
Eng Int Syst (2007) 3: 33–40
© 2007 CRL Publishing Ltd Engineering

Intelligent Systems

Using ontologies to support and
critique decisions

Yannis Kalfoglou

Advanced Knowledge Technologies (AKT), School of Electronics and Computer Science, University of Southampton, Southampton
SO17 1BJ, UK
E-mail: y.kalfoglou@ecs.soton.ac.uk

Supporting decision making in the working environment has long being pursued by practitioners across a variety of fields, ranging
from sociology and operational research to cognitive and computer scientists. A number of computer-supported systems and various
technologies have been used over the years, but as we move into more global and flexible organisational structures, new technologies
and challenges arise. In this paper, I argue for an ontology-based solution and present some of the early prototypes we have been
developing, assess their impact on the decision making process and elaborate on the costs involved.

Keywords: design paradigms, decision support, decision critiquing, organisational memories, cost-benefits analysis

1. INTRODUCTION

Since the early days of decision support research, the notion of
group-targeted technologies has been at the centre of attention,
based on the assumption that groups are the core functional
teams within an organisation. At the same point in time, AI
technology was becoming more applicable and appealing to
wider audiences and industry, which led to investigations of
potential synergy between AI products, like Expert Systems,
and Group Decision Support Systems (GDSSs) [4]. As we
moved on to the 21st century though, and the Internet tech-
nology is becoming indispensable asset for the survival of
organisations, the notion of groups has changed significantly.
Other less-formal, but more focused and motivated structures
are emerging, like Communities of Practice [26].

This shift has an effect on the research agenda for deci-
sion support systems as Shim and his colleagues point out in
[31]. They predict that technologies like data warehousing,
online analytical processing- OLAP, data mining and web-
based DSS will be the focus for the next decade of research
on decision support systems. Alongside with these technolo-
gies the focus of engineers is to build and support the necessary
infrastructure upon which decision support can be made avail-
able to human users. For example, in theAI realm, knowledge
engineers are working for over a decade now on the provision
of reusable, computational forms of domain knowledge, on-
tologies, and knowledge management systems, like organisa-
tional or corporate memories. Although, their aim and target
is more generic than providing support for decision making,
they are well suited technologies for any form of knowledge
management support.

vol 15 no 3 September 2007 33



USING ONTOLOGIES TO SUPPORT AND CRITIQUE DECISIONS

I emphasize this argument in this paper by presenting some
example uses of ontologies which could support decision mak-
ing, especially in the early stages of design. By design here,
I mean mostly software systems design, and the decision
making affects software designers as opposed to other social
groups, like government policy decision makers. I present an
overview of design paradigms in section 2 before moving on to
illustrate an example use of ontologies in decision support via
an organisational memory in section 3. Decision critiquing
is a relatively new but fruitful area of decision support which
could benefit systems design if certain assumptions hold as
I discuss in section 4. The benefits of using an ontology-
based solution need to be carefully assessed against the costs
involved as I discuss by concluding the paper in section 5.

2. DESIGN PARADIGMS

In ([24] – page3) the authors argue that four broad descriptions
of design paradigms exist in the literature. We elaborate on
the impact of these paradigms in systems’ design in [21] but I
briefly recapitulate them here along with the types of knowl-
edge engineering technology that can be classified under each
of these. It is intended to show the involvement of knowledge
engineering in design and decision support rather than acting
as a directive.

Design as decomposition and synthesis: this paradigm dates
back at least to 1974 with Alexander’s work on architecture
[6]. Design is taken to be the re-shuffling of components de-
veloped previously, then abstracted into reusable components.
Modern expressions of this approach include object-oriented
design patterns, ontologies, and Problem Solving Methods
(PSMs). These are the dominant paradigms in the contempo-
rary knowledge and software engineering.

