could be numer-
ically problematic due, for example, to possible ill-
conditioning of this matrix or the computational cost
involved. For example, in vibration control analysis, this
matrix, termed the mass matrix, is often diagonal and
therefore can be ill-conditioned whenever some (or all)
of the diagonal entries are small (see [1]).

Another area where such problems can arise is in
the application of the Crank-Nicholson discretization
scheme to partial differential equations (PDEs) [2]. Here
the resulting model coefficient matrices are often tri-
diagonal but the inverse of the leading coefficient one
may not have this computationally attractive property.
A similar situation arises for first-order descriptor sys-
tems, where the coefficient matrix on the left-hand side
may be very close to singular or left-multiplying the
model by the inverse of this matrix involves the loss of
other essential problem features. To overcome such dif-
ficulties research has been focussed in recent years on
developing methods for second-order state-space mod-
els that do not require explicit computation of a matrix
inverse.

As a result of such research, there as been much
progress on the solution of control related problems
for systems described by second-order state-space
models. Examples here include stability, feedback
stabilization, partial pole placement, robust pole place-
ment, and model order reduction. These solutions have
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been developed, in the main, by either first convert-
ing to an equivalent descriptor system or proceeding
directly with the coefficient matrices of the second-
order state-space model [3—7]. The latter approach has
the further advantage that any special structure, such
as sparsity, in the coefficient matrices, which often
arises in practical applications, can be preserved and
exploited in the computations associated with numer-
ical examples. Such problems can also arise in 2D
linear systems where, for example, repetitive processes
have found application in modeling spatio-temporal
dynamics such as large flexible structures [8].

The unique characteristic of a repetitive, or mul-
tipass [9], process is a series of sweeps, termed passes,
through a set of dynamics defined over a fixed finite du-
ration known as the pass length. On each pass an out-
put, termed the pass profile, is produced which acts as
a forcing function on, and hence contributes to, the dy-
namics of the next pass profile. This, in turn, leads to
the unique control problem in that the output sequence
of pass profiles generated can contain oscillations that
increase in amplitude in the pass-to-pass direction.

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling operations [10].
Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has
distinct advantages over alternatives. Examples of these
so-called algorithmic applications include classes of it-
erative learning control schemes [11]. In this last case,
for example, use of the repetitive process setting pro-
vides the basis for the development of highly reliable
and efficient solution algorithms and in the former it
provides a stability theory which, unlike alternatives,
provides information concerning an absolutely critical
problem in this application area, i.e. the trade-off be-
tween convergence and the learnt dynamics.

Attempts to control these processes using standard
(or 1D) systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because such an
approach ignores their inherent 2D systems structure,
i.e. information propagation occurs from pass-to-pass
and along a given pass and also the initial conditions are
reset before the start of each new pass. To remove these
deficiencies, a rigorous stability theory has been devel-
oped [10] based on an abstract model of the dynamics
in a Banach space setting which includes a very large
class of processes with linear dynamics and a constant
pass length as special cases. Also the results of apply-
ing this theory to a range of sub-classes, including those
considered here, have been reported [10]. This stability
theory consists of the distinct concepts of asymptotic
stability and stability along the pass respectively where
the former is a necessary condition for the latter.

In this paper we develop new results on the sta-
bility and control of linear repetitive processes where
the pass-to-pass updating is governed by a matrix lin-
ear second-order discrete or differential equation with
possible numerical ill-conditioning. The major outcome
is Linear Matrix Inequality (LMI)-based algorithms for
stability testing and control law design, including the
case when there is uncertainty associated with the pro-
cess dynamics.

Throughout this paper, the null matrix and the
identity matrix with the required dimensions are de-
noted by 0 and I, respectively. Moreover, M >0(<0)
denotes a real symmetric positive (respectively nega-
tive) definite matrix, and » denotes a block matrix entry
in a symmetric matrix.

