
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering, Science and Mathematics

School of Electronics and Computer Science

A project report submitted for the award of

MEng Hons Computer Science with Artificial Intelligence

Supervisor: Dr Nicholas Gibbins

Examiner: Dr Alex Rogers

Project Triton : A study into

delivering targeted information to

an individual based on implicit and

explicit data

by Liam Ranil Fernando

May 7, 2009

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:lrf106@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

A project report submitted for the award of

MEng Hons Computer Science with Artificial Intelligence

by Liam Ranil Fernando

The World Wide Web is frequently seen as a source of knowledge, however much of

this remains undiscovered by its users. In recent times, recommender systems (e.g.

Digg and Last.fm) have attempted to bridge this gap, alerting users to previously

untapped knowledge. As more socially oriented services appear on the Web (e.g.

Facebook and MySpace), it has never been easier to obtain information pertaining

to an individual’s interests. At present, solutions for automated data recommen-

dation tend to be highly topic specific (recommending only a certain topic such as

news) and often only allow access to the system using monolithic interfaces. This

report hopes to detail the stages from research to evaluation involved in creating

an extensible framework, which will operate without the need for human inter-

vention. The framework will feature several proof-of-concept plugins residing in

a custom workflow, which target information that is useful to the user. Informa-

tion will be retrieved automatically through plugins involved with data gathering

(such as feed processing and page scraping), while users’ interests will be obtained

implicitly (for example, using header information to derive location) or explicitly

(taking advantage of Social Network APIs such as Facebook Connect). Finally,

Third Parties will be able to integrate the framework into their own solutions using

the customisable XML API (written in PHP), so that their products can provide

custom user interfaces without style constraints.

http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:lrf106@ecs.soton.ac.uk

Contents

Acknowledgements v

1 Introduction 1

1.1 The Problem . 1

1.2 The Goals . 1

2 Literature Review 3

2.1 Background Reading . 3

2.1.1 Guidance versus Automaton 3

2.1.2 Approaches to Classification 4

2.1.3 Detection of Semantic and Stylistic Similarity 5

2.1.4 Name Extraction . 5

2.1.5 Truth Detection and Information Fusion 7

2.1.6 Monge Elkan Distance and the Field Matching Problem . . . 7

2.1.7 Server-Side Performance PHP 8

2.1.8 Oliver in PHP . 9

2.1.9 Applications of Historical Learning Techniques 9

2.1.10 Location Detection by IP Address 10

2.1.11 Representation of XML Workflow 10

2.1.12 Persistent Data Connection Techniques with PHP and AJAX 11

2.1.13 WordNet . 12

2.1.14 RSS XML . 12

2.2 Previous Work . 13

2.2.1 Tagged News (DayLife) . 13

2.2.2 Social ‖ Median . 14

2.2.3 Personalised News (MySun, MyTelegraph, etc.) 14

2.2.4 Competitor Comparison . 15

3 Requirements Analysis 16

3.1 Goals . 16

3.2 Requirements . 17

4 Project Planning 18

4.1 Risk Analysis . 18

4.1.1 Loss of Hardware . 18

ii

CONTENTS iii

4.1.2 Corruption of Data . 18

4.1.3 Unrealistic Project Scope . 19

4.1.4 Work Overload . 19

4.1.5 Poor Health . 19

4.1.6 Miscellanious Misfortunes 19

4.2 Project Segmentation . 20

4.3 Initial Project Planning . 21

5 Design 24

5.1 High level design . 24

5.1.1 Use-Case Analysis . 24

5.1.2 Conceptual Overview . 27

5.1.3 Database Design and Schema Overview 27

5.2 Evolution of Design . 29

5.2.1 Oversights and a Shift to Genericism 29

5.2.2 Optimisation Through Good Design Practice 30

5.2.3 The Social Divide . 30

5.2.4 Outgrowing Expectations 31

5.2.5 Adaptable Indexing . 31

5.3 The Prototype . 32

6 Implementation 35

6.1 Technological Justification . 35

6.2 Developing the Framework, Plugins and API (Phase 1 & Phase 2) . 36

6.2.1 Working with Inputs . 36

6.2.2 Controlling the Flow - Developing a Custom Workflow . . . 37

6.2.3 Process Plugins . 37

6.2.4 Optimisation through Filters 39

6.2.5 Handling Requests - The API 40

6.3 Phase 3 and Beyond . 41

6.3.1 Source Integration . 41

6.3.2 Outputs and Social Interactions 42

7 Testing and Evaluation 44

7.1 Unit testing . 45

7.2 Integration testing . 47

7.2.1 F1 : The system must be able to detect different styles and
topics in news articles . 47

7.2.2 F2 : The system must be able to classify news into given
topics and interests. 48

7.2.3 F3 : The system must be able to provide news to given
interests. 48

7.2.4 F4 : The system must be able to retrieve news articles au-
tonomously. 48

CONTENTS iv

7.2.5 F5 : The system must be able to process news in a variety
of different ways depending on its configuration. 49

7.2.6 F6 : The system must be able to retrieve a user’s inter-
ests through explicit means (using social networks such as
Facebook) . 49

7.2.7 F7 : The system must be able to retrieve a user’s interest
through implicit means (using header information and or
browsing habits). 49

7.3 Reflection on Testing . 50

8 Project Management 51

8.1 Methods of Project Management 51

8.2 Evolution of Project Triton . 52

9 Conclusions and Further Work 54

9.1 Achievements of Project Triton . 54

9.2 Extending Project Triton . 54

9.3 Creating a Commercial Viable System 56

9.4 Adapting Project Triton for Re-use 56

9.5 Summary . 57

A Project Brief 61

A.1 Problem . 61

A.2 Goals . 61

A.3 Scope . 62

B In-depth Testing Results 63

B.1 Backend Unit Testing . 63

C Final Gantt Chart 67

Acknowledgements

I would like to thank Dr Nicholas Gibbins and Dr Alex Rogers for their time, input

and continued support in Project Triton.

v

Chapter 1

Introduction

1.1 The Problem

In the market today, vast arrays of solutions exist to deliver news to an individ-

ual, from news vendors themselves [1], to themed sites that provide a plethora of

information on a single subject [2]. However, few of these news delivery systems

tailor the user’s experience to find news relative to his or her known and likely

interests. Furthermore, those that do are not extendable or implementable on a

wide scale. As people like to read relevant news but seldom wish to search for it,

they often stick to one news site, or perhaps have a large collection of sites that

they check. Normally this results in the use of portals to organise syndication feeds

from sites into something manageable. The trained solutions that currently exist

are generally quite old and do not take advantage of the recent social revolution.

No custom solutions provide an XML interface that continues to train the user’s

profile, further tailoring the delivered news.

1.2 The Goals

The goal of this project is to create a solution for delivering targeted news to an

individual based on information gained using explicit or implicit methods. The

system should consist of a framework on which plug-ins can be installed, customis-

ing the input, processing, and user display of news. The implementation should

be such that each installation is fully customisable to both the user’s needs and

server’s demands. The project is hoped to ship with several example plug-ins,

1

Chapter 1 Introduction 2

which will be used as the basis for further development, while being part of a fully

usable product, which will have a prominent role in the market. The project will

essentially be separated into three distinct segments; the input phase, the process

phase, and the output phase. The input phase will collate different input sources;

these could be standardised sources such as XML feeds, or plugins could be devel-

oped to process un-standardised inputs using page-scraping techniques for news or

other media (such as images). The processing phase will essentially involve plug-

ins that process input or user data and return the targeted content in a correctly

encapsulated form. The relationship data is also obtained during the processing

phase. A typical plug-in may for example, tag articles by genre, or recognise dif-

ferent articles as the same story associating the source with a particular political

stance (e.g. a news story from the Times, may be seen as Conservative). After

the process phase, there will exist an XML interface written in PHP that deliv-

ers a range of outputs about the system based on given arguments. The XML

interface should update the system appropriately, altering a given user’s interest

vector based on the news they request. The output phase will involve plug-ins

that deliver the content of the system to different platforms, such as a web-front

end, communicating with the system using the XML interface. While ideally it

would be preferable to create wide range of plug-ins for the system, the focus of

the project will be entirely on making a complete framework and the basis of a

strong community based development. This will not only ensure that the plug-ins

are varied, but push the development of the solution in the future.

Essentially Project Triton is intended to be a functional framework for news ag-

gregation recommending articles based on the users’ interests. Furthermore, the

solution will consist of plug-ins to customise the experience to both the users’

needs and the demands of the server.

Chapter 2

Literature Review

Shortly after work commenced on the project, it became apparent that there

were several key areas where research would be essential. Initially these topics

were divided between two main categories, those involving the development of

a sustainable framework; and those involving the tagging and categorisation of

stories. However as I researched more, the number of categories increased. Using

academic paper search systems such as IEEExplore and Central Search, I was able

to find papers that assisted my design process. The following sections provide brief

explanations of the papers I found particularly useful or applicable to my system.

2.1 Background Reading

2.1.1 Guidance versus Automaton

When designing any system that relies on artificial intelligence, a topic of heated

debate is the choice between an autonomous approach that trains itself and a

trained system that learns through guidance. Many people have studied the com-

parison between the two approaches. It is often thought that trained systems offer

a higher level of accuracy than autonomous systems, because of the ability to cor-

rect invalid knowledge in the system. Training a system is an intensive process,

requiring an expert to guide the system until it is self-sufficient. It is not always the

case that an expert will be available or willing to train a system. This is especially

true in commerce, where users will generally prefer self-sufficient products.

3

Chapter 2 Literature Review 4

2.1.2 Approaches to Classification

Through my research I have discovered that there are many different automated

methods for text classification. Fabrizio Sebastiani [3] provides a comprehensive re-

view of most of these techniques. From this paper, I have come to realise that there

exist fuzzy classification areas, in which a corpus may not appropriately fit under

any one single class, requiring the use of multilabel text categorisation systems

and the use of fuzzy logic. I also learnt that the perspective of document classifi-

cation largely determines how effective a classification algorithm will be. By using

document-pivoted text classification (DPC) methods instead of category pivoted

categorization (CPC), it is likely to be more efficient at filtering documents under

a rapidly changing environment such as news aggregation. It is important to note

that most methods of text categorisation will work in both CPC and DPC. The

paper went on to describe many methods of text categorisation, comparing and

contrasting the differences between them. It became apparent however, that with

increased accuracy came decreased efficiency, with the most efficient approaches

often using vast amounts of document simplification techniques before process-

ing. Removing context sensitive words, which have different meanings in given

scenarios, averted further problems. The use of guided topic dictionaries (such

as MeSH) to help provide topics for a corpus also improved accuracy, but these

are normally only available for restricted domain sets, which may cause issues in

a rapidly changing environment such as news. This paper led me to believe that

perfect text classification is extremely difficult to achieve; I have therefore chosen

to use an automated supervised system. This will allow an ‘editor’ to correct any

wrong classifications, improving the accuracy of the system, whilst leaving the

system easy to maintain.

Topic classification is notoriously difficult to perform accurately, as a result it is

a problem that has been studied throughout computer science history. Several

papers analysed text classification in a more generic sense (such as ‘Algorithmic

Detection of Semantic Similarity’ [4]), however some papers specifically looked at

news articles and speech. Project Triton’s main objective is to deliver personalised

news, so I have decided to classify all articles in the system. When classifying an

article it is important to realise that not all articles are written in the same style.