Design as search: early work in this paradigm dates back to
1969 with Simon’s work on AI [32]. Design is taken to be the
traversal of a space of possibilities, looking for pathways to
goals. Modern expressions of this approach include most of
the AI search literature, knowledge-level search, the SOAR
papers [29], the SVF project [19], certain KA approaches
[23], etc. In a knowledge-level search, intelligence is mod-
elled as a search for appropriate operators that convert some
current state to a goal state. Domain-specific knowledge is
used to select the operators according to the principle of ra-
tionality: an intelligent agent will select an operator which
its knowledge tells it will lead the achievement of some of its
goals. In this paradigm we see preliminary work on modelling
the domain-specific knowledge in computational forms, like
domain-specific ontologies.

Design as negotiation and deliberation: this paradigm dates
back to at least 1973 with Ritell’s work on wicked problems
[28]. Wicked problems

have many features, the most important being that no ob-
jective measure of success exists. Designing solutions for
wicked problems cannot aim to produce some perfectly cor-
rect answer since no such definition of correct exists. Hence,
this approach to design tries to support effective debates by

a community over a range of possible answers. Modern ex-
pressions of this approach include the requirements engineer-
ing community. Requirements engineering is usually compli-
cated by the incompleteness of the specification being devel-
oped: while a specification should be consistent, requirements
are often inconsistent. Requirements engineering researchers
such as Easterbrook [16], and Finkelstein et.al. [17] argue that
we should routinely expect specifications to reflect different
and inconsistent viewpoints. Traditionally, this paradigm has
relied much on manual methods. In recent years more au-
tomatic techniques have been used. For example, the work
of [25] on conceptual modelling and in particular the use of
declarative meta-models in requirements engineering and the
work on negotiation in multiagent systems [14].

Situated design: Schon’s work on the reflective practitioner
[30] is among the first in this paradigm. In that approach, de-
sign mostly happens when some concrete artefact talks back to
the designer - typically by failing in some important situation.
That is, reflective design is less concerned with the creation
of some initial artefact than the on-going re-interpretation and
adjustment of that artefact. Modern expressions of this ap-
proach include the situated cognition community [12], certain
approaches to design rationale [10], and knowledge engineer-
ing techniques that focus on maintenance rather than initial
design [23].

The design paradigms surveyed by Moran and Carroll do
not explicitly mention possible combinations. For example,
when designing new components we infer that their design
is a combination of search, negotiation and deliberation, and
situated design.

3. DECISION SUPPORT

We witness a shift in the decision support literature from data-
oriented processing systems to more integrated with the hu-
man intellect and organisational processes systems [9]. These
systems have been studied in the knowledge management lit-
erature and among the most visible ones, are organisational
memories (OMs). They have been studied as means for pro-
viding easy access and retrieval of relevant information to
users. There are several technologies which support the imple-
mentation and deployment of OMs (some of them identified
in [1]). Having the ideal OM in place could assist in decision
making as, crudely speaking, any information regarding the
organisation could be made easily accessible.

However, there is relatively little support for the initial set-
up of an OM. When implementing and deploying an OM, it
is difficult to identify the right information to include. This
task is, normally, a knowledge engineer’s job, to identify rel-
evant information and populate the OM accordingly. This
process though is time-consuming, manual and error-prone,
given the diversity and quantity of resources to be analyzed
for relevance. Semi-automatic methods and techniques exist,
but these are bound to individual technologies.

On the other hand, it is always the user who has to initiate
search in the OM. This, however, requires the user to formulate
a query, sometimes with the help of semi-automatic support,

34 Engineering Intelligent Systems



Y. KALFOGLOU

and then the OM system has to parse the query successfully,
retrieve information deemed to be relevant according to some
pre-defined notion of relevance, and present it to the user.

This problem has been identified in field surveys [15] as
well as in implemented systems [2]. It is a multi-faceted
problem because it is not only concerned with the elicitation
of resources that will be presented to the user or used for re-
trieving relevant information, but also with the nature of these
resources which could be: (a) used by other systems within
the organisation, which incidentally also serve users in their
quest for valuable information, (b) ‘unspecified’, in that they
are vaguely expressed, need to be composed by a number of
related resources or are external to the organisation, (c) and
once these resources are identified and put into use, they act
as a qualitative measure for the OM. That is, if an OM’s users
are not satisfied with the quality of information presented to
them, it is unlikely that they will return, especially when there
are other conventional information-seeking systems in the or-
ganisation that users used to use before confronted with an
OM.