II. BACKGROUND

Let a<oo denote the pass length and use an integer
subscript k& > 0 to denote the pass number or index.
Then the most basic discrete linear repetitive process
state-space model [10] has the following form over 0 <
p=<o—1k=0,

Xe+1(p + 1) = Axpp1(p)+Bugy1(p)+Boyi(p)
Vi+1(p) = Cxgr1(p)+Dugr1(p)+Doyi (p).

Here on pass k, xi(p)€R" is the state vector,
vk (p) € R™ is the pass profile vector, and uy (p) € R" is
the vector of control inputs. The boundary conditions
(i.e. the pass state initial vector sequence and the initial
pass profile) are

xk1(0) = dgy1, k=0
yo(p) = f(p),

where the n x 1 vector dy41 has known constant entries
and f(p) is an m x 1 vector whose entries are known
functions of p.

In a differential linear repetitive process [10] the
along the pass dynamics are governed by a linear ma-
trix differential equation and, with the along the pass
variable denoted by ¢, the most basic state-space model
has the following form over 0 <t < o,k > 0,

@)
O<p<a-1

Xe41(t) = Axpp1(t) + Bugq1(t) + Boye (1)
Yie41(®) = Cxpy1(t) + Dugy1(t) + Doyi (1)

where all notation is the same as the discrete case,
except that the initial pass profile is now taken as
yo(t) = f(¢t), where the entries in f(¢#) are known
functions over 0 <t < a.
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The stability theory [10] for linear repetitive pro-
cesses is based on an abstract model in a Banach space
setting which includes a wide range of such processes
as special cases, including both cases considered in this
work. In terms of their dynamics it is the pass-to-pass
coupling (noting again their unique feature) which is
critical in the analysis of linear repetitive processes.
This is of the form yx41 = L,yx, where y, € E, (E, a
Banach space with norm | - ||) and L, is a bounded
linear operator mapping E, into itself. (In the cases
considered here L, are discrete and differential linear
systems convolution operators respectively.)

Asymptotic stability, i.e. BIBO stability over the
fixed finite pass length o>0, requires the existence of fi-
nite real scalars M, >0 and 4, € (0, 1) such that ||L§|| <
MMI;, k > 0, (where || - || denotes the induced operator
norm). For the discrete and differential linear repetitive
processes considered in this work it has been shown
elsewhere (see, for example, Chapter 3 of [10]) that this
property holds if, and only if, all eigenvalues of the ma-
trix Do have modulus strictly less than unity, written
here as »(Dg)<1 where r(-) denotes the spectral radius
of its matrix argument.

Suppose that a process described by either of the
state-space models considered here is asymptotically
stable and also that the input sequence applied {41}k
converges strongly as k — oo (i.e. in the sense of the
norm on the underlying function space) to u,. Then the
strong limit yo, :=limg_, o Yk 1s termed the limit profile
corresponding to this input sequence. For the discrete
process, it can be shown that the limit profile is given by

Xoo(p + 1) = (A4 Bo(I — Do) 'C)xoo(p)
+(B+Bo(I—Do) "' D)uoo(p)

Yoo(p) = (I — D) ™' Cxoo(p) )
+(I — Do) ' Ducs(p)
xoo(o) = doo

where d is the strong limit of the sequence {u}.

In physical terms, this result states that under
asymptotic stability the repetitive dynamics can, after
a ‘sufficiently large’ number of passes have elapsed,
be replaced by those of a 1D discrete linear system.
In particular, this property demands that the amplify-
ing properties of the coupling between successive pass
profiles are completely suppressed after a sufficiently
large number of passes have elapsed. This fact has clear
implications in terms of the control of these processes.

The fact that the pass length is finite means that the
limit profile may have unacceptable along the pass dy-
namics. For example, consider the case when A=—0.5,

B=1,By=0.5+p,C=1, D=0, Dy=0 where fis a
real scalar. This example is asymptotically stable since
Dy =0 and the state matrix of the resulting limit profile
state-space model is . Hence the limit profile is unsta-
ble unless || <1. Clearly this is not acceptable in many
cases.