This leads to complications in using traditional classification algorithms, which

typically rely on the use of similar words and the frequencies of these words to

detect similarity. The University of Ballarat produced a paper titled ‘Using Corpus

Analysis to Inform Research into Opinion Detection in Blogs’ [5] which looked at

Chapter 2 Literature Review 5

detecting writing styles across a range of online media. The study showed that

typically, opinionated articles contained more unique words. These were often

slang terms. While the article did not extend the study to compare different types

of blogs, it did hint that different writing styles contain different types of words,

and changing proportions of nouns, verbs and adjectives. The use of dictionaries

for different writing styles may be useful in article categorisation. However, this

has its drawbacks as the system would require training data, and as a result

would be only as good as the data that trained it. A further notable article was

‘Text Categorization using Feature Projections’ [6] which suggested a new method

(TCFP) of categorizing documents, comparing it to commonly used alternatives.

2.1.3 Detection of Semantic and Stylistic Similarity

A large issue when dealing with multiple data sources is removing redundancy.

This is especially difficult when the sources contain different writing styles. In my

system, I want to group articles about the same story together, offering different

writing styles based on the users preference. Ian Garcia and Yiu-Kai Ng’s paper;

‘Eliminating Redundant and Less-Informative RSS News Articles Based on Word

Similarity and a Fuzzy Equivalence Relation’ [7] compared several techniques such

as word frequency (which classify documents based on the frequency of the words

they contain), and keyword distance and connectivity (classifying documents by

the distance between keywords) to determine how best to detect similar news

stories. An interesting method hinted at by the paper was the use of meta data in

detecting similarity, for example, if two items have similar pubDate RSS tags, it

is likely they are about the same story. The research in this paper is particularly

relevant to Project Triton as the study specifically looks at RSS news feeds (a

major input of Triton).

2.1.4 Name Extraction

The approaches to classification described in Section 2.1.2 are often quite accu-

rate. This accuracy is further improved by eliminating stop-words (inconsequen-

tial words) from the data. However, when operating on large data sets, the results

they produce often show decreasing accuracy. It is for this reason, that alternative

methods of classification have been researched.

Chapter 2 Literature Review 6

Places, Identities and Events typically have uniquely identifiable names. By

analysing news articles it has been noticed that most stories are concerned with one

such item. Indeed, the notion of classification by name extends far beyond news

data, and can be applied to many different sources such as Images and Videos. As

data typically includes fewer proper nouns than other grammar, this reduces the

subset on which to operate upon, thus increasing accuracy. By calculating word

frequencies, or distances using only the proper nouns, both the intensity require-

ments and accuracy of the algorithm are improved.

The extraction of proper nouns from corpora has been studied by many linguis-

tic academics. Thierry Poibeau and Leila Kosseim noted that much of this re-

search has used formal documents such as newspapers as analysis material [8].

Although this is unlikely to cause an issue for Project Triton, it is important to

contemplate the application of name extraction on less formal documents. Thierry

Poibeau and Leila Kosseim, described alternative techniques for the extraction

of ENAMEX (proper nouns), TIMEX (temporal logic) and NUMEX (numerical

logic) from e-mails and oral transcripts. This required a different approach as

traditional extraction techniques relied on proceeding identifiers to names such as

Mr or Mrs. ‘Proper Name Extraction from Non-Journalisitic Texts’ [8], details

the short-comings of grammar-based analysis and need for a learning machine -

highlighted by the poor performance of Lexis. The report also showed how the use

of discourse structures can improve accuracy. Discourse Structures identify names

by a set pattern of words. When applied with a Learning Machine, it is possible to

learn the discourse structures, increasing accuracy. However, problems occur when

a word appears both in the set of learnt and programmed rules, as this creates a

conflict. The article details several reasons why such a conflict might arise, and

stresses that a perfect system is elusive, despite the techniques described in the

paper - which typically showed a 34% increase in accuracy.

‘Intelligent Content Based Title and Author Name Extraction from Formatted

Documents’ [9] uses a variety of novel techniques to extract the Title and Author

names from published articles. The paper avoids using stylistic based detection

methods, and focuses on content and format based approaches. The content-based

methods first re-format any articles into a more amenable form, before applying a

variety of regular expressions and dictionary tests to decide the likelihood that the

said data was either a Title or Author Name. The Format-based approaches de-

scribed, used the internal file structure of reports to recognise the target elements.

Chapter 2 Literature Review 7

While novel, much of the research seemed naive when applied to the requirements

of this project. In practice only the regular expressions hold any true value when

concerned with Project Triton.

‘Person name extraction from Turkish financial news text using local grammar-

based approach’ [10] uses a technique known as local grammar to extract proper

nouns. Although aimed at the Turkish language, the paper highlights the dif-

ficulties in obtaining local grammar, particularly with a complex language such

as Turkish. The paper proved that the use of local grammar is effective once ob-

tained, and if Project Triton were ever to process foreign languages, local grammar

may provide a method of name extraction.

2.1.5 Truth Detection and Information Fusion

‘Information extraction based on information fusion from multiple news sources

from the web’ [11] looks at combining extracted information on a single topic or

entity over multiple sources. The paper entertains the notion that some sources

are more credible than others. By use of a Multi-Layered Perceptron called mFuse,

the authors compare data about an entity, accounting for source credibility be-

fore outputting the most truthful data. This could be useful in Project Triton,

as it would allow the creation of composite news stories, or an encyclopedia of

knowledge about an individual. Furthermore, by associating truthful facts with

an individual, Project Triton would be able to recommend more accurate data.

There is however, a downside, designing a MLP such as mFuse in PHP would

be computationally expensive. It remains that despite the increase of accuracy

experienced when using mFuse, the research is highly experimental and prone to

failure.

2.1.6 Monge Elkan Distance and the Field Matching Prob-

lem

Field matching is the process of determining similarity of syntactically different,

but identical entities. In ‘The field matching problem: Algorithms and applica-

tions’ [12], Monge and Elkan discuss a basic field matching algorithm, which when

applied recursively can detect identical entities with differences such as complex

abbreviations. The basic matching algorithm is as follows:

Chapter 2 Literature Review 8

match(A,B) =
1

|A|

|A|∑

i=1

max
|A|
j=1

match(Ai, Bj) (2.1)

After describing the functionality of the basic matching approach, the paper goes

on to compare the Smith-Waterman algorithm (also known as the Monge Elkan

distance). Smith-Waterman uses a weighted matrix of alphabets, and penalties for

starting and continuing gaps in digests to increase accuracy. As Smith-Waterman

allows for missing characters, it should perform better than basic matching.

2.1.7 Server-Side Performance PHP

A key consideration in the development of Project Triton is the choice of develop-

ment language. Performance benchmarking of computers is a common affair. As

a result, many papers have been published comparing the benefits and disadvan-

tages of different server-side languages.

In the market today, two of the major front-runners are PHP and JSP. ‘Perfor-

mance comparison of PHP and JSP as server-side scripting languages’ [13] com-

pared the performance of PHP and JSP as server-side scripting languages using

SPECweb2005. The study showed that while Java (JSP) greatly out performed

PHP when executing native code, PHP beat Java when using built-in functions.

Throughout the report, Java generally performed better than PHP; this is likely

because of Java’s Just In Time compiler. It should be noted however, that although

Java significantly beat PHP in some tests, PHP showed particular performance

advantages in I/O processing and algorithms such as MD5 and Levenstein.

‘A Performance Comparison of Dynamic Web Technologies’ [14] benchmarked

PHP, Java and Perl comparing their ability to process dynamic content. The

paper concluded that Java generally out-performed PHP and Perl. Interestingly,

the paper suggested that PHP’s failings were due to apache (a server platform with

60% of the market share). Furthermore, it stated that PHP showed competitive

performance levels on small dynamic content and was robust when under heavy

load.

Chapter 2 Literature Review 9

Finally, I looked at ‘Some Experiments with the Performance of LAMP Architec-

ture’ [15]. The report compared the performance of PHP code against C code.

Unsurprisingly, the C code out performed PHP. Interestingly, some results, such as

the MySQL database access test were almost identical when performed in PHP and

C. The report also compared different implementations of AMP (Apache, MySQL

and PHP) over multiple operating systems, concluding that a Linux based solution

was fastest. The report also found that WAMP was significantly faster than IIS

when performance benchmarking under Microsoft Windows. I can conclude that

Java is the fastest server-side language, followed by PHP, then ASP. Despite this,

a major goal of Project Triton is to create a system which is highly portable. As

Apache and PHP control the market, it is vital the project be developed using

these technologies so that the project is available to the widest audience.

2.1.8 Oliver in PHP

‘Decision Graphs - An Extension of Decision Trees’ [16] forms the basis of a built-

in PHP function called similar text(). The report starts by creating an inefficient

classifier which divides objects into uniquely defining attributes, creating easily

distinguishable classes. This classification uses decision trees, which have frag-

mentation problems and biases when using large data sets. While the report

recommends solutions to these problem, it contrasts the use of decision graphs for

a more efficient implementation. The creation of decision graphs requires one first

to grow a decision graph. Previous studies involved in growing decision graphs

fixed the shape of this graph to suit a defined structure, partitioning the data

when it did not conform to this. By partitioning the data, meaning about the

domain was lost, creating a dis-advantage. The report compares preexisting grow

and prune methods with their own suggested iterative growing technique, demon-

strating their method’s ability to create high-purity, low-noise decision graphs.

PHP utilises this research to create an efficient implementation of string similar-

ity. Although the algorithm complexity is O(n3), it compares favourably with

more efficient non-built-in algorithms due to it’s C implementation.

2.1.9 Applications of Historical Learning Techniques

‘Behavior Based Web Page Evaluation’ [17] and ‘A Web Usage Mining Frame-

work for Mining Evolving User Profiles in Dynamic Web Sites’ [18] both show

the importance of logging in detecting user behaviour. ‘Behavior Based Web page

Chapter 2 Literature Review 10

Evaluation’ [17] has particular relevance to Project Triton as analyses AJAX based

techniques for user feedback - which will be used in the Output Phase. While the

methods described in these papers are not new or innovative, they provide exam-

ples of how useful it is to log every aspect of a user’s activities and confirm that my

proposed methods of behavioural tracking (using AJAX and header information)

are creditable.

2.1.10 Location Detection by IP Address

‘A Location Information Retrieval System using IP Address’ [19] aims to derive a

geographical location for any given IP address for use in targeted advertising. The

report recognises that there exist two types of IP address; static and dynamic.

Static IP addresses do not change regularly, and therefore can be cached for long

periods of time. Conversely, dynamic IP addresses change rapidly, and are required

to be ‘lively’ calculated. The article states that locationary information is stored

in an IP address as a 8 byte local code, this can be cross referenced to a look-

up table denoting geographical location. To increase efficiency, and reduce load

on the system, it is recommended that blocks of IP address space be cached for

short periods of time on the server, this will negate the need to look up a location

every time a user visits the page. The paper proceeds to look at optimisations

such as early warning techniques (flagging) to detect if an IP address is not in the

geographical look-up, before comparing the investigated techniques. It is noted

that peak throughput was achieved when caching and flagging was enabled. The

work of this and other similar papers has spawned the creation of several libraries

for PHP involved with geo-location, and will be particularly revelant if integrating

location information into Project Triton.

2.1.11 Representation of XML Workflow

A core focus of Project Triton is to be flexible, I quickly realised that a predefined

structure would need to be created for plugins to be designed upon. I soon de-

cided that a dynamic workflow was required, so that the WebMaster could alter

the execution of plugins with ease. I found two papers comparing approaches for

dynamic workflows. While both papers discussed alternative techniques (using

configuration files and object oriented programming), it was clear that using an

XML based standard would be easy to configure and implement given PHP’s abil-

ity to process XML. Both papers suggested XML solutions to solve the problem;

Chapter 2 Literature Review 11

however they were often too complex for the existing problem. Instead this led me

to create my own XML schema that I could implement offering only the services

I required, discussed in ‘The Design and Implementation of XML-based Workflow

Engine’ [20]. This meant that my system would remain efficient while still offering

a dynamic workflow.