A way of tackling this resource-selection problem is by
identifying the purpose of the OM: what are the users’ needs
and what will the OM be used for. This has been reported
as one of the first phases in building an OM [15]. The tech-
niques and methods for achieving this rather ambitious goal
are mostly taken from requirements analysis and elicitation
research. They stem from Computer Supported Collaborative
Work (CSCW) research, from systems design research, and
from the cognitive science literature.

However, we should be cautious when we are calling upon
requirements engineering to elicit the needs when building an
OM. As Zave and Jackson report in their survey [34], vague
and imprecise requirements are always difficult to formalize
and subsequently convert to specifications, in the early phases
of software development1 . This refinement is necessary, the
authors continue, “to bridge the gap between requirements
and specifications”, thus emerging with a specification that
could satisfy users’ needs and meet the requirements.

The vagueness and incompleteness of requirements from
prospective OM users led some designers to decide to build
their OM around an existing workflow process engine, as for
example in the KnowMore OM [2]. We discuss the adaptabil-
ity of this approach and its advantages of achieving a ‘near
perfect’ integration with existing IT organisational infrastruc-
ture and satisfying users’ (pre-defined) needs in [5], but here
I would like to focus on the importance of having a com-
prehensive OM from its initial set-up. By comprehensive I
mean an OM that includes a lot of resources that have been
automatically extracted rather than waiting the user to initiate
the extraction process. The side-effect of having this sort of
OM in place is that we can tackle the ‘cold start’ syndrome
identified in [18] in which the authors reported that they had
relatively few knowledge assets in their OM during the first
operational month which led to low access rates from its users
as they couldn’t see the value-added of the OM. The problem
was eventually solved, but at a cost: more systems and meth-
ods had to be used to chase users for contributions in order
to enrich the content of the OM, thus leading to an increase

1In our case, the early phase of developing an OM.

in the OM’s knowledge assets and consequently in increased
access figures.

Our approach to this problem is to use ontologies. The
hypothesis is that since we already use ontologies in OMs for
the purposes of semantic interoperability and reuse, we could
also use them in other ways. We could analyse their structure
by taking into account relationships between their constructs,
based on a tuneable spread activation algorithm, yielding the
nodes that are most “popular”. These are assumed, in the
absence of contradicting evidence, to be the most important
ones. The spreading activation algorithm also identifies nodes
similar to a specific node. This is the premise underlying our
hypothesis.

It could be argued that our analysis is not a qualitative one,
but merely a quantitative one. However, as Cooper argues
in [13], quality can be measured in two ways, in terms of
popularity or importance. Our analysis yields concepts that
are the most popular in the network, and since the network
is about an ontology which by default represents important
concepts, then these concepts are also important.

To operationalize our hypothesis, we assume that (a) ontolo-
gies will be available in the organisation in which we want to
deploy an OM, and (b) these will be populated. It is clear that
these assumptions are strong and indeed are ongoing research
issues in the knowledge engineering community, especially
the latter. However, we should accept and anticipate that on-
tologies are popular in organisational settings nowadays, in
the form of database systems, other knowledge sharing for-
malisms more common to the AI research community (KIF)
or indeed in emerging semantic web standard formats (RDF).

Using ontologies as the foundation for an OM is not a unique
idea, but the use of ONA to provide initial information for
populating the OM is novel. We should also mention that us-
ing an ontology at the start of an OM’s lifecycle allows us to
provide support to users in formulating their queries from an
early stage. Normally, users have to formulate initial queries
unaided since there is no prior information available, as no
retrievals have been made yet. In applying ONA, we support
users in formulating queries by providing them with ontolog-
ical information regarding the starting node for initiating an
ONA-based search. This information is readily available in
existing slots in the underlying ontology (such as the docu-
mentation slot).

