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Abstract— This brief develops a new algorithm for the design of
iterative learning control law algorithms in a 2-D systems setting.
This algorithm enables control law design for error convergence
and performance, and is actuated by process output information
only. Results are also given from the experimental application to
a gantry robot.

Index Terms—2-D systems design, iterative learning control,
repetitive processes.

I. INTRODUCTION

ANY industrial systems perform the same task over a
finite duration. Each execution is termed a trial and
once completed the system resets to the starting location
and the next trial begins. Iterative learning control (ILC)
[1] uses information from the previous trial to update the
control input for the next one and thereby aims to improve
performance from trial-to-trial. Moreover, the next trial input
is typically computed during the time taken to reset between
successive trials. In comparison to other forms of control, such
as adaptive, ILC adjusts the control input, a signal, instead of
the controller, which is a system. The general area of ILC
research is very active and one starting point for the relevant
literature is the survey papers [2] and [3]. A review of the
literature shows that a wide range of algorithms have been
developed many of which have been experimentally tested,
particularly those based on a linear plant model.
ILC can be treated as a 2-D system where one direction of
information is from trial-to-trial and the other is along a trial.
Since the trial length is finite, ILC can therefore be treated
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as a repetitive process. These processes form a distinct class
of 2-D systems where information propagation in one of the
two independent directions only occurs over a finite duration,
see the references in [4] for background and examples. In a
repetitive process a series of sweeps, termed passes, is made
through a set of dynamics defined over a finite duration known
as the pass or trial, length, and at the end of each pass the
process resets to its original position. The output produced on
any pass is termed the pass profile and the unique control
problem is that the previous pass profile acts as a forcing
function on, and hence contributes, to the dynamics of the
next pass profile. This can result in oscillations that increase in
amplitude in one or both directions of information propagation.
In this brief, we use the terminology “pass” instead of “trial”
to ensure conformity with the repetitive process literature.

Recently, it has been shown [5], with experimental verifi-
cation on a gantry robot system, how the repetitive process
setting can be used to design control laws that consider both
pass-to-pass error convergence and along the pass performance
by using the repetitive process setting to impose bounded-
input bounded-output (BIBO) stability independent of the pass
number and the pass length. This brief gives new results
where strong practical stability [6] for discrete linear repetitive
processes is used, which leads to reduced complexity in
design, mainly due to the need to solve lower order linear
matrix inequalities (LMIs). The results of experimental appli-
cation to gantry robot are given and discussed.

In this brief, M > 0 and M < 0 are used to denote
symmetric positive definite and negative definite matrices,
respectively. Also the null and identity matrices with the
required dimensions are denoted by O and I, respectively.
Finally, % denotes the transpose of a block entry in a matrix.

II. PROBLEM FORMULATION

The state-space model of a discrete linear repetitive
process [4] has the following form over 0 < p <a—1,k > 0:

Xkr1(p 4+ 1) = Axpy1(p) + Bugy1 (p) + Boyr (p)
Vi+1(P) = Cxp41(p) + Dugt1(p) + Doye(p) (1)

where o < oo denotes the number of samples along the pass
and on pass k, xx(p) € R" is the state vector, yx(p) € R™ is
the pass profile vector, and ui(p) € R is the control input
vector. The boundary conditions are xz4+1(0) = dx4+1, k >
0, where the entries in dr4+; are known constants and the
initial pass profile vector yo(p) = f(p), where the entries
in f(p) are known functions of p € [0, a — 1]. The boundary
conditions, in this brief, are only of this form and hence no
further explicit mention of them is made.

1063-6536/$31.00 © 2012 IEEE
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The systems considered are assumed to be adequately repre-
sented by a discrete linear time-invariant system described by
the state-space triple {A, B, C}. In an ILC setting, the system
state-space model is written as

xe(p+1) = Axk(p) + Bug(p) 0=<p=<oa-1
yk(p) = Cxi(p) (2)

where on pass k, xx(p) € R”" is the state vector, yx(p) € R is
the output vector, and ux(p) € R” is the control input vector.
With the reference trajectory denoted by yef(p), ex(p) =
yref (p) — Yk (p) is the error on pass k.