2.1.12 Persistent Data Connection Techniques with PHP

and AJAX

In the modern age, the need for up-to-date information is key. In the produc-

tion of Project Triton, an example user interface will be created to interact with

the API. It is likely that certain elements of this website will interact with Third

Parties (such as Social Network APIs). In situations such as that, it might be

preferably to provide instant feedback on the progress of the script. While the

research of such techniques is quite young, many solutions exist to provide this

functionality. ‘A comparison of push and pull techniques for Ajax’ [21] details a

number of methods used to transfer data persistently between a server and client.

Bozdag, Mesbah and Deursen explain the concept of an Ajax XMLHttpRequest

to make use of REST-ful services, before explaining how persistence can be added

through the inclusion of a Time to Refresh (forcing the page to re-load every time

period). Instead of using REST-ful services, an alternative method might be to

create an HTTP Stream. In PHP, this is achieved by creating an infinite while

loop, inside which flush() commands are called. When combined with an Ajax

XMLHttpRequest, this streams data to the page.

Sometimes, a web page may need to respond to a certain event invoked on the

server. For this reason, a technique known as Reverse AJAX or Comet was intro-

duced. Comet enables the server to send a message to the client when an event

occurs, without the client having to send a request explicitly. The paper pro-

ceeded to analyse the performance of these methods. It should be noted that all

the described techniques scale well, although the paper hastens to point out that

naive implementations would be likely to negatively impact on performance. To

aid the development of such services, ‘Comet and Reverse Ajax: The Next Gen-

eration Ajax 2.0: The Next Generation Ajax 2.0’ [22] suggests several practical

techniques such as intelligently altering the Time to Refresh of an HTTP Pull,

based on the rate of previously received new data. Further-more a framework

Chapter 2 Literature Review 12

called the Ajax Push Engine (APE) implements many of these design practices,

forming a robust JavaScript Ajax library.

2.1.13 WordNet

WordNet is a collection of words which act like a thesaurus. ‘The Design and

Implementation of an Electronic Lexical Knowledge Base’ [23] looks at the failings

of automated thesauruses, and compares the success of WordNet - a manually con-

structed thesaurus - with an electronic version of a traditional thesaurus (Roget’s).

Through quantitive testing, it was shown that the Roget’s Thesaurus provides a

wider range of words than WordNet. This may be explained by the number of years

that Roget’s have been entering words into their thesaurus. Despite this initial

victory, other quantitive measures showed that WordNet far exceed the imple-

mentation of Roget’s. The report concludes, that while they remain very different

in their internal structure, both thesauruses are very useful in natural language

processing. If compiled correctly, the Roget’s Thesaurus would probably exceed

the performance of WordNet. However, creating an electronic representation of

Roget’s is very difficult, and the authors hasten to add that several improvements

would be required in the future. For that reason, WordNet is the obvious choice

for NLP in Project Triton.

2.1.14 RSS XML

RSS has been prevalent in the World Wide Web for many years now. It is an

XML variant that provides a lightweight means of content distribution, relieving

load on the server. It also provides the opportunity for Third Party developers

to integrate feeds from external sources into their own projects. In his article

‘RSS’ [24], Tom Barnes describes how RSS can also be used for pushing email

to a client, and driving many other of a typical website’s services. The paper

then goes on to point to future implementations of RSS, chiefly Media RSS (now

specified by Yahoo). Media RSS adds a name space to the RSS specification

allowing for the insertion of data regarding videos, images and other embedded

content. Integrating feeds such as RSS and MRSS into Project Triton will enable

the system to stay up to date easily, without burdening the server.

Chapter 2 Literature Review 13

2.2 Previous Work

While I have not been able to find any existing solutions that provide the exact

functionality of my proposed system, some websites provide services that attempt

to bridge the gap between what the user wants and standard news delivery systems.

These services can generally be divided into the following categories;

2.2.1 Tagged News (DayLife)

Figure 2.1: DayLife

Tagged News websites use tags to group news stories under similar topics. For

example, using DayLife it is possible to find out about news stories regarding

‘Barack Obama’. DayLife is an example of an automated tagging system. How-

ever, it only uses one news source, avoiding the possibility of duplicated news.

Automated tagged news sites are rare, and DayLife is one of the few successful

implementations on the market today. One of DayLife’s key successes has been its

clean layout, using large images to replicate traditional magazine covers drawing

the user to particularly popular stories or information. Another aspect of DayLife

which has proved extremely popular is the inclusion of an API (DayPI) which

provides a PHP driven XML interface on which developers can request news on

specific topics, along with images and extra information. Sadly, this is the limit of

developer support DayLife provides, as DayLife remains a closed source project.

The system also suffers from a poor implementation of tagging, often returning no

results when using common terms. This in part could be traced to a poor database

of news, although it is likely that poor implementation of tagging is to blame.

Chapter 2 Literature Review 14

2.2.2 Social ‖ Median

Figure 2.2: Social ‖ Median

Social ‖ Median uses a collaborative

approach to news recommendation to

provide users with popular stories. The

idea behind this approach is that if

many people read an article, it must

be interesting to the user. However,

this is not always the case as each indi-

vidual has different tastes. To achieve

increased accuracy levels, it is essen-

tial that many users interact with the

service (diluting the more diverse in-

terests). This approach does however

have some advantages: as the system

only cares about other users’ interests, new users are not required to divulge any

information about their interests or social networks they belong to; and the system

does while still delivering a tailored approach to news. Ultimately, this means that

the accuracy of Social ‖ Median is highly dependent on the number of users who

use the system.

2.2.3 Personalised News (MySun, MyTelegraph, etc.)

Figure 2.3: MySun

In the last few years, large news organ-

isations have decided to offer person-

alised versions of their websites. These

typically ask you to specify some in-

terests from a discrete list, and then

deliver news that falls under these cat-

egories in the future. More advanced

systems might use the user’s history

and combine this data with of other

users to generate more accurate recom-

mendations. Typically, these websites

simply act as filters attached to their existing site, and generally will only be pro-

viding news from one news source. While the user may receive information that

Chapter 2 Literature Review 15

he finds interesting, this means that all the news stories will be one-sided and the

depth of news also be poor.

2.2.4 Competitor Comparison

Clearly, some of the mentioned solutions are very successful, generating large

amounts of traffic on a regular basis. However, all the systems mentioned above

suffer from one major problem, a lack of knowledge in the system. These systems

rely on collaborative filtering approaches to recommending news, and those which

tailor to your interests tend to use harsh methods of interest elicitation - often

providing a list of categories from which to select interests.

Sources API Recommendation Tagging Accuracy

DayLife 1 Y - Y Low
Social ‖
Median

∞ N Collab N Low /
Medium

MySun 1 N History N Medium
Project
Triton

∞ Y Social
Behavioural

Y ?

Social Extensible Reusable User Setup Maintenance

DayLife N N N - ?
Social ‖
Median

Y N N - User

MySun N N N Manual ?
Project
Triton

Y Y Y Auto /
Man

Optional

Table 2.1: Comparison of Competitor Services

Chapter 3

Requirements Analysis

Before I began the design phase of Project Triton, it was important to realise the

goals of my system and consequently what is required of my project to achieve

them.

3.1 Goals

The core functionality required of Project Triton is:

Table 3.1: Core Goals
G1 To deliver targeted news to an individual based on the users interests.
G2 To create a sustainable and flexible framework for news delivery.
G3 To create an API which other applications can use to integrate with

Project Triton.
G4 To create a catalogued encyclopaedia of news.
G5 To detect different news topics and / or author styles.

Further functionality could be added to the system by:

Table 3.2: Further Goals
G6 Delivering targeted adverts to a user based on their interests.
G7 Generating demographic information based on the interested users.
G8 Learning a user’s interests based on their behaviour.
G9 Running scripts after the process stage (perhaps to email the latest news

to a user).

16

Chapter 3 Requirements Analysis 17

3.2 Requirements

The functional requirements of Project Triton are:

Table 3.3: Functional Requirements

F1 G5 The system must be able to detect different styles and topics in
news articles.

F2 G4 The system must be able to classify news into given topics and
interests.

F3 G1 The system must be able to provide news to given interests.
F4 The system must be able to retrieve news articles autonomously.
F5 G2 The system must be able to process news in a variety of different

ways depending on its configuration.
F6 G1 The system must be able to retrieve a user’s interests through ex-

plicit means (using social networks such as Facebook).
F7 G1

G8
The system must be able to retrieve a user’s interests through im-
plicit means (using header information and or browsing habits).

Project Triton must provide the following non-functional requirements:

Table 3.4: Non-Functional Requirements

N1 Deliver news in a timely manner.
N2 Be able to be implemented on a wide range of servers.
N3 Be an extensible solution to the problem.
N4 Be easily maintainable.
N5 Be quick to install.
N6 Be easy to develop.

Chapter 4

Project Planning

4.1 Risk Analysis

Before begining the development of Project Triton, it was important to identify

weaknesses in the development plan. This would ensure that contingency be in

place should something adversely affect the project. During this analysis I iden-

tified the main causes of project failure, and planned potential solutions to these

problems.

4.1.1 Loss of Hardware

During long projects, some loss of hardware capabilities are to be expected. Often

developers will have backup machines to continue development on should this

scenario occur. For this to be feasable, work needs to be mirrored to a remote

location. This will help ensure that a copy of the project is available in the event of

a disastor. In Project Triton, the system is served from a Mac Mini, the data from

this computer is mirrored to another computer 100 miles away when uploaded to

the SVN directory.

4.1.2 Corruption of Data

Corruption of Data often occurs quite frequently in all software projects. Typically,

a developer would use a source control system such as SVN to backup all source

files in the project. In Project Triton, an SVN server is located on the Mac Mini

18

Chapter 4 Project Planning 19

server, this SVN repository is then automatically backed up onto another computer

in a remote location, adding a further layer of security. Should any data become

corrupt, it would be simple to revert to a previous version of the source using

SVN.

4.1.3 Unrealistic Project Scope

The setting of an unrealistic goal can be disasterous for a project. Keeping a

realistic idea of where the project is at all times helps negate this issue. Through

the frequent setting of realistic goals, it is possible to remove this element of

danager. Should any of these goals not be met, it would be easy to adapt the

project to suit the new scenario by restricting the goals of the project.

4.1.4 Work Overload

As Project Triton is subject to a limited development schedule, it is vital not to

allow work to build up. While certain amounts of slippage are acceptable, when

the end-goal no longer becomes attainable it is vital to restrict the projects goals

accordingly. Through the close following of weekly targets, it is hoped that Project

Triton remain true to the Gantt Chart, without the occurance of work overload.

4.1.5 Poor Health

Poor health can strike at any time. Typically when ill, time is lost due to an

inability to work. With a time limited project such as Project Triton, it is vital

that any lost time be caught up, through the adding of additional work hours. It

is important to remain flexible with the scheduling of the project incase the time

deficite is too great.