In figure 1 I depict a high-level diagram of an OM. This
is not meant to be a reference architecture for OMs. This
figure emphasizes the dual role of ONA and the supportive
role ontologies play in our scenario. On the left-hand side of
the figure we have users of an organisation performing their
regular tasks. In the centre we have an OM which is com-
posed, at this abstract level, by two interfaces to users and
OM developers, a port to external resources, and internal re-
sources existing in the organisation’s repositories. The latter
could have several forms, ranging from tacit knowledge pos-
sessed by experts to explicit knowledge expressed formally
in KBs or digital discussion spaces. In the centre of our ab-
stract OM, lie the ontologies which underpin the entire OM.
These are either existing resources or are constructed (semi-)
automatically with the aid of knowledge acquisition, retrieval
and modelling techniques. I do not refer to these in this paper

vol 15 no 3 September 2007 35



USING ONTOLOGIES TO SUPPORT AND CRITIQUE DECISIONS

Figure 1 Applying ONA at different phases of OMs: to push knowledge to users as well as help developers tune their OMs.

as the focus is on the use of ONA: the two rectangular boxes
denoting ”ONA” are placed between the ontologies and OM
interfaces to users and developers. The genericity of ONA
makes it possible to use it for pushing knowledge to users
but also as an aid for the OM’s developers. They could ap-
ply ONA to the organisation’s ontologies in order to identify
which concepts should be presented to certain types of users.
For instance, assuming that there is a workflow engine in the
organisation, and developers are looking for ways of linking
the OM to it, they could either engage in modelling tech-
niques such as those used in linking the KnowMore OM with
workflow processes [2], or they could use ONA to help them
identify concepts from the underlying ontologies that could be
used to map onto the ones of the workflow’s processes. This
activity requires inspection and familiarization with only one
end of the prospective link: that of the workflow processes.
The developer then uses the concepts found in the workflow
processes as a starting node for his/her ONA. This could reveal
whether further linking is feasible (or otherwise), thus saving
development time and allowing developers to deal with on-
tologies that they are not familiar with. The approach taken
by the KnowMore OM, requires a careful analysis and, pos-

sibly, modelling of both workflow processes and ontologies
before a link between them could be implemented. ONA can
ease the analysis on the ontology end of this prospective link.

I also include two curly dotted arcs in figure 1 linking users
with the OM. These denote users’ feedback and input. This is
an important, probably the most important element of any OM
architecture as an OM can be improved over time by user feed-
back and input. In our abstract architecture, we implemented
light-weight feedback mechanisms, like thin Web-clients, ac-
cessible through Web browsers, as a means for eliciting feed-
back on an OM’s resources. Finally, the OM interface to its
users is light-weight and accessible from distributed clients
on the Web. We have developed two kinds of interfaces for
accessing our dedicated tools in the AKT project: a dedicated
OM interface, where the user can state preferences in select-
ing the appropriate node to search for related information, or
there could be a customized rendering of information into a
user’s Web browser. The latter is extracted automatically after
applying ONA to the underlying ontology, whereas the former
requires user input to tune the search criteria.

The method described above is neither infallible nor adapt-
able to any existing OM setting. We identified potential

36 Engineering Intelligent Systems



Y. KALFOGLOU

caveats on using ONA to bootstrap OMs and categorize them
in three broadly defined areas: (a) Information overload: a
progressive and query-based interaction with the OM from ini-
tial set-up acts as a safeguard against unwanted information
overload. However, progressive interaction means that the
initial set-up suffers from cold-start syndrome – not enough
information will be available; query-based interaction requires
expertise and domain familiarization from the users to get the
most out of an OM; (b) Context-awareness: this has been rec-
ognized as the Achilles’ heel for OMs. One proposed remedy,
advocated by proponents of marrying workflow processes and
OMs [3], seems to work well only in settings where workflow
processes are either existing, or are relatively easy to identify
and model; (c) Domain-independence: this is a desired fea-
ture for OMs. But, the proposed ONA approach is not specific
to any kind of ontology, or indeed to any ontology at all! This
makes it possible to apply ONA to more than one ontology as
are likely to exist in large organisations.