The limit profile for the differential case is

¥oo(t) = (A4 Bo(I — Do) C)xoo(t)
+(B + Bo(I — Do)~ ' D)uco(t)

Yoo(t) = (I — Do)~ Cxeo(2) (5)
+(I — Do) "' Duoo (1)
xoo(o) = doo

In order to avoid cases where asymptotic stability
results in an unstable limit profile, the obvious route is
to demand the BIBO property for all possible values
of the pass length (mathematically this can be analyzed
by letting o — o0). This is the stability along the pass
property which (in abstract model terms) requires the
existence of finite real scalars My,,>0 and A € (0, 1),
independent of «, such that ||L§|| < Mooi]éo, k > 0.
For discrete processes described by (1) and (2), it has
been shown elsewhere that this requires

e r(Dp)<1 (asymptotic stability),

e r(A)<l1, and

e 7(G(z))<1, V|z|=1, where G(z) =C(z[—A)~!
Bo + Dy.

In the case of processes described by (3), and the cor-
responding conditions are

e r(Dg)<1 (asymptotic stability),

e all eigenvalues of the matrix A have strictly nega-
tive real parts, and

o r(G(s))<1,Vs:Res >0,
where G(s)=C(sI — A)~' By + Dy.

Note here that (1D) stability of the state matrix A is also
only necessary for stability along the pass, as the simple
example above for the discrete case demonstrates.

For the processes considered here stability along
the pass is independent of the boundary conditions as-
sumed in this paper and hence they will not be explic-
itly stated in the theorems to follow that give the main
results. Note, however, that the form of the boundary
conditions is critical to the stability properties of linear
repetitive processes. In particular, it can be shown [10]
that if the state initial vector on each pass is a function
of points along the previous pass then this alone can
cause instability.
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In terms of stability analysis and control law de-
sign, the most productive route is via a 2D Lyapunov
equation [10] characterization of stability along the pass
which, in turn, arises from a Lyapunov function inter-
pretation. The starting point is to note that any candi-
date Lyapunov function needs to capture the ‘energy’
associated with information propagation both along the
pass and from pas-to-pass. The function used here for
the discrete case is

Vk, p)=x{ 1 (D) Wixis1 ()3 (P)Wayr(p)  (6)

where W;>0 and W;,>0, with associated increment

AV (k, p) =x{1(p+ DWixgp1(p + 1)
+ykT+1 (PIW2yrs1(p)
—xi 1 (P)WiXp41(p)

—yl (p)Wayk(p) 7

Then we have the following result via the 2D Lyapunov
equation.

Theorem 1 ([/0]). A discrete linear repetitive process
described by (1) with Lyapunov function (6) is stable
along the pass if

AV (k, p)<0 ®)
foral0<p<a—1,k>0.

Now we have the following results which are cen-
tral to the analysis in this paper.

Theorem 2 ([/0]). A discrete linear repetitive process
described by (1) is stable along the pass if 3 matrices
P >0 and Q>0 such that

~P+0Q 0 AlP
0 -0 Al'p|<0 )

PA, PA, -P

where
. A By . 0 O
A= , Apx= .
0 0 C Dy

Theorem 3 ([/2]). A differential linear repetitive pro-
cess described by (3) is stable along the pass if 3

matrices P;>0 and P, >0 such that

—P, P,C P, Dy
c’p, ATP +PA PB
Dl P Bl P -P
<0 (10)

The discrete processes considered in the remainder
of this paper are, with the notation as above, described
by the following state-space model which is second-
order in the pass-to-pass direction

Xe+1(p+ 1) = Axp41(p) + Bujt1(p)
+Bioyk+1(p) + Booyk(p) an
Dayi42(p) = Cixg+1(p) + Diug+1(p)
+D10Yi+1(p) + Dooyk(p)