4.1.6 Miscellanious Misfortunes

It is impossible to plan for all scenarios of missfortune. For this reason, the

following details typical approaches to ensure the project stays on track. Good

practice of source control and data mirroring should negate most mishaps due to

corrupt of hardware or software. In addition to this, the settting of realistic short

Chapter 4 Project Planning 20

term goals, leading towards an attainable target will ensure that the project never

get out of control. It is vital that the Gantt chart accurately portrays the progress

of the project. Should any slippage in predicted progress occur, then an increased

effort is required to return to normality. If this does not happen, then the scope

of the project must be altered.

4.2 Project Segmentation

Figure 4.1: A phased overview of Project Triton

After creating a preliminary design, it became clear that the proposed system

would have to be constructed in clear phases. A phased approach to develop-

ment would help ensure that the project be completed in the available time, while

provide strong foundations and exemplar material to continue development after

the project is complete. I decided to divide the project into four distinct phases,

with phases one and two being developed in parallel, while the subsequent phases

would only be completed if possible in the time-scale. This phased approach links

in with the projects goals, with phases 1 and 2 correlating to the core functionality

of Project Triton, while the subsequent phases are covered by further functionality.

Chapter 4 Project Planning 21

Figure 4.2: A diagram showing the flow of development between phases

To ensure the correct operation of Phase 1, it was important to develop it at

the same time as Phase 2. This ensures that the Framework fully supports the

developed plugins and that any conflicts are resolved immediately.

4.3 Initial Project Planning

While I decided on a phased approach early on, there existed a lengthy set of

pre-requisites to be completed before I could even begin the project. As I wanted

to be able to develop the project from remote locations, the ability to SSH into the

system was essential, for this I setup a Dynamic DNS and SSH server on my chosen

machine. Another vital feature was the inclusion of source control; this ensured

that I could roll back any changes with adverse affects on the system while at the

same time creating a log of changes to the project. Finally, I wanted the ability

to track and plan the project. For this I created two websites; one for project

management, allowing me to plan tasks and make Gantt charts, and another to

provide information about the project to the public and link to the test-bed.

Beyond the pre-requisites, I planned the project to conform to a traditional wa-

terfall development model. As a modular framework, the integration between

plugins and the framework was crucial. To ensure that each plugin was optimally

integrated with the framework, I chose to use an iterative design cycle at a mod-

ule level, allowing plugins to progress quickly. Before any coding could begin, a

lengthy design and research process was necessary. By thoroughly investigating

much of Project Triton, it meant that any changes required in the future could

quickly and easily be incorporated into the designs with little extra research.

Chapter 4 Project Planning 22

Figure 4.3: Gantt Chart - Part 1

Figure 4.4: Gantt Chart - Part 2

As the plugins would be used very frequently it was vital that time was spent

researching their implementation. This helped ensure they remain as efficient as

possible.

The development of Project Triton focused primarily on completing Phases 1 and

2, principally the Process Plugins and XML Interface. On reaching this stage the

system was able to classify articles. From here Phase 3 began and Project Triton

started to provide relevant news to the users.

Chapter 4 Project Planning 23

Figure 4.5: Gantt Chart - Part 3

Figure 4.6: Gantt Chart - Part 4

Although it would be nice if all four phases of the project were completed in the

given time-scale, this was not the target of Project Triton. The objective was that

only beyond Phase 2 be completed.

Chapter 5

Design

5.1 High level design

5.1.1 Use-Case Analysis

Before designing the system, it was important to recognise what was required of

the project. To better understand this, I created a use-case diagram, to determine

exactly what all the actors of the system needed.

There exist five possible actors to the system. These actors can be divided into

three groups; maintainers; developers; and users.

Figure 5.1: Administrative Use-Case Diagram

Editor

Correct Bad

Automation

«extends»

Web Master

Maintain SystemConfigure System

«extends»

«extends»

The maintainers are responsible for setting up and monitoring the system, and

correcting any errors in automation (such as incorrect classification). While an

24

Chapter 5 Design 25

editor may not be required in an ideal system, it is advisable to have one in

the proposed system, as the accuracy of classification is highly dependent on the

quality of the sources. The Web Master is required to install the system initially,

update any settings that should change the server configuration as required, adding

and disabling sources and user accounts. Developers might use the system to

design applications that require personalised news; this can be done using the

system’s XML interface.

Application Developer

Develop
Application using API

«uses»

«extends»

API (XML Interface)

Figure 5.2: Developer Use-Case Diagram

The users will be divided into two categories. Un-registered users will be required

to set a brief set of interests by the system so a more accurate set of interests can

be acquired. in addition to this implicit data will be used to infer details such as

location and ISP about the user. Un-registered users are only allowed to read news

through the website, although this will still tailor information based on the users’

behaviour. An un-registered user is allowed to register with the system; at this

point he or she becomes a registered user. Instead of setting interests manually,

registered users might prefer to associate a social network account with their login.

By associating a social network account (such as Facebook), the system will extract

interest details about the user and deliver news based on his or her interests listed

in Facebook. As well as using the website, registered users are also allowed to use

the XML Interface in RSS mode, which will deliver the tailored news to them in

syndication format.

In the use-case diagram, the inner workings of the system have been disregarded.

The inner workings of Project Triton (diagram below) contain three main elements

to the project; Input, Process and Outputs, all three of which contain plugins to

execute discrete operations. The input phase of the project is involved with finding

and adding news to the system. The process phase is responsible for re-formatting

and classifying news stories. Both the Input and Process phases of the project will

sequentially execute plugins in an order dictated by a custom workflow. Between

the database and Output phases sits an XML interface; this will essentially act

Chapter 5 Design 26

Figure 5.3: System Use-Case Diagram

Registered UserUnregistered User

API (XML Interface)

Register

Set Interests
Associate Social

Accounts

Aggregate RSS Feed

Update User
Interests

Deliver News

Read Website

«uses»
«uses»

«extends»

«uses» «uses»

«uses»

«extends»
«extends»

«extends»

«extends»

as an API allowing developers to interact with the system without having to

understand how it works. The Output phase utilises this API to provide tailored

news to an individual.

Chapter 5 Design 27

5.1.2 Conceptual Overview

Figure 5.4: Conceptual Overview of Project Triton

Database

Input

- mRSSplugin

- pageScrape

- dbInsertion
C

u
s
to

m
 W

o
rk

fl
o

w

Process

- textStrip

- roughClassifier

C
u

s
to

m
 W

o
rk

fl
o

w

- textStem

- styleClassifier

- storyLinker

Interface (XML)

Outputs Website

Plugins

Explicit Implicit Live Widgets

- ISP

- Facebook - Location - Weather

As represented in the conceptual diagram [5.4], Project Triton has four main

elements. A data gathering stage - known as the Input Stage; a data processing

stage - known as the Process Stage; a high-level interface to access the system,

and Plugins to customise the provided service.

5.1.3 Database Design and Schema Overview

When I began the system, a key feature of my project was to create an expandable

system. This focus on expandability meant that a rigid structure needed to be

designed so that it was easy for other developers to integrate with the project.

With an understanding of the basic structure of my project, I was ready to start

formalising the system, with the specification of interfaces and a framework on

which they can run. To do this, I needed to decide what information should be

stored in my database on a simple implementation.

Chapter 5 Design 28

Figure 5.5: A Proposed Database Schema of Project Triton

Essentially, the basic framework of the system contains two main relations, called

Sources and News with plugins generally creating their own tables on setup. The

relations created by each plugin would typically reference one of the main tables

(Sources for an input plugin or News for any other type of plugin). The relation

named Sources contains information about each individual input source, while

News contains any data about a news story. In the diagram above, you will notice

that there exist additional tables ‘Scrape’ and ‘MRSS’, these have been created

by plugins. Both of these relations contain relationships to the Sources table, and

are used in the operation of these input plugins.

The use of a plugin-based system requires the system to be very formalised. To help

create a rigid structure to the system, I designed a set of interfaces and directory

structure to a plugin. For example, the inputPlugin interface specifies that each

input plugin should return strings giving information about the plugin’s name

(getPluginName()), description (getPluginDesc()), and author (getPluginAuth()).

In addition to this, each plugin will have methods for setting inputs to the plugin

(setInputs($in, $src)) and to operate the plugin on the set input (doProcess()).

Aside from implementing the appropriate interface, each plugin must contain files

called install.php and db.sql in their root directory. These files are called by the

system to install and initialise the databases for the plugin. In the future it is

Chapter 5 Design 29

likely that methods designed for user-friendly debugging will be included in the

design, although this is likely to occur in a later phase of development.

5.2 Evolution of Design

During the construction phase of the project, it became apparent that certain

aspects of the project could be altered to suit their functionality better. Many

interfaces became more generic, to allow for more complex plugins and customi-

sation, which made other interfaces redundant.

5.2.1 Oversights and a Shift to Genericism

One of the initial changes made to Project Triton was the re-naming of methods

in the interfaces. As input plugins exhibited increased variation and became more

complex, methods were given more generic names such as ‘doProcess()’. Similar

re-factoring occurred throughout the project, as it was realised that certain meth-

ods did not suit the names they were written under.

The changes made to Triton however were not merely cosmetic. Chief among the

changes made to Project Triton were the alterations made to ‘Process Plugins’.

When designing the system, it was initially thought that there would exist five dif-

ferent process plugins with very clear-cut roles. The first types of process plugins

were the filter plugins, textStem (for stemming words in an article) and textStrip

(for removing stop-words in an article). These filter methods were to be joined by

the classification plugins; roughClassifier, styleClassifier and storyLinker. All pro-

cess plugins were to operate under a single interface, and would operate on data in

a sequence. This ideology was a major failing in project design. Upon developing

the interfaces for these plugins, it was noticed that it was difficult to achieve a suf-

ficiently generic interface for both the filter and process plugins. This resulted in

the split between filter and process plugins. A stripped down interface was created

for filters that would accept and return a data type specified by the filter class

itself. In addition to this, a process plugin interface was created adding several

extra methods and restricting the output of doProcess() to an array of internal ref-

erences. A further failing of this stage of the design was that it was assumed that

accurate topic and style detection could be achieved using one algorithm. Through

Chapter 5 Design 30

extensive research it was found that their exist many different techniques to topic

detection and similarity [2.1.2]. As such, the simplistic view of having three pro-

cess plugins was scrapped in favour of a more flexible system with the ability to

use many different algorithms in harmony to affect data recommendation. The re-

sulting designed plugins ranged from the computationally expensive mongeElkan

technique, to trivial plugins built around PHP’s similar text() method.

5.2.2 Optimisation Through Good Design Practice

A positive side effect from the re-factoring of the internal structure of Triton’s

process stage was that it allowed for the concatenation of the ‘Output Stage’ into

‘Process Plugins’, reducing the overall weight of the system. Before construction

to the system had begun, it was thought that further segmentation of the project

was required between process plugins and the output stage. Because of the in-

creasingly generic design of ‘Process Plugins’, it was realised that it was possible

to replicate the complete functionality of the Output Stage behind Project Tritons

API.

As part of the ‘Input Stage’ of development, a custom XML workflow was written

to allow full customisation of the inputs and order of execution of the input plugins.

This was very heavily over-engineered, and during the later phases of the project,

it became apparent that the design of the system had implied a tightly coupled

structure to the project. By loosening the coupling of the project, a much cleaner

and clearer project was created. While at the moment, the system currently runs

in serial, it is hoped that a future evolution of the ‘Input Stage’ would see a spooled

per-input implementation, running a full workflow as a new thread (using Alex

Lau’s thread simulation class [25]) for each new input to the system.

5.2.3 The Social Divide

Although many of these changes have occurred because of a highly generic ap-

proach to earlier modules, other plugins, such as the social network and third

party interaction required changes as they where unfeasible in their original im-

plementation. Originally the system was designed so that social network integra-

tion would occur as a batch process, where by a plugin - such as the Facebook

Chapter 5 Design 31

plugin - would iterate through the associated accounts with each user and request

interest information for each user to insert into the database for more processing.