4. DECISION CRITIQUING

When decisions are made, designers need to verify, validate
and eventually trace them in case a review is needed. Among
a variety of tools that have been available – some of which
are outlined in the report of [31] – we found it practical to
connect the underlying technology used for supporting rea-
soning, ontologies, with Experience Factories (EFs). These
stem from the software engineering community and were first
operationalised in early nineties [8] as a means to support
exchange of all kinds of experiences in the life-cycle of a soft-
ware project. The main focus of an EF is to support ‘learning
from experience’ on a technology-independent organisational
level. An EF stores the collected experiences in an Experience
Base (EB). In [7], it was argued that Case-Based Reasoning
(CBR) plays an important role in the EFs paradigm. As CBR
provides both the technology and a methodology for ‘learn-
ing from experience’, it was natural to use it for implementing
continuous learning in an EF style. The value of a repository
of cases is also acknowledged in the knowledge management
literature as O’Leary writes with respect to the conversion of
individual to group available knowledge: “Although individu-
als might have generic knowledge to contribute, case histories
are particularly robust” [27].

We applied EFs in an ontology development and deploy-
ment life-cycle as a means to manage experiences collected
from various agents participating in that effort [20]. To ac-
complish this task, we built a generic architecture which I
depict diagrammatically in figure 2.

The left-hand side of figure 2, depicts the task of verifi-
cation. In particular, we are interested in verification of on-
tologies at the application level [22]. That is, we verify that
ontological constructs are not misused by applications that
adhere to an ontology. After applying our verification mecha-
nism we accumulate, temporarily, the results in an EB. These
are code-testing results and we regard them as experiences.
The EB is then imported by an experiences editing tool which
allows for further additions and modification of the descrip-
tion of existing experiences. It allows us to customise the

experiences to the particular project as it provides a way of
expressing information usually not obtainable through code-
testing. These are decisions about the artefacts at question and
our aim is to provide support for entering as much information
as possible about the decision making process.

For example, in the context of decisions about the ontology
usage, we used a proposed typology for accumulating ontol-
ogy projects information [33] that the designer need to fill-in
and can later use to facilitate future tracing and reuse: pur-
pose of the ontology, representation languages and paradigms
used, meaning and formality of the ontological constructs,
what is the subject matter, information regarding the scale
and development status of the ontology, what is the concep-
tual architecture, mechanisms and techniques used, and the
implementation platform.

We then select the experiences we want to validate and send
them to a designated tool for verifying their correctness with
respect to test results. This tool embodies the verification
mechanism we deploy in the first step but here we apply it
to verify the correctness of the results themselves. After the
selected experiences have been validated we store them in the
final EB to be part of the EF.

This cycle can be repeated as many times as we wish in the
same or other ontologies to collect and manage the knowledge
accumulated during verification and testing. Ultimately, this
will result in an EF of ontology verification and testing that can
be deployed in similar projects in order to facilitate ontology
use and decision making for the designers. It is important to
mention that the similarity of projects to benefit from this sort
of EF dictates the ability to transfer experiences and decisions
across projects.

5. COST-BENEFIT ANALYSIS

There are benefits from applying ontology technology to sup-
port and critique decision making for designers, but there are
also costs involved with using this technology in the first place.
In a field survey we conducted few years ago [21], we identi-
fied the following, broadly speaking, categories:

Construction cost: an ontology aims to represent knowledge,
and knowledge comes at a cost. Whether we build the ontol-
ogy from scratch or adopt it from others there is a ‘cost of
construction’ following that investment. In the former case,
that cost refers to pure construction issues such as, for exam-
ple, choice and adoption or creation of a design methodology.
In the latter case, there is an adoption of a pre-existent ontol-
ogy (for example, residing in a public library), and the cost
is related to familiarisation and installation issues. Empirical
evidence from the knowledge engineering field reveals that
this cost is often a drawback and those who had to afford it
were sceptical for the effectiveness of the approach. This is
apparent in generic ontologies. For example, the CYC project
where the developers had to devote more than 10 years of ef-
fort to build the CYC ontology. However, when we move to
domain or task specific ontologies the situation changes as
these are easier to build and often developed incrementally as
new knowledge regarding the domain of interest is acquired
and pushed into the system.

vol 15 no 3 September 2007 37



USING ONTOLOGIES TO SUPPORT AND CRITIQUE DECISIONS

Figure 2 Experience Based architecture to support ontology verification.

Reuse cost: an alternative to building ontologies from scratch
is to reuse pre-existent ones. This is actually the mainstream
in knowledge engineering and most of the applications re-
ported in the literature follow this approach. Empirical ev-
idence from recent experiments in ontology reuse show that
particular types of ontologies are more useful than others. In
the context of the HPKB [11] project, it was found that very
generic ontologies provide less support and are less useful
than domain-specific ones. The latter scored a constant 60%
rate of reuse in the HPKB study in contrast with the poor 22%
rate of reuse scored by generic ontologies. However these
results should not undermine their role in structuring knowl-
edge: ”Although the rate of reuse of terms from very general
ontologies may be significantly lower, the real advantage of
these ontologies probably comes from helping knowledge en-
gineers organise their knowledge bases along sound ontolog-
ical lines” [11].

Prior to reusing an ontology an engineer has to locate the
right ontology first and then familiarise herself with it. We
have seen some efforts to facilitate the selection task, as for
example the reusable libraries of ontologies and in the same

context ongoing work to produce frameworks which charac-
terise and classify ontologies [33]. However, the familiarisa-
tion task remains a problem.

One practical approach here is the EF where its EBs con-
tain characterized and classified experienceware described in
different levels of abstraction. The approach supports a goal-
oriented, similarity-based retrieval that helps to find the right
piece of knowledge in the right time and within a justifiable
effort. Based on a continuous evaluation of the EB the user
herself decides whether or not more abstract knowledge is
provided.

However, statistical results from reusing components in the
software engineering domain tell us that just because we can
access reusable components (like ontologies), this does not
necessarily mean that we can use them as a productivity tool.
Ontologies must be learnt prior to use and this learning curve
may have a non-trivial impact on the overall cost.

Maintenance cost: in the long run this cost might hinder
further deployment. It is not easily predictable and quantifi-
able since there are various angles of viewing this problem.
For instance, if we accept that ontologies should rarely sta-

38 Engineering Intelligent Systems



Y. KALFOGLOU

bilise then we should expect to include in our budget along
with the cost of constructing, costs for maintaining the on-
tologies we use as well as the system which uses them. How
common is ontology instability? We don’t know since we
have very little experience with the long-term use of large li-
braries of ontologies. However, this is a debatable point and
we find projects where ontologies were deployed on the ratio-
nale that they were stable, and projects where this is not taken
for granted as ontologies are expected to change over time.

Purpose: apart from these cost-related factors, other issues
emerge when we decide to use ontologies. These are the
level of formality, often related to the purpose of use, level of
support, technical obstacles to overcome, etc.

In particular the level of formality is a traditional point of
contention in many fields. Despite the strong claims made
by opponents of formality evidence shows that formal ontolo-
gies can be operationalised [21], which makes them suitable
for enforcing automated consistency checking. On the other
hand, this sort of use is not the mainstream and, arguably, not
a cost-effective approach. This may justify the wide usage of
semi-formal or even informal ontologies we see in the litera-
ture, which is mostly directed to deliver reuse and knowledge
sharing rather than improving reliability.

The level of support for using ontologies and technical ob-
stacles which should be overcome, raised in industrial experi-
ments where the ontologies used were outsourced. For exam-
ple, as we report in [21], the translation activity involved was
intensive and lack of automatic support was an important dis-
advantage. However, the situation changes when we look at
other similar efforts when ontologies are build in-house rather
than outsourced were no such complaints were made.