It is also necessary to extend the boundary conditions
of (2) by adding

y1(p) = f1(p),

where fi(p)isanm x 1 vector whose entries are known
functions of p. This model (11) can be transformed to
first-order form by introducing

yi(p)
Yi(p)=
Ye+1(p)

p=0,1,...,(x—1) (12)

to obtain

Xk+1(p+ 1) = Axiy1(p) + Bugi1(p)
+BoYi(p)
A A (13)
WoYiyr1(p) = Cxpg1(p) + Dugy1(p)

+DoYi(p)

where
“ R 0
By=[Bopp Biol, C=
Cq
R 0 R 0 I,
D= . Do=
Dy Doy Dyo
I, O
P, = .
0 D,
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The corresponding model in the differential case is

Xk+1(1) = Axgq1(t) + Bug41(F)
+B10yk+1(1) + Booy(?)
Dayk42(t) = Cixk41(t) + Disg1 (1)
+Di1oyk+1(t) + Dooy (1)

(14)

and it is necessary to add

@)= fi@),

to the boundary conditions where f1(¢) isanm x 1 vec-
tor whose entries are known functions of ¢. In first-order
form we have for this case we introduce

Vi ()
Ye(@) =
Yie+1(2)

to obtain

0<t<u

Kpg1(1) = Axpp1 (O +Bugr1 (0)+BoYi (1)

. . . (15)
YoYii1(t) = Cxpp1(®)+Dupy1(t)+DoYy(t)

Obviously, left-multiplying the second equation
of (13) or (15) as appropriate by the matrix ‘¥ !
yields the repetitive process model of (1) or (3) re-
spectively and then existing results can be applied. In
terms of applications, however, problems will arise if
this matrix is ill-conditioned. In this paper we develop
methods that do not require this inversion and the pos-
sible ill-conditioning associated with constructing the
inverse. Note, however that these do not extend to the
case where the matrix D; is singular. To deal with this
case it is necessary to use further results for singular
linear systems, see, for example, [13].

III. ANALYSIS

Consider the discrete case. Then we cannot di-
rectly apply Theorem 2 to obtain a condition for stability
along the pass of a process described by (11) since this
requires the numerical inversion of the matrix D;. In-
stead, we have the following result.

Theorem 4. A discrete linear repetitive process de-
scribed by (13) is stable along the pass if 3 matrices
Y >0 and Z>0 such that

-Y+Z 0 Y AT
0 -z YAY |<o0 (16)

AlY Ay —wryv!

where
3 A By| . 0 0
A= , A= . .
0 0| C Dy
and
I, 0]
Y= .
0 ‘Po_

Proof. First left-multiply the second equation in (13)
by ¥ ! and apply Theorem 2 to the result. The proof is
then completed by application of obvious congruence
transforms and change of variables. O

Theorem 5. A differential linear repetitive process de-
scribed by (15) is stable along the pass if 3 matrices
Y1>0 and Z;>0 such that

~W¥oZ, P! CY, DoZ,
v,CT AT + Ay, Byz, | <0 (17)
z, D} Z1B! ~7

Proof. First Left-multiply the second equation of (15)
by ¥, ! and apply Theorem 3 to the result. Next,
left and right-multiply the result of this last step by
diag(PoPy ', P!, P;!) to obtain (17). O

If stability along the pass is not present for a given
example then it will clearly be necessary to introduce
regulation action to guarantee this property. Moreover,
given the critical role of the pass-to-pass updating, it
follows that any control law must have a contribution
from the previous two passes here plus current pass state
or pass profile activated action. Here we consider a law
of the form

w1 (p) = K1xx11(p) + Koy (p) + K3y 1(p)

|:Xk+1(P):|
—K (18)
Yi(p)

for the discrete case with differential counterpart

i1 (1) = K141 (8) + Koye(6) + K3yis1(2)
|:xk+1(t):|
=K (19)
Yi (1)

K=[K, K2 K3]=[K| Kal.

where
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The pass profile vector is the process output and
here it assumed that noise corruption and other distur-
bances are negligible. Moreover, ill-conditioning of the
matrix D; is not a problem here in practical implemen-
tation of the control law. Also the current pass state vec-
tor in this stabilization law will, in general, require an
observer.