Unfortunately, while the designed system is very capable of performing this task,

the Facebook API does not support such operations. Instead, the Facebook API

requires any login to come direct from the user, redirecting any requests to their

authorisation page first. While it is possible to automate this login process, using

CURL commands, setting login details from a database, this violates the Face-

book API terms and conditions [26]. For this reason, I decided to partition the

Facebook plugin, creating plugins for interest processing (as a Process Plugin),

while account association is to occur via a website.

5.2.4 Outgrowing Expectations

During the initial design phase of Project Triton, it was always envisaged that

the databases for the system in part be maintained by database level rules, such

as relationships. For this reason, when developing the Triton, all tables in the

database were of the type InnoDB, which contains features such as foreign key

support, and row level locking. However, when testing the input stage plugins,

it became apparent that the database was far bigger than previously anticipated,

with the main news table expanding by 70MB per parse despite all tables being in

third normal form. Because of the vast quantities of data being entered into the

database, the length of internal records had to be reduced so that 10e6 records

where allowed in each table (compared to the original 10e11). In addition to this,

all relationships were removed, and all tables in the database changed to the type

MyISAM. These changes typically saw records reduce by a scale factor of 95

5.2.5 Adaptable Indexing

When designing Project Triton, the idea was to create a system capable of recom-

mending news to a user, however, it was realised towards the end of the project

that by re-factoring the system, it was possible to create a more generic data rec-

ommender. By creating a database driven wrapper, it was possible to add a notion

of sources, which would cater for news, images, events and any other type of data

to be recommended. In addition to this, by implementing the notion of indexable

fields, the currently existing plugins could be extended to index elements of other

data such as events or captions on images. This re-factor lead to a far more generic

Chapter 5 Design 32

system, with very little overhead, and increased the flexibility of currently existing

plugins.

5.3 The Prototype

As stated before, the primary focus of Project Triton, was to create a system

framework, with example plugins which all sit behind an XML interface. These

tasks make up Phases 1 and 2 of development [4.2], and would be developed in

parallel. Further functionality was to be added after the completion of this in

Phase 3, where Social Networking plugins, Implicit Plugins and the introduction

of more sources where to be catered for.

Database Interface (XML)

Website Outputs

Input

- mRSSplugin

- pageScrape

C
u

s
to

m
 W

o
rk

fl
o

w

Process

- dbNews

- facebookPlugin

C
u

s
to

m
 W

o
rk

fl
o
w

- dbImages

- nameExtraction

- mongeElkan

- wordDistance

- wordFrequency

- similarText

Filter
- textStripPlugin

- textStemPlugin

Figure 5.6: An Updated Concept Diagram of Project Triton

Chapter 5 Design 33

The prototype constructed, saw both Phases 1 and 2 complete, albeit with signif-

icant re-design and re-factoring. This allowed for Phase 3 to begin. The notion of

Live Widgets was replaced with a Sources system, which allowed other non-news

items to be catered for behind the PHP/XML based interface. Similarly implicitly

plugins were moved behind the backend of the system, while Explicit plugins were

split, sitting partially behind, and in front of the API due to security constraints.

The move from Figure 5.4 - showing a conceptual model of Project Triton - to

Figure 5.3 illustrates the significant changes re-factoring has had on the project

while essentially keeping many of the same concepts and ideals of the original

plans.

Figure 5.7: An Updated Database Schema of Project Triton

Figure 5.5 - detailing Project Triton’s database schema - has also changed signif-

icantly. The project now ships with a default database schema shown in Figure

5.7. Further relations are added to the database when installing plugins. For ex-

ample, by installing the dbNews plugin - a source plugin for news - the relations

News and Categories will be added to the database. This self-installation system

ensures that all distributions of Project Triton remain lightweight, containing no

irrelevant data in the database. The functionality described is made possible by a

structured interface that all plugins are required to implement.

Within Project Triton, there exist four types of plugin: input plugins; filter plu-

gins; process plugins; and source plugins. Input plugins are involved with auto-

mated collection of data; while Process plugins apply algorithms to the collected

data to infer knowledge. Filter plugins are responsible for removing a subset of

data from their input, making processing less computationally expensive; while

Chapter 5 Design 34

Source plugins are required to interface with source databases, performing inser-

tion, updating, deletion, and other database interaction. Each plugin contains an

install and uninstall method. The install method adds the necessary configuration

lines to the database if all pre-requisites are installed. Conversely, the uninstall

method removes the plugin’s tables from the database, leaving the pre-requisites

intact. Typically process plugins add several records to the database involved with

configuration, adding their own arguments to the API so that they may receive

interaction from the outside world.

Despite some significant divergences, much of the system remained true to original

designs. With the exception of the ‘Editor’, all actors stated in the use-case [5.3]

were catered for. An executive decision was made to remove the ‘Editor’ actor

from the system as the sheer volume of data passing through the system made

editing a very active responsibility (with even the smallest systems increasing by

hundreds of articles a day).

Chapter 6

Implementation

6.1 Technological Justification

A key consideration of any software project is to choose which language to develop

the project in. As stated in my non-functional requirements, a vital component of

the design is the need for a portable system. In addition to this, as a technically

taxing project, it was important for me to use a language in which I had significant

personal experience. These realisations left two major contenders in Java and

PHP. Another factor to consider was the range of development hardware available.

ECS provided a partial implementation of PHP on their servers with a limited

installation of MySQL. I also had a Mac Mini, which contained more complete

versions of PHP and MySQL by default. The use of Java in web applications is

rapidly declining. Considering the speed and coverage losses when compared to

PHP, it was obvious that the use of PHP and MySQL was correct for this project.

As a result, I chose to implement my system using PHP and MySQL, which is

installed in a large proportion of Apache distributions (the majority market-share

web-server). I also felt it best to implement Project Triton on my Mac Mini server

(found at http://27point3.com) as it provided a more realistic representation of a

typical web server than the ECS provided solution.

35

Chapter 6 Implementation 36

6.2 Developing the Framework, Plugins and API

(Phase 1 & Phase 2)

6.2.1 Working with Inputs

After an initial server configuration period, work began on the Input Stage of the

framework (Phase 1). Following several iterations of development, an optimum

implementation of an Input Plugin’ was decided [6.2.1]. A common feature of

all plugins in Project Triton is that they contain identification methods, which

detail a plugin’s name (getPluginName()), description (getPluginDesc()), and au-

thor (getPluginAuth()). These methods enable the system to display information

about an active plugin to the user. Beyond these standard methods, a source

plugin is required to contain a setInputs - which accepts two arguments to set the

internal parameters of the plugin, and a doProcess which enacts the processing

functionality of the plugin using the parameters set by setInputs.

Figure 6.1: The inputPlugin In-

terface

Initially, it was thought that Project

Triton contain two simple Input Plu-

gins; namely a RSS reader, and page

scraping plugin. In these early stages

of development, simple functionality of

the Input Plugin’s was achieved ahead

of schedule. With a small amount of

surplus time, extra functionality of Tri-

ton was envisioned, resulting in added

layers of complexity for the designed

plugins. The main aim was to deliver

a complete multimedia system. By ex-

panding the RSS plugin to read other

XML variants such as MRSS, it would be possible to extract further information

such as images and videos relating to particular news stories, or even events. In

addition to this, a more generic approach to page scraping was devised, which

allowed complete programmability by utilising a MySQL database, enabling a

plethora of features including scraping rules (allowing acceptance and rejection of

data within tags) and URL re-writing (catering for single-page views).

Chapter 6 Implementation 37

During the early stages of development, it was thought that Project Triton should

contain a custom workflow, which would be capable of passing around standardised

vectors throughout the system. These standardised vectors would be inserted and

updated using plugins expecting a vector of that order. This notion resulted in the

creation of two extra Input Plugins; dbInsertion and dbUpdate. These plugins,

respectively inserted and updated standardised news vectors into the News table.

6.2.2 Controlling the Flow - Developing a Custom Work-

flow

With the Input Plugins completed, development began of a custom workflow to

allow easy re-ordering and editing of Project Triton’s workflow. During the re-

search stage of the project; several academic papers were read detailing different

approaches to writing a custom workflow. While each different approach had its

advantages and disadvantages, most of the papers agreed that an XML based

standard was the most logical implementation. Despite one paper suggesting a

XML based workflow language [20], this implementation was far too detailed for

Project Triton’s simple needs. For this reason, a smaller XML language was de-

vised which allowed the administrator to vary the sequence of plugins, specifying

their expected inputs and outputs, which were either query or vector based. This

XML workflow was to be stored inside inc’ of the projects folder structure named

input.xml’. A further class was then created called workflow’, which allowed for

the iterative execution (runWorkflow) of a specified (setInput) workflow. This

custom workflow indeed fully met its requirements, however in reality it forced the

Input Stage to become very tightly coupled due to the notion of a standardised

vector. Ultimately this lead to the depreciation of some of the above-described

functionality as a revised system was introduced later in the project.

6.2.3 Process Plugins

Project Triton was now able to collect a wide range of data and provided an ac-

tive encyclopaedia to operate upon. To provide a layer of intelligence to Project

Triton, it was deemed that Process Plugins should be developed. The use of Pro-

cess Plugins allowed Project Triton to perform analysis on the data gained from

the Input Stage. These plugins would be required to include methods for plugin

identification, maintenance and operation (importantly setInput, doProcess and

Chapter 6 Implementation 38

getSimilar) as defined by the processPlugin interface [6.2.3]. It was recognised

that a typical Process Plugin might require both online and offline processing ca-

pabilities. As a result of this, two operational methods doProcess’ and getSimilar’

were introduced allowing a Process Plugin to pre-process data before receiving live

queries, improving performance.

Figure 6.2: The processPlugin In-

terface

In the initial designs for Project Tri-

ton, the Processing of data in the sys-

tem was considered trivial. Designs

dictated that there exist three stages to

recommendation, namely rough classi-

fication, style classification, and story

linking. Through research and ex-

perimentation, this task proved much

more complex. Each different algo-

rithm provided varying rates of suc-

cess, and it became apparent that there

was a difference between the notion of

string and topic similarity. As a re-

sult, a wide variety of different Process

Plugins were implemented; from the

complex MongeElkan Plugin to trivial

methods using PHP’s built in text sim-

ilarity operations. However, despite many approaches, few reached the level of

accuracy or performance required by Project Triton. In all, just 3 classification

process plugins were left activated in the final prototype, with several alternatives

disabled. Figure 6.1 compares the developed plugins.

Chapter 6 Implementation 39

Table 6.1: A Comparison of Process Plugin Complexity

Name Description # of
Lines

Complexity Percentage
Accuracy

mongeElkan Translation from a Java im-
plementation

358 O(n4) 10%

nameExtraction Word Frequency on words
starting with a capital let-
ter

200 O(n2) 80%

similarText Base on a built-in function
of PHP

145 O(n3) 50%

wordDistance MAX, MIN and AVG cal-
culations per word

156 O(n2) -

wordFrequency Counts the occurance of
each unique word in the
corpus

205 O(n2) 60%

6.2.4 Optimisation through Filters

Figure 6.3: The filterPlugin Inter-

face

During the development of the Pro-

cess Plugins, it was realised that per-

formance could often be improved by

filtering out some of the input data.