Acknowledgements

This work is supported under the Advanced Knowledge
Technologies (AKT) Interdisciplinary Research Collabora-
tion (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number
GR/N15764/01. The AKT IRC comprises the Universities of
Aberdeen, Edinburgh, Sheffield, Southampton and the Open
University. The views and conclusions contained herein are
those of the author and should not be interpreted as neces-
sarily representing official policies or endorsements, either
express or implied, of the EPSRC or any other member of the
AKT IRC.

REFERENCES

1. A.Abecker, A.Bernardi, K.Hinkelmann, O.Kuhn, and M.Sintek.
Toward a Technology for Organizational Memories. IEEE In-
telligent Systems, 13(3):40–48, June 1998.

2. A.Abecker, A.Bernardi, K.Hinkelmann, O.Kuhn, and M.Sintek.
Context-Aware, Proactive Delivery of Task-Specific Knowl-
edge: The KnowMore Project. International Journal on Infor-
mation Systems Frontiers (ISF), 2(3/4):139–162, 2000.

3. A.Abecker, A.Bernardi, S.Ntioudis, G.Mentzas, R.Herterich,
C.Houy, S.Muller, and M.Legal. The DECOR toolbox for
workflow-embedded organizational memory access. In Pro-
ceedings of the 3rd International Conference on Enterprise In-
formation Systems (ICEIS’01), Setubal, Portugal}, July 2001.

4. M.Aiken, O.LiuSheng, and D.Vogel. Integrating expert systems
with group decision support systems. ACM Transactions on
Information Systems (TOIS), 9(1):75–95, 1991.

5. H.Alani, Y.Kalfoglou, K.O’Hara, and N.Shadbolt. Initiating or-
ganizational memories using ontology-based network analysis
as a bootstrapping tool. BCS-SGAI Expert Update, 5(3):43–46,
October 2002.

6. C.Alexander. Notes on the Synthesis of Form. Harvard Univer-
sity Press, July 1974. ISBN: 0674627512.

7. K-D. Althoff, F.Bomarius, and C.Tautz. Using Case-Based
Reasoning Technology to Build Learning Software Organiza-
tions. In Proceedings of the ECAI’98 Workshop on Building,
Maintaining, and Using Organisational Memories (OM’98),
Brighton, UK, August 1998.

8. V.Basili, G.Caldiera, and D.Rombach. Experience Factory. In
Encyclopaedia of Software Engineering, volume∼1, pages
469–476. John Wiley & Sons, 1994.

9. C.Carlsson and E.Turban. DSS: directions for the next decade.
Decision Support Systems, 33:105–110, 2002.

10. G.Casady. Rationale in Practice: templates for Capturing and
Applying Design Expertise. In Design Rationale: Concepts,
Techniques, and Use, pages 351–372. Lawrence Erlbaum Asso-
ciates, 1996.

11. P.Cohen,V.Chaudhri,A.Pease, and R.Schrag. Does prior knowl-
edge facilitate the development of knowledge-based systems?
In Proceedings of the Sixteenth National Conference on Artifi-
cial Intelligence, AAAI’99, Orlando, FL, USA, pages 221–226,
July 1999.

12. P.J. Compton and R.Jansen. A Philosophical Basis for Knowl-
edge Acquisition. Knowledge Acquisition, 2:241–257, 1990.

13. W.S. Cooper. On selecting a measure of retrieval effectiveness.
In Readings in Information Retrieval, pages 191–204, 1997.

14. R.Davis and R.Smith. Negotiation as a metaphor for distributed
problem solving. In Readings in Distributed Artificial Intelli-
gence. Morgan Kaufmann, 1998.

15. R.Dieng, O.Corby, A.Giboin, and M.Ribiere. Methods and tools
for corporate knowledge management. International Journal of
Human-Computer Studies (IJHCS), 51:567–598, 1999.