The controlled process in the discrete case is de-
scribed by

Xe41(p + 1) = AnewXi+1(p) + Bu1yi+1(p)
+Bn2yk(p)
(20)
Dayit2(p) = CaXir1(P) + D1 Yi+1(p)
+Dn2yk(p)
and in the differential case by
Xk+1(1) = AnewXk+1() + B yi+1(f)
+Bn2yi (1)
Dyyi2(t) = CuXp41(t) + Dt yi+1(1)

+Dn2yi(2)

21

where

Apew =A + BKj, Bn1=Blo+BIQ3

By =B+ BK>, C,=C;+ DK,

Du1 = Do+ D1K3, Dpyy= Do+ D1 K,

or, more compactly,

xk—i—l(P +1) = Aneka+1(l7) + BhewYr(p)
(22)
YoYir1(p) = ChewXk+1(p) + DiewYi(p)

and
)‘Ck—i-l(t) = Aneka—i-l(t) ~+ Brew Yi (1)
\POYk—i-l(t) = Cneka+1(t) + Dypew Y (1)

respectively, where

(23)

Bnew =[Bn2 Bu1l= Bo + BK;

© 0 A A
CneW: :C+DK]

_Cn

0 I, .
Dpew = =Dy + DK>.

_Dn2 Dy

In the discrete case we now have the following re-
sult for stability along the pass of the controlled process
together with a formula for computing the control law
matrix.

Theorem 6. Suppose that a control law of the form
(18) is applied to a discrete linear repetitive process
described by (13). Then the resulting controlled process
is stable along the pass if 3 matrices Y >0, Z>0, and

N= [N1 N3] such that
-Y+Z * *
0 -7 *

A1Y+é1]\7 AzY—I—EzN —pyyT
<0 (24)

where

o[ [

If this condition holds, a stabilizing control law matrix
K is given by

K=NYy~! (25)

Proof. The proof is a direct consequence of interpret-
ing the LMI of Theorem 4 in terms of the case con-
sidered here with KY =N and application of routine
manipulations. 0

For the differential case we have the following
result.

Theorem 7. Suppose that a control law of the form (19)
is applied to a differential repetitive process described
by (15). Then the resulting controlled process is stable
along the pass if 3 matrices ¥ >0, Z>0, N, and M such
that

[ vyAT + NTBT 7]
* *
+AY + BN
(BoZ + BM)T -z *
CY+DN  DoZ+DM —¥z¥] |
<0 (26)
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If this condition holds, a stabilizing control law matrix
K is given by

K; = NY~!
2
Ky = MZ™! @0

Proof. This follows analogous steps to the proof of the
last result and hence the details are omitted here. [

IV. STABILITY AND STABILIZATION
OF UNCERTAIN PROCESSES

In the most cases the model matrices are subject
to uncertainty and only the nominal model is known.
The standard route in robust control to deal with this
case is to assume an uncertainty model and here we use
the norm bounded type of uncertainty under which the
discrete linear repetitive process of (11) takes the form

Xer1(p+1) = (A+ AA)xi41(p)
+(B + AB)uj1(p)
+(B1o + AB10) yk+1(p)

+(Boo + ABoo)yk(p)
(28)

Dyyr+2(p) = (C1 + AC1)xk+1(p)
+(D1 + ADuk+1(p)
+(D1o + AD10) yk+1(p)
+(Doo + ADoo) yk (p)

and in the differential case
Xk1(1) = (A + AA)xp41 (1)