This led to the creation of Filter Plug-

ins. Filter Plugins would strip an in-

put - typically text - of certain fea-

tures before returning. This allowed

Project Triton to remove stop words

(using textStrip), or reduce a string to

its base form (using textStem). The

use of these filters showed a positive

improvement to all Process Plugins involved with topic detection. In contrast,

several studies showed that reasonable style detection is possible by calculating

the frequency of stop words in a document [5]. Filters followed a simple interface,

which required the plugin to specify an operating data type, and supply methods

for setting the input (setInput) and operating the filter (doProcess) in addition to

the identification methods [6.2.4].

Chapter 6 Implementation 40

6.2.5 Handling Requests - The API

With Phases 1 and 2 almost complete, it remained for a PHP / XML interface

to be created, binding the full functionality of Project Triton. After a proof of

concept implementation, which included significant amounts of static code, an

expansion-centric approach was created making it simple to request data in XML

or JSON format. Essentially, the Project Triton API would iterate through the

active plugins, setting any parameters from the URL in sequence before execut-

ing the required plugins, applying any customisations based on user preferences.

The result of this request would be formatted based on database set rules, and

outputted in the requested format. By configuring the API via a database, it was

simple to add commands to the API (using the APargs table) and vary the schema

output (using the PostProcFormat table) with little or no hastle. This ensured

the framework remained highly adaptable and easy to maintain as plugins could

tailor all aspects of the framework within their install method to provide complete

compatibility. The code extract in Figure 6.4 shows the novel approach to inte-

grating a limitless variation of plugins.

NOTE: The code has been striped of all debuging methods to preserve modisty.

Figure 6.4: Code Extract from API.php

foreach ($plugins as $name => $plug) {

// Load APargs and call appropriate method

// APargs(pluginName , argName , method)

$name = $plug ->getPluginName ();

$query = "SELECT * FROM APargs WHERE pluginName = ‘$name ’";

$result = mysql_query($query) or die(mysql_error ());

$argued = false;

while($row = mysql_fetch_array($result)) {

if(isset($_GET[$row [1]])) {

$argued = true;

$arg = $_GET[$row [1]];

$mtd = $row [2];

$plug ->$mtd($arg);

}

}

if($argued) { $tmpRes = $plug ->getSimilar ();

// Filter IN/OUT or MIX into $list

foreach($tmpRes as $id) {

if($listIDs[$id] == null) {

$listIDs[$id] = 0;

} else {

$listIDs[$id] = ($listIDs[$id] + $weights[$name]);

}

}

}

}

Chapter 6 Implementation 41

6.3 Phase 3 and Beyond

6.3.1 Source Integration

Figure 6.5: The sourcePlugin In-

terface

As Project Triton evolved, it was clear

that some areas of the project required

changes. Critically, the proposed im-

plementation of using multiple differ-

ent sources was problematic. Origi-

nally, it was thought that Project Tri-

ton would recommend news, attaching

extraneous information to any associ-

ated news. However, due to the generic

nature of Project Triton, it was possible

to change the project’s functionality so

that it could recommend any data, us-

ing a notion of sources. Essentially, this

required the project to be re-factored, such that all plugins within Triton were ca-

pable of running atomically in unison. Ultimately this lead to the introduction of

Source Plugins, which provided both the means of describing source dependency

and a method of interacting with a source library [6.3.1]. Despite the bonuses

that sources added to Triton, further re-engineering was required to ensure that

the project remained loosely coupled. With the introduction of Source Plugins, a

situation was created where Process Plugins were required to know which fields

of a source they were to operate on. By creating an Indexable table, it was pos-

sible to construct a system that could provide recommendations easily over many

different sources.

Chapter 6 Implementation 42

6.3.2 Outputs and Social Interactions

Figure 6.6: An early implementation of ITDS in Story Image Mode

A solid framework was now in place for Project Triton, with many proof-of-concept

plugins designed to demonstrate system functionality. At this stage it was vital

to create a mock application of Project Triton, which utilised the project’s API,

demonstrating that the system could recommend useful information, personalised

through the use of explicit and implicit information. For this reason, the In-

telligently Targeted Delivery System (ITDS) was created, forming a front-end

to Project Triton. ITDS made use of the Project Triton framework by query-

ing commands to the API via CURL, which responded with formatted (XML or

JSON) replies. Implicit plugins (Process Plugins) for history-based (histRec) and

location-based (ipLocate) recommendations, situated completely behind the API,

provided further recommendation for users simply by extracting header or URL

encoded information. Registered users were able to benefit from the introduction

of social network integration, using facebookPlugin. facebookPlugin, was respon-

sible for the filtration of any recommended data, ensuring the inclusion of any

particular interests of a user’s associated Facebook account. In stark contrast to

the framework of Project Triton, ITDS was not intended to exhibit good design

practices, and as such, the performance and reliability of ITDS sometimes dwin-

dles. However, ITDS provides a proof of concept implementation, which sits atop

of a highly advanced platform (the Project Triton Framework).

Chapter 6 Implementation 43

Figure 6.7: An early implementa-

tion of ITDS in Read Mode

The implementation of Project Triton

saw the completion of Phases 1 and

2 of development [4.1]. In addition

to this, ability to cater for ranging

Sources and Implicit Plugins stated in

Phase 3 were fully realised by Triton,

while the remaining Explicit function-

ality required was provided with assis-

tance from ITDS. Overall, I feel this

development cycle has been successful.

While the quality of recommendation by the system isn’t always perfect, Project

Triton has many strengths, and provides an extremely good platform on which to

build a recommender system.

Project Triton provides a fully autonomous approach to data recommendation.

The framework features a generic feed reader - capable of processing Media RSS

- and a fully featured page scraper, allowing the system to amass large quantities

of data. In addition to this, the system is able to aggregate a limitless range of

different sources through the use of Source Plugins. These Sources are able to be

specifically indexed using the Indexable table and generic Process Plugins. This

means that it is possible to recommend data using any classification technique

accross different data types; e.g. nameExtraction might occur accross news (using

titles and descriptions) and images (using captions). By integrating with Social

Networks, Process Plugins are able to target information directly to users without

the need for tedious questionnaires. All this fuunctionality is provided behind a

REST-ful API. This API allows Third Party applications to integrate fully with

Project Triton wihtout the need to implement the whole system themselves. Fur-

thermore this means that users of system enjoy transitive user profiles, as their

interests follow them throughout the framework. The API offers huge benefits for

developers as well. The Project Triton framework guides developers without dic-

tating the exact behavour of their applications. The API allows the specification

of custom XML outputs, meaning that incredible freedom is given to developers

in terms of customising and tailoring the API to their application.

Chapter 7

Testing and Evaluation

Throughout Project Triton, testing was persistent. In the initial stages of plugin

development, testing would occur on a unit level, testing the individual elements of

each plugin, such as properly initialising arrays and populating databases. When

correct operation was proven, testing began on an integration level, first testing

plugins on static inputs, then moving to dynamic database driven data, before

finally integrating the plugin completely with the framework. Many of these tests

while comprehensive, were not suitable for shipping with the final product. For

this reason, the unit tests were re-written into module level tests, while the plugin

interfaces and a testing wrapper offered some integration testing.

When formally testing Project Triton, I felt it was best to view the system as two

distinct sections; the framework, and the plugins that operate on it. All plug-

ins developed for the project are defined by interfaces. These interfaces require

plugins to provide a testing method (runTest()’). The runTest() method allows

the developer of a plugin to provide black-box testing on a per-module level. By

including an automated testing method for plugins, unit testing is made much

easier, and it is relatively simple to reduce errors into three categories: a loading

error (typically a syntactical PHP error); an object error (where the plugin class

does not match it’s interface or an interface is not found); or a low level error

(where an internal test of runTest() has failed - this will often be accompanied by

an in-depth explanation of the error).

To supplement unit testing, I compared Project Triton’s functional requirements

with the resulting system, forming integration testing. Project Triton was designed

44

Chapter 7 Testing and Evaluation 45

to be a highly adaptable and extendable framework, which others can interface

with to form user interfaces. It was therefore deemed unnecessary for the platform

to require any user evaluation, as the system behaves the same way for all user

interfaces, and can be customised to the individuals needs. By proving that the

functional requirements have been completely satisfied, it is correct to say that

Project Triton has been a success.

7.1 Unit testing

As my system was designed to be modular, I decided to use an automated ap-

proach to testing. This ensured correct operation at module level and made it

extremely easy to detect and trap errors. The runTest()’ method performs a se-

ries of tests specified by the module developer, echoing to the standard output

(typically a web-page), returning a float where 1 notes a completely successful set

of tests. By running these tests, I was able to complete and formalise the majority

of unit tests for the system.

In the systems default state, Project Triton will ship with three filter plugins, two

input plugins, eight process plugins and two source plugins. With the exception

of the input plugins, these ship with fully automated testing methods, which test

the full functionality of each plugin. Input plugins are harder to test, as they

require static sources to use as operational data, therefore, the runTest() method

in input plugins is used to check for failures in standard operation rather than a

comprehensive black box test of the plugin.

Chapter 7 Testing and Evaluation 46

The following table lists a brief summery of the results from the back-end unit

testing of Project Triton. For an in depth detailing of the individual components

of these tests, see Appendix A.

Backend Unit Testing

Test ID Plugin Description Results

Name Type Expected Actual

1 textStem Filter Checks stem-

ming result

against a pre-

calculated

String.

1 1

2 textStrip Filter Checks strip-

ping against a

pre-calculated

String.

1 1

3 thesaurus Filter Checks similar

words against a

pre-calculated

String.

1 1

4 mrssPlugin Input Tests CURL

and DOM Load-

ing against

google.co.uk

1 1

5 pageScrape Input Loads and tests

the current page

scraping queue.

1 1

6 facebookPlugin Process Ensures

database in-

tegrity and

connection to

IMDB.

1 1

7 ipLocate Process Tests the re-

trieval of geo-

relevant data.

1 1

Chapter 7 Testing and Evaluation 47

8 nameExtraction Process Runs the name-

Extraction dae-

mon, performing

variable analysis.

1 1

9 similarText Process Checks the re-

sponse against

a pre-calculated

input.

1 1

10 wordFrequency Process Carrys out a

variable level

analysis of the

algorithm on

an active data

source.

1 1

7.2 Integration testing

To demonstrate that Project Triton functions holistically, it is vital to perform

integration testing by comparing the functionality of the project against Project

Triton’s functional requirements. Using the functional requirements from Table 3

the following analyses the success of Project Triton.

7.2.1 F1 : The system must be able to detect different

styles and topics in news articles

Project Triton can be customised with a range of different plugins. In theory,

this is only limited by the limitations of PHP as a programming language. By

default, Project Triton ships with several plugins to detect and classify different

styles and topics. The system is very capable of detecting different topics, and

while algorithms such as word distance have been implemented to detect different

styles, they often exhibit lower success rates than there topic detection counter-

parts. Using Corpus Analysis to Inform Research into Opinion Detection in Blogs’

[5] is extremely revalent when undertaking such a task as style detection, and

suggests that a better method of topic detection could be obtained by counting

word frequencies of joining words (which would be removed by the textStrip filter).

Chapter 7 Testing and Evaluation 48

7.2.2 F2 : The system must be able to classify news into

given topics and interests.

In contrast to F1, F2 has been comprehensively met. Plugins exist to classify

articles notably using word frequency and name extraction. Typically, the classi-

fication plugins for Project Triton are document pivoted, which has been proven

to increase accuracy of matches.

Using the notion of indexable fields, Project Triton is capable of interest and topic

classification over multiple sources (in addition to just news).

7.2.3 F3 : The system must be able to provide news to

given interests.