As discussed in the introduction to this brief, ILC can be
treated in a 2-D systems setting where information propagation
in one direction is from pass-to-pass and in the other it is along
the pass. For plants modeled by a discrete linear systems state-
space model [7] used the Roesser state-space model [8] to
design a control law to ensure pass-to-pass error convergence,
but applications will arise where it is also necessary to take
account of the along the pass dynamics. For example, consider
a gantry robot whose task is to collect an object from a
location, place it on a moving conveyor, and then return for
the next one and so on. If, for example, the object has an open
top and is filled with liquid and/or is fragile in nature, then
unwanted vibrations during the transfer time could have very
detrimental effects.

The basic premise in ILC is to improve performance by
directly adjusting the input used on each new pass, and a
commonly used method is to select the input on the current
pass equal to that used on the previous pass plus a corrective
term. A particular choice for the corrective term is one step
ahead learning, or phase-lead ILC, of the form

ur+1(p) =ur(p) + Kex(p+1) k=0,1,... (3

where K is the design parameter (or matrix in the multi-
variable case) to be designed. In the lifting approach
(the survey papers [2] and [3] are one starting point for
the literature), the next step is to define the super-vector
e = [ekT(O) ekT(l) ekT(a — 1)]T and proceed to write the
controlled dynamics in the form e;11 = Qe. This approach
subsumes the along the pass dynamics and assumes that any
requirements on the along the pass dynamics are, if required,
met by first designing a feedback control loop for the plant
and then applying lifting to the resulting state-space model.
To obtain a repetitive process description of the controlled
dynamics introduce, for analysis purposes only, the state vector

Mk+1(p) = X1 (p — 1) —xp(p — 1). “4)

Hence
M+1(p +1) = Ank+1(p) + BKer(p) Q)

and, since ex41(p) — ex(p) = yr(p) — yk+1(p) and using (3)
ex+1(p) —ex(p) = —CAni+1(p) — CBKer(p).  (6)

The ILC dynamics can now be described by the state-space
model

M1 (p+1) = A1 (p) + Boer(p)
ek+1(p) = Chry1(p) + Doer(p) (7
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where

A=A, By=BK
C=-CA, Dy=1— CBK. (8)
Equation (7) is a discrete linear repetitive process state-
space model of the form (1), where 7 is the state vector and the
ILC error e the output or pass profile vector. Hence, repetitive
process stability theory can be used to study the stability and
convergence properties of the ILC law considered in this brief.
The stability theory for linear repetitive processes, including
those described by (1) as a special case, is based on an
abstract model of the dynamics in a Banach space setting,
where the contribution of the previous pass profile to the
current one is of the form yry1 = Lgyyk, Yk € Eq4. In this
description, E, is a Banach space with norm || -|| and L, is a
bounded linear operator mapping E, into itself. For examples
described by (1), L, is the convolution operator for a discrete
linear system with (state, input, output, and direct feedthrough,
respectively) state-space model matrices {A, By, C, Do}.

III. STABILITY AND CONVERGENCE ANALYSIS

The stability theory for linear repetitive processes with pass-
to-pass updating described by yx4+1 = Lgyr requires that,
given any initial yp, the sequence of pass profiles {yi}r>o0
generated converges strongly to zero as k — oo. This is
termed asymptotic stability in the repetitive process setting
and [4] is equivalent to the existence of real scalars M, > 0
and 1, € (0,1) such that IIL];H < Malﬁ, k > 0, where
[| - || also denotes the induced norm. This requires that a
bounded initial pass profile produces a bounded sequence of
pass profiles (BIBO stability) and the necessary and sufficient
condition for this property is that r(L,) < 1 where r(-)
denotes the spectral radius. For a discrete linear repetitive
process described by (1) the necessary and sufficient condition,
by direct application of results in [4], is r(Dg) < 1, that is,
all eigenvalues of Dy must lie in the open unit circle in the
complex plane.