+(B + AB)uj41(1)
+(B1o + AB10) yi+1(t)
+(Boo + ABoo) i ()

Dayr+42(t) = (C1 + AC)xp4+1(1)
+(D1 + ADDuk+1(2)
+(D10 + AD10) Yi+1(2)
+(Doo + ADoo) yi (1)

(29)

For analysis purposes these models can be rewritten as
X1 (p 4+ 1) = (A + AA)xiq1 (p)
+(B + AB)uj+1(p)
+(Bo + ABo)Yi(p)
WoYis1(p) = (€ +AC)xk11(p)
+(D + AD)ug41(p)
+(Do + ADo) Yi(p)
and
Xie1(1) = (A + AA)xp41(1)
+(B + AB)uj41(2)
+(Bo + ABo) Vi (1)
WoYir1(t) = (€ +AC)xe41 (1)
+(D + AD)ui11 (1)
+(Do + ADg) Y (1)

(3D

respectively, where

ABy=[ABy ABjgl, AC=
o =[ABgyo 10] [ACJ

and the rest of notation follows that of the previous
section.
Now introduce the following notation.

A+AA By+ABy B+AB

C+AC Dy+ADy D+AD

Also it assumed that we can write

Hj

AZ = HFE = { :|F[E1 E] (32)

Hy

where H, E1, E, are given matrices of compatible di-
mensions, and F is unknown matrix which satisfies
I|Fll<1,or FTF<I.

© 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society



P. Dabkowski et al.: LMI Based Stability and Stabilization 143

4.1 Stability
4.1.1 Discrete processes.

Introduce the following notation

L0 0

I ) B
AA = —_— —

*T|AC ADJ
AB, — AB}

. To0
ABy =| —

2 _AD}

and

m= " m=|?
1= ol 2= Hz.

Then we have the following result by direct application
of an existing LMI based stability condition.

Theorem 8. A discrete linear repetitive process de-
scribed by (30) with uncertainty modeled as (32) is
stable along the pass if, 3 matrices P>0, and Q>0,
such that

(A+AATP(A+ AA) + Q<0 (33)
where
|:P—Q 0} - ..
Q= . A=[A, A,
0 0

and
AA=[AA; AA,]

To remove the uncertain term F' in this last result
(which means that it is numerically intractable) we ap-
ply the elimination lemma [14] to obtain the following
result.

Theorem 9. The condition of Theorem 8 holds if, and
only if, 3 a scalar ¢>0 and matrices P>0, and Q>0,
such that
—vp 9T 4 cHAT A
AT Q4 BTE,
<0 34)

where

H=[H, H), E=diag(E,, E))

Now we have the following result whose proof follows
after standard algebraic manipulations that are omitted
here.

Theorem 10. A discrete linear repetitive process de-
scribed by (30) with uncertainty modeled as (32) is sta-
ble along the pass if 3 a scalar ¢>0, and matrices ¥ >0,
and Z >0, such that

—wyw" AY ¢ 0

YAT Z 0 YET

i <0 (35)
ceH 0 —el 0

0 EA‘1YA' 0 —el

where
A Y 0 -Y+7Z O
Loy =
4.1.2 Differential processes.

We require the following well known result.

Lemma 11 ([/5]). Let X;, 2, be real matrices of
appropriate dimensions. Then for any matrix F satisfy-

ing 7T F < I and a scalar ¢>0 the following inequality
holds

S FE 4+ 2T TRl <7 ly sl 43Ty, (36)

Applying Lemma 11 to the result of Theorem 5
interpreted in terms of the uncertain process (31) gives,
after routine algebraic manipulations, the following
result.