16. S.Easterbrook. Handling conflicts between domain descriptions
with computer-supported negotiation. Knowledge Acquisition,
3:255–289, 1991.

17. A.Finkelstein, D.Gabbay, A.Hunter, J.Kramer, and B.Nuseibeh.
Inconsistency handling in multi-perspective specifications.
IEEE Transactions on Software Engineering, 20(8):569–578,
1994.

18. C.Gresse-vonWangenheim, D.Lichtnow, A.vonWangenheim,
and E.Comunello. Supporting Knowledge Management in Uni-
versity Software R\&D Groups. In Proceedings of the 3rd
International Workshop on Learning Software Organizations
(LSO’01), Kaiserslautern, Germany, pages 51–66. Springer-
Verlag, September 2001.

19. J.Josephson, B.Chandrasekaran, M.Carroll, N.Iyer, B.Wasacz,
and G.Rizzoni. Exploration of Large Design Spaces: an Ar-
chitecture and Preliminary Results. In Proceedings of the 15th
National Conference on Artificial Intelligence, AAAI’98, Madi-
son, Wisconsin, USA, July 1998.

20. Y.Kalfoglou. Maintaining ontologies with organisational memo-
ries. In Knowledge Management and Organizational Memories,
Kluwer Academic Publishers, ISBN: 0-7923-7659-5, 2002.

21. Y.Kalfoglou, T.Menzies, K-D. Althoff, and E.Motta. Meta-

vol 15 no 3 September 2007 39



USING ONTOLOGIES TO SUPPORT AND CRITIQUE DECISIONS

knowledge in systems design: panacea...or undelivered
promise? The Knowledge Engineering Review, 15(4):381–404,
December 2000.

22. Y.Kalfoglou, D.Robertson, and A.Tate. Using Meta-Knowledge
at the Application Level. Research Paper 956, Department of
Artificial Intelligence, University of Edinburgh, 2000.

23. T.Menzies. Towards situated knowledge acquisition. Interna-
tional Journal of Human-Computer Studies}, 49:867–893,
1998.

24. T.P. Moran and J.M. Carroll. Design Rationale: Concepts, Tech-
niques, and Use. Lawerence Erlbaum Associates, 1996. ISBN:
0-8058-1567-8.

25. H.Nissen, A.Jeusfeld, M.Jarke, G.Zemanek, and H.Huber. Re-
quirements Analysis from Multiple Perspectives: Experiences
with Conceptual Modelling Technology. IEEE Software, 13(2),
March 1996.

26. K.O’Hara, H.Alani, and N.Shadbolt. Identifying Communities
of Practice: Analysing Ontologies as Networks to Support Com-
munity Recognition. In Proceedings of the 2002 IFIP World
Computer Congress, Montreal, Canada, August 2002.

27. D.O’Leary. Knowledge Management Systems: Converting
and Connecting. IEEE Intelligent Systems}, 13(3):30–33, June
1998.

28. H.Rittel and M.Webber. Dilemmas in a general theory of plan-
ning. Policy Sciences, 4:155–169, 1973.

29. P.Rosenbloom, J.Laird, and A.Newell. The SOAR Papers. The
MIT Press, 1993.

30. D.A. Schon. The Reflective Practitioner. Harper Collins, 1983.
31. J.P. Shim, M.Warkentin, J.F. Courtney, D.J. Power, R..Sharda,

and C. Carlsson. Past, present, and future of decision support
technology. Decision Support Systems, 33:111–126, 2002.

32. H.Simon. The Science of the Artificial. MIT Press, 1969.
33. M.Uschold and R.Jasper. A Framework for Understanding

and Classifying Ontology Applications. In Proceedings of the
IJCAI-99 Workshop on Ontologies and Problem-Solving Meth-
ods(KRR5), Stockholm, Sweden, August 1999.

34. P.Zave and M.Jackson. Four Dark Corners of Requirements
Engineering. ACM Transactions on Software Engineering and
Methodology, 6(1):1–30, January 1997.

40 Engineering Intelligent Systems