While F3 has formally been satisfied, it is noted that the quality of some recom-

mendations is not always perfect. This is not a failing of the framework, but of

the recommendation algorithms implemented in the proof of concept plugins. The

quality of the recommendations varies depending upon which plugins are enabled;

those which showed particularly accurate recommendations are the nameExtrac-

tion and wordFreqeuency plugins.

Although the quality of recommendations can sometimes waiver, the system is

able to cope well with recommendations across sources, using a notion of indexable

fields. This means that recommendations are able to occur on news, images and

events seamlessly through the application.

7.2.4 F4 : The system must be able to retrieve news arti-

cles autonomously.

Functional requirement 4 has been completely satisfied. Project Triton has a fully

functional content retrieval system by default, which includes MRSS and Page

Scraping plugins as standard. The system is managed using an XML based work-

flow and it is recommended that the script be run either as a cronTab or perpetual

Chapter 7 Testing and Evaluation 49

PHP script (using sleep to wait between calls appropriately).

The designed solution actually goes beyond the functional requirement specified,

fully allowing for not only news retrieval but other sources, such as images and

events.

7.2.5 F5 : The system must be able to process news in a

variety of different ways depending on its configura-

tion.

F5 has been satisfied exceptionally. As a modular system, Project Triton contains

a flexible framework that allows plugins to be installed altering how news or other

sources are interpreted and processed.

7.2.6 F6 : The system must be able to retrieve a user’s in-

terests through explicit means (using social networks

such as Facebook)

Project Triton is able to retrieve users interests through a combined use of process

plugins and front-end integration. Due to the secure nature of many social API’s,

many social network require re-direction to their own server for a secure login. This

means that batch processing all the users at the same time, using only a process

plugin is not recommended. While this is possible to do, it often violates the terms

and conditions of the social networks API. For this reason, it is necessary to add

the social API interfacing code into a front-end (such as a website) and then use a

process plugin to use the database cached interests to perform recommendations.

7.2.7 F7 : The system must be able to retrieve a user’s

interest through implicit means (using header infor-

mation and or browsing habits).

In contrast to F6, the functionality of this requirement is able to be completely

satisfied behind Project Triton’s API. By creating the appropriate process plugins,

Chapter 7 Testing and Evaluation 50

it is possible to extract header information (as plugins are included into the called

page) and cache requests by user (creating a history of browsing habits).

7.3 Reflection on Testing

Generally, I feel that Project Triton has succeeded. While Project Triton has

met all of it’s functional requirements, the system in practice remains a proof of

concept because of the quality of recommendation algorithms used. This has been

because of the time constraints placed upon the project. However, it is important

to note that the projects framework has been very thoroughly developed offering

vast amounts of flexibility whilst being easy to develop for, and this means that

with the right recommendation algorithms, Project Triton has a real chance at

being commercially viable.

Chapter 8

Project Management

8.1 Methods of Project Management

Throughout Project Triton, several different evolutions of project management

systems have been implemented. Originally, it was decided that one of the main

factors of creating a commercially viable product such as Project Triton would re-

quire an active developer community. As a way of enticing developers into creating

plugins for Project Triton, it was thought best to create a publicly accessible web-

site, containing up to date project information and details about the progress and

project direction in the future. For this reason, a website was created which ran

a version of activeCollab - a project management system which contains time and

ticker tracking with the ability to log and plan jobs. In addition to this website, a

SVN repository was created on a private computer (accessible through SVN over

SSH). Hosting the SVN server privately was preferred over an ECS offered solution

as the implementation offered by ECS was heavily restricted, lacking some of the

major functionality of SVN. By installing some modules into activeCollab, it was

possible to link the SVN and activeCollab installation in sucha way that the SVN

repository was accessible through activeCollab.

In principle the designed developer community seemed perfect for Project Triton’s

needs. Sadly, however, the Gantt Charts produced by activeCollab where uncon-

ventional, and did not compare favourably to offline software packages such as

Microsoft Project or ProjectWizards Merlin. When compounded with the large

overhead involved in maintaining a project through a web-interface, it was ulti-

mately decided that activeCollab be replaced by an offline solution. This resulted

51

Chapter 8 Project Management 52

in the disbandment of the project’s progress website, while a combination of SVN

and ProjectWizards Merlin was used to manage the remaining elements of the

project with focus changing to the developer community after the initial project

completion.

8.2 Evolution of Project Triton

While at the beginning my project, progress remained true to the original pre-

dictions, several significant deviations occurred towards the later stages as major

re-factoring and re-designs occurred in the project. One area of the project that

underwent a particularly large change was the Output Stage’, which was replaced

with a Platform Extension’ phase. In the platform extension phase, the system

was completely re-factored to include the notion of source plugins, which enabled

Project Triton to target different types of information to the user using the same

plugins that were originally designed for targeting news. Additionally, it was

realised that the already designed process plugins contained the required func-

tionality specified by the explicit and implicit plugins. For this reason, the output

plugins were scrapped and changed into process plugins, creating a lighter system.

Figure 8.1: Comparison: The Original Gantt Chart of Project Triton

Chapter 8 Project Management 53

Figure 8.2: Comparison: The Final Gantt Chart of Project Triton

Chapter 9

Conclusions and Further Work

9.1 Achievements of Project Triton

On reflection, I feel that Project Triton has generally been successful. The designed

system remains both flexible and easy to develop for, and could easily be used for

recommending data to a user. Rather than creating a complete mediocre system,

Project Triton has developed into a highly adaptable framework with several proof

of concept plugins. While not all of these plugins provide a streamlined approach to

the tasks they perform, they show the range of complex tasks able to be performed

by the system.

9.2 Extending Project Triton

After completing the prototype system, further opportunities for enhancing the

operation of Project Triton have become apparent. However, due to the rapid ap-

proach in development used in Project Triton, it is important to further stabilise

the current implementation before adding functionality. The implementation of

extra testing and validation scripts, with the possible introduction of standardised

error codes would provide Project Triton further ease of development. In addi-

tion to this, the removal of excess functionality remaining from previous re-factors

would reduce the system footprint. Once the consolidation process is completed,

it is envisaged that the design and implementation of more accurate recommender

plugins (Process Plugins) be the most important extension of the system, provid-

ing the real world quality expected by users. After this, the integration of more

54

Chapter 9 Conclusions and Further Work 55

social networks would continue to draw more users to the system. Social networks

which it is deemed Project Triton would have a strong affinity to are del.icio.us,

Digg, Last.fm, Stumbleupon, Twitter and YouTube.

Beyond the implementation of more Process Plugins, another vital area of ex-

pansion is to create more outlets of the system. At present, the only method of

interaction for the public is by using ITDS. ITDS is a mock system, and as such

merely scratches the surface of the possibilities presented by Project Triton. In

the future it is envisaged that implementations of Project Triton could be seen

in widget form, integrated with Facebook, MySpace, NetVibes or iGoogle. It is

thought that simply replicating much of the code found in ITDS could provide

this functionality.

Many of the recommended extensions to Project Triton would increase popularity

with either developers or users. To further increase the competitive edge Project

Triton has, it is vital to fully utilise the Source extension features the project

contains. The introduction of Events, Video, Adverts, Shopping and wikiPedia

processing capabilities would enhance the system greatly.

The techniques described so far are technically relatively simple; the introduction

of computer vision into Source Image Processing would give the system a level of

accuracy unseen before in such a system. It is important to note however, that

this would dramatically increase demand on the server, and the move to an en-

terprise solution such as GoogleApps [27] might be considered at this stage. It is

also noted that because of the increased traffic experienced by the system, that

the rate of data update (Input Stage) may be much slower. A possible resolution

to this would be to distribute the system, separating the Input and Processing

Stages. The introduction of Threads [25] in the Processing Stage would also en-

hance performance. This is not possible in the Input stage as plugins often require

execution in a pre-defined order. However, due to the atomic nature of Process

Plugins, it is possible to execute plugins in any order.

The changes mentioned above would probably push Project Triton towards suc-

cess. It is important however to ensure that the API does not get abused. One

might consider in the future selling the services of Project Triton, through the use

of a subscription model. This might be introduced in such a way that only high

Chapter 9 Conclusions and Further Work 56

volume users of the system are charged. An implementation of this might limit a

user to a designated number of requests a day. By counting the number of requests

by each user, it would be possible to bill their usage.

9.3 Creating a Commercial Viable System

Project Triton does however have weakness. While the framework is nearly per-

fect, the quality of plugins developed for the system is sometimes indifferent. If

Project Triton were to succeed commercially, I feel a larger base of quality plugins

would need to be developed, particularly those involved with recommending data.

A major issue with the project is that the plugins developed tend to pertain to

text similarity, rather than topic similarity; this was largely due to time constraints

placed on the project as a whole. Aside from this, the inclusion of more social

network integration and more resources for the developer community would help

growth. It would be ideal at this point to create more outlets for the project to

spread its popularity, perhaps using NetVibes, iGoogle or Facebook widgets that

would interface with the API.

Beyond affirming the currently implemented system, extra contingency would be

required in preventing the abuse of the system. This could occur when someone

wishes to hot-link the API without having paid for a subscription.

9.4 Adapting Project Triton for Re-use

Ultimately, Project Triton could be used for many similar tasks in the area of data

aggregation and recommendation. However, using the system in isolation, so that

it becomes an RSS merger would perhaps seem somewhat wasteful of the system’s

power.

Because of the innate degree of customisation offered by Project Triton, many

parts of the system can be easily tailored to perform other un-related tasks. The

pageScrape plugin is a prime example of this; I am currently in the process of

designing a web-based application called intelliChef that recommends recipes based

on ingredients you currently own. As part of the preliminary research, I needed

Chapter 9 Conclusions and Further Work 57

to collect recipes and extract lists of ingredients to insert into a database. I was

able to use the pageScrape plugin to search the BBC Food website, and populate

a database of ingredients and recipes by adding the necessary scraping rules into

the database and writing a simple wrapper.

9.5 Summary

Project Triton successfully created a scalable framework with several proof-of-

concept plugins demonstrating a range of complex tasks able to be performed on

the system. Project Triton not only has real potential as a topic recommendation

framework, but it is also highly amenable to re-use, demonstrating the flexibility

of the project. While the implemented system is stable, work in the future might

include further solidification of the foundations of Project Triton, before extending

the range of plugins available. By improving the quality of the recommendation

algorithms, and extending the range of sources that Project Triton can process,

it is hoped that Project Triton’s success will measure far beyond any current

recommender solutions.

Bibliography

[1] TimesOnline. ”timesonline”. Jan 2009. http://timesonline.co.uk/.

[2] Engadget. ”engadget”. Jan 2009. http://engadget.com/.

[3] Fabrizio Sebastiani and Consiglio Nazionale Delle Ricerche. Machine learning

in automated text categorization. ACM Computing Surveys, 34:1–47, 2002.

[4] Ana G. Maguitman, Filippo Menczer, Heather Roinestad, and Alessandro

Vespignani. Algorithmic detection of semantic similarity. In WWW ’05:

Proceedings of the 14th international conference on World Wide Web, pages

107–116, New York, NY, USA, 2005. ACM Press.

[5] Deanna Osman, John Yearwood, and Peter Vamplew. Using corpus analysis

to inform research into opinion detection in blogs. In Peter Christen, Paul J.

Kennedy, Jiuyong Li, Inna Kolyshkina, and Graham J. Williams, editors,

Sixth Australasian Data Mining Conference (AusDM 2007), volume 70 of

CRPIT, pages 65–75, Gold Coast, Australia, 2007. ACS.