Theorem 12. A differential linear repetitive process
described by (31) is stable along the pass if 3 a scalar
&>0, and matrices Y| >0, and Z;>0, such that

=1 éYl lA)()Zl 0 0

Y,CT > Bz,

[1]

YWE[ Y/ E[
2Dl 7Bl -z, z'El ZTE!
E] Y] EzZl —el 0

0 EiY1 ExZ; 0 —el

<0 37
where
= — lIJ()Zl‘Pg + 8H2H2T
and

Ey=Y1AT + AV, +eH H]
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4.2 Robust control

Using the analysis so far in this paper we can now
establish the following results.

4.2.1 Discrete processes.

Theorem 13. Suppose that a control law of the form
(18) is applied to a discrete linear repetitive process
described by (30) with uncertainty modeled by (32).
Then the resulting controlled process is stable along the
pass if 3 matrices P>0, and Q>0, such that

Q-+ (A+ BK +AA+ABK)T
xP(A+ BK + AA + ABK)<0

Theorem 14. Suppose that a control law of the form
(18) is applied to a discrete linear repetitive process
described by (30) with uncertainty modeled by (32).
Then the resulting controlled process is stable along the
pass if 3 a scalar >0, and matrices ¥ >0, Z>0, and N,
such that

—pyy? * * *
YAT + NTBT VA * *
eHT 0 o

0 E;Y+EN 0 —el

<0
where

El =diag(E1, E1)
A=[A; A;]

H=[H H],
Ey = diag(Ea, E),
B=[B; By]

-Y+7Z O
0 —Z
A Y 0 .\ N 0
Y= N N:
o) =l ]
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If this condition holds, a stabilizing control law matrix
is given by

K=NYy ! (39)

4.2.2 Differential processes.

Using Theorem 12 we have the following result.

Theorem 15. Suppose that a control law of the form
(19) is applied to a differential linear repetitive process
described by (31) with uncertainty modeled by (32).
Then the resulting controlled process is stable along the
pass if, 3 a scalar £>0, and matrices Y1>0, Z1>0, Ny,
and N, such that

Q1 * * * *
(031 Qo * * *
ziDf +NI'D 7Bl + NTBT -7 % <0 (40)
0 E\Y1 + E3N; 0 —el *
i 0 0 E)Zi1+ EsNy, O —el |
where

Q= —lP()Z]‘Pg + 28H2H2T
Q= YléT + NlTb + 28H1H2T
Q=Y AT + AY; + N B” + BN, +2eH H]

If this condition holds, a stabilizing control law matrix
is given by

K

=Ny !

(41)
K>

szl_l

V. CONCLUSIONS

This paper has developed new results on stabil-
ity and stabilization of discrete and differential linear
repetitive processes whose dynamics are second-order
in the pass-to-pass direction, with particular attention
to avoiding numerical ill-conditioning. The resulting
stability conditions and control law design algorithms
are LMI based. The core feature is that the algorithms
developed do not require the inversion of a possibly
ill-conditioned matrix. Also the analysis has been ex-
tended to the case when there is uncertainty associated
with the process model. Further work consists amongst
others, of attempting to use these results to design it-
erative learning control schemes for second-order ill-
conditioned 1D linear systems, as frequently arise in
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electro-mechanical systems. Note also that all results
here can be generalized to higher order processes which
are related to so-called non-unit memory linear repeti-
tive processes, which find application in modeling coal
mining systems.

The results in this paper, and the methods used
to derive them, can also be extended to the case when
the along the pass dynamics are second-order as, for
example, in the following discrete state-space model

Apxpr1(p+2) = Axgi(p+ 1) + Arxgr1(p)

+Bug4+1(p) + Booyr(p)
(42)
Ye+1(p) = Cixky1(p) + Diugi1(p)

+Dooyr(p)

where the matrix Ag is nonsingular but possibly ill-
conditioned. Such models open up other application
areas, such as the development of iterative learning con-
trol schemes for descriptor first or the second-order
systems. This would, however, require the use of only
output feedback control as the state vector here is much
harder to recover and the special singular observer must
be used [16].
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