[6] Youngjoong Ko and Jungyun Seo. Text categorization using feature projec-

tions. In COLING, 2002.

[7] Ian Garcia and Yiu-Kai Ng. Eliminating redundant and less-informative rss

news articles based on word similarity and a fuzzy equivalence relation. Tools

with Artificial Intelligence, IEEE International Conference on, 0:465–473,

2006.

[8] Thierry Poibeau and Leila Kosseim. Proper name extraction from non-

journalistic texts. In In Computational Linguistics in the Netherlands, pages

144–157, 2001.

[9] Eric Berkowitz, Mohamed Reda Elkhadiri, Tim Sahouri, and Michel Abra-

ham. Intelligent content based title and author name extraction from format-

ted documents. pages 119–124, 2004.

58

http://timesonline.co.uk/
http://engadget.com/

BIBLIOGRAPHY 59

[10] O. Bayraktar and T.T. Temizel. Person name extraction from turkish financial

news text using local grammar-based approach. pages 1–4, Oct. 2008.

[11] Yang Lv, W.W.Y. Ng, J.W.T. Lee, Binbin Sun, and D.S. Yeung. Information

extraction based on information fusion from multiple news sources from the

web. pages 1471–1476, Oct. 2008.

[12] Alvaro Monge and Charles Elkan. The field matching problem: Algorithms

and applications. In In Proceedings of the Second International Conference

on Knowledge Discovery and Data Mining, pages 267–270, 1996.

[13] Scott Trent, Michiaki Tatsubori, Toyotaro Suzumura, Akihiko Tozawa, and

Tamiya Onodera. Performance comparison of php and jsp as server-side

scripting languages. In Valrie Issarny and Richard E. Schantz, editors, Mid-

dleware, volume 5346 of Lecture Notes in Computer Science, pages 164–182.

Springer, 2008.

[14] Lance Titchkosky, Martin F. Arlitt, and Carey L. Williamson. A perfor-

mance comparison of dynamic web technologies. SIGMETRICS Performance

Evaluation Review, 31(3):2–11, 2003.

[15] U. V. Ramana. Some experiments with the performance of lamp architecture.

In CIT, pages 916–921. IEEE Computer Society, 2005.

[16] J. J. Oliver. Decision graphs - an extension of decision trees. In Proceedings

of the Fourth International Workshop on Artificial Intelligence and Statistics,

pages 343–350, 1993. Extended version available as TR 173, Department of

Computer Science, Monash University, Clayton, Victoria 3168, AUSTRALIA.

[17] Ganesan Velayathan and Seiji Yamada. Behavior-based web page evaluation.

Web Intelligence and Intelligent Agent Technology, International Conference

on, 0:409–412, 2006.

[18] Olfa Nasraoui, Maha Soliman, Esin Saka, Antonio Badia, and Richard Ger-

main. A web usage mining framework for mining evolving user profiles in

dynamic web sites. Knowledge and Data Engineering, IEEE Transactions

on, 20(2):202–215, 2008.

[19] Min jeung Cho and Hae chang Rim. A location information retrieval sys-

tem using ip address. Advanced Language Processing and Web Information

Technology, International Conference on, 0:480–485, 2007.

BIBLIOGRAPHY 60

[20] Xin Jin, Jing Xu, and Xuemeng Li. The design and implementation of xml-

based workflow engine. Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing, ACIS International Conference on,

3:137–142, 2007.

[21] E. Bozdag, A. Mesbah, and A. Van Deursen. A comparison of push and pull

techniques for Ajax. In Proceedings of the 9th IEEE International Symposium

on Web Site Evolution (WSE07), pages 15–22.

[22] D. Crane and P. McCarthy. Comet and Reverse Ajax: The Next Generation

Ajax 2.0: The Next Generation Ajax 2.0. APress, 2008.

[23] Mario Jarmasz and Stan Szpakowicz. The design and implementation of an

electronic lexical knowledge base. In AI ’01: Proceedings of the 14th Biennial

Conference of the Canadian Society on Computational Studies of Intelligence,

pages 325–334, London, UK, 2001. Springer-Verlag.

[24] Tom Barnes. Rss. Journal of Website Promotion, 1:15 – 30, 2007.

[25] Alex Lau. ”multi-thread simulation (thread) - php classes”. May 2009.

http://www.phpclasses.org/browse/package/3953.html.

[26] Facebook. ”facebook — statement of rights and responsibilities”. May 2009.

http://www.facebook.com/terms.php.

[27] Google. Google app engine. May 2009.

http://code.google.com/appengine/.

http://www.phpclasses.org/browse/package/3953.html
http://www.facebook.com/terms.php
http://code.google.com/appengine/

Appendix A

Project Brief

A.1 Problem

In the market today, vast arrays of solutions exist to deliver news to an individual,

from newsvendors themselves, to themed sites that provide a pleura of information

on a single subject. Few of these news delivery systems tailor the users experience

to find news relative to their known and likely interests. Furthermore, those that

do aren’t extendable or implementable on a wide scale.

A.2 Goals

The goal of this project, is to create a framework on which plug-ins can be installed,

customising the input, processing and user display of news. The implementation

of this system should be such, that each installation is fully customisable to both

the users needs and servers demands. The project is hoped to ship with several

example plug-ins, which will be used, as the basis for further development, while

at the same time be part of a fully usable product, which will have a prominent

role in the market.

The project will essentially be separated into three distinct segments; the input

phase, the process phase and the output phase. The input phase will be interested

in reading in different input sources; these could be standardised sources such as

XML feeds, however it equally likely that a plug-in for the input could process un-

standardised inputs using page scraping techniques to needs or other media (such

61

Appendix A Project Brief 62

as images). The processing phase, will essentially involve plug-ins that group data

and infer knowledge about data based on binding data, which may come from the

input itself, or the users registered on the system. A typical plug-in may tag arti-

cles by set genres, or recognise different articles as the same story associating the

source with a particular political stance (e.g. a news story from the Times, may

be seen as Conservative). The output phase will involve plug-ins that deliver the

content of the system to different platforms, such as a web-front end, XML feeds,

an API for other websites to interface with the system, creating a fully extendable

service.

While ideally it would be preferable to create wide range of plug-ins for the system,

the focus of the project will be entirely on making a complete framework and the

basis of a strong community based development. This will not only ensure that

the plug-ins are varied, but push the development of the solution in the future.

A.3 Scope

To design and build a functional framework for news aggregation, which comprises

of plug-ins to customise the experience to both the users needs and the demands

of the server.

Appendix B

In-depth Testing Results

B.1 Backend Unit Testing

textStem (Filter plugin)

Checks stemming result against a pre-calculated String.

Test

ID

Description Expected

Results

Actual

Results

1a Runs textStemPlugin=>doProcess() on the

string: ”The quick brown fox jumps over the lazy

dog” to produce the string: ”the quick brown fox

jump over the lazy dog”. Success = 1, Fail = 0

1 1

textStrip (Filter plugin)

Checks stripping result against a pre-calculated String.

Test

ID

Description Expected

Results

Actual

Results

2a Runs textStripPlugin=>doProcess() on the

string: ”The quick brown fox jumps over the

lazy dog” to produce the string: ”quick brown

fox jumped lazy dog”. Success = 1, Fail = 0

1 1

63

Appendix B In-depth Testing Results 64

thesuarus (Filter plugin)

Checks thesaurus result against a pre-calculated String.

Test

ID

Description Expected

Results

Actual

Results

3a Runs thesaurusPlugin=>doProcess() on the

string: ”quick” to produce an array of strings:

”active”, ”excitable”, ”fast”, ”fast”, ”hurried”

and ”intelligent”. Success = 1, Fail = 0

1 1

mrssPlugin (Input plugin)

Tests CURL and DOM Loading against google.co.uk

Test

ID

Description Expected

Results

Actual

Results

4a Successfully Populated the Method Array 1 1

4b Successfully Queried Database for Sources 1 1

4c Class dbNews Exists 1 1

4d Class dbImages Exists 1 1

4e Initialised CURL Object 1 1

4f Valid CURL URL 1 1

4g Successfully CURLED Data from

http://google.co.uk/

1 1

4h Successfully Created DOMDocument(doc) 1 1

4i Successfully Loaded DOMDocument 1 1

4j getElementsByTagName(”item”) Exists 1 1

4k bkmon Array Successfully Populated 1 1

pageScrape (Input plugin)

Loads and tests the current page scraping queue.

Test

ID

Description Expected

Results

Actual

Results

5a Successfully Queried for Scraped Information 1 1

5b Successfully Queried for Enabled Sources 1 1

5c Created dbNews Successfully 1 1

5d Created dbImages Successfully 1 1

5e Output Formed Correctly 1 1

Appendix B In-depth Testing Results 65

facebookPlugin (Process plugin)

Ensures database integrity and connection to IMDB.

Test

ID

Description Expected

Results

Actual

Results

6a Facebook Exists 1 1

6b FacebookCache Exists 1 1

6c IMDB Connection Successful 1 1

ipLocate (Process plugin)

Tests the retrieval of geo-relevant data.

Test

ID

Description Expected

Results

Actual

Results

7a Implicitly Obtained IP Address 1 1

7b Successfully Queried Geo-Location IP Address

Information

1 1

7c Located Country 1 1

7d Located City 1 1

7e Successful Query for Geo-Relavent Data 1 1

nameExtraction (Process plugin)

Runs the nameExtraction daemon, performing variable analysis.

Test

ID

Description Expected

Results

Actual

Results

8a Indexing Query Successful 1 1

8b Indexes found for ‘nameExtraction’ 1 1

8c INDEX: Source Table identified 1 1

8d INDEX: Index Name identified 1 1

8e Un-Processed Query Successful 1 1

8f Successfully Initiated textStripPlugin() 1 1

8g Loading Word Cache - Successful 1 1

8h Successfully Cached Words to Array 1 1

8i * Data Processing: Found Index Name [...] 1 1

8j * Data Processing: Found Source Field [...] 1 1

8k * Data Processing: Found ID Number [...] 1 1

8l * Data Processing: Escaped Subject Exists 1 1

8m * Data Processing: Corpus Successfully Split 1 1

Appendix B In-depth Testing Results 66

similarText (Process plugin)

Checks similarText result against a pre-calculated String.

Test

ID

Description Expected

Results

Actual

Results

9a similar text(”Test String 1”, ”Test String 2”) =

11

1 1

wordFrequency (Process plugin)

Carrys out a variable level analysis of the algorithm on an active data source.

Test

ID

Description Expected

Results

Actual

Results

10a SUCCESS : SET QUERY = SELECT id, de-

scription FROM News WHERE id NOT IN (SE-

LECT aid FROM Frequency)

1 1

10b SUCCESS : RESULT NOT NULL 1 1

10c SUCCESS : STEMMER CREATED 1 1

10d SUCCESS : STRIPPER CREATED 1 1

10e * SUCCESS : AID = ... 1 1

10f * SUCCESS : DESC = ... 1 1

10g * SUCCESS : STRIPPED = ... 1 1

10h * SUCCESS : STEMMED = ... 1 1

10i * SUCCESS : WORD SPLIT - POPULATED

ARRAY

1 1

Appendix C

Final Gantt Chart

67

Appendix C Final Gantt Chart 68

Figure C.1: The Final Gantt Chart of Project Triton - Part 1

Appendix C Final Gantt Chart 69

Figure C.2: The Final Gantt Chart of Project Triton - Part 2

Appendix C Final Gantt Chart 70

Figure C.3: The Final Gantt Chart of Project Triton - Part 3