Suppose that asymptotic stability holds and let yoo(p),
Xoo(p), and uso(p) denote the strong limits as k — oo of
Ye+1(p), xkt1(p), and ugy1(p), respectively. Then, see [4]
for the details, the limit profile corresponding to asymptotic
stability of an example described by (1) is, with D = 0 for
ease of presentation from this point onward

Xoo(p+1) = (A + Bo(I — Do) 'C)xoo(p) + Buoo(p)
Yoo(p) = (I = Do) ' Cxeo(p). )

Consider also the special case when A = —0.5, B = 1,
Bo=0.54+y, C=1, and Dy = 0 Asymptotic stability holds
for this example and (9) becomes

Xoo(p +1) = yx00(p) + uco(p). (10)

Hence, for |y | > 1, this limit profile is unstable as a standard
discrete linear system and this occurs even though the state
matrix A is stable.

To prevent cases such as the above example from arising,
the BIBO property is imposed for any possible value of
the pass length (mathematically this can be analyzed by
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Fig. 1. Multiaxis gantry robot with the axes marked.

letting a — o0). This is the stability along the pass property
that requires the existence of finite real scalars My, > 0
and Ao € (0,1), which are independent of «, such that
||L’;|| < Moollgo, k > 0. For the processes considered this
property requires that: 1) r(Dg) < 1 (asymptotic stability);
2) r(A) < 1; and 3) all eigenvalues of the transfer-function
matrix G(z1) = C(z1I —A)~'By + Do must lie inside the unit
circle in the complex plane for all |z1| = 1. In the case of the
numerical example above it is this last condition that fails.

Stability along the pass for linear repetitive processes
demands that the signals involved are uniformly bounded
when both independent variables k and p are of unbounded
duration. Equivalently, this property must hold for any &
and p in the positive quadrant of the 2-D plane, that is,
(k,p) € P := {(k,p) : k = 0,p > 0}. This requires
r(G(z1)) < 1 for all [z1] = 1, which, as discussed in more
detail later in this section, is a very strict condition.

Strong practical stability relaxes the BIBO stability require-
ment over P by removing the uniform boundedness require-
ment as both k — oo and a — oo but still demands this
property for the cases when the pass number k — oo and the
pass length a finite, and also when k is finite and a — oo.
The case when a is finite and k — oo is a mathematical
formulation of the requirement to operate the plant a very
large number of times without the need to stop and hence,
in a manufacturing example, lose throughput. The case k is
finite and & — oo is the mathematical formulation of the case
where the process completes a finite number of passes but the
pass length is very long and there is a requirement to control
the along the pass dynamics.

From the analysis of asymptotic stability above, it follows
that when « is finite and k — oo strong practical stability
requires 7 (Do) < 1 and r (A +Bo(I —Dg)~'C) < 1. The case
when k is finite and o — oo results in

yee1(00) = (CU = 4)™"Bo + Do) 4 (00)

Xit1(00) = (I — A) ' Boy(00) (11)

and hence we require r(C(I —A)"'Byo+Dg) <1 and
r(d) < 1.
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Fig. 2. (a) Bode gain and (b) phase plots for the X-axis.

In summary, therefore, strong practical stability requires that

r(Dp) < 1 (12)

r(A) <1 (13)
r(A+Bo(I —Dp)~'C) < 1 (14)
r(CU —A)"'By 4+ Dp) < 1. (15)

Remark 1: To explain the term strong practical stability,
first note that for 2-D discrete linear systems practical
stability [9] was introduced in response to observations
that the proposed BIBO stability was too strong for
some applications. This alternative property requires that
the response in each direction of information propaga-
tion is stable assuming no interaction between them. Prac-
tical stability can be extended to the processes considered
here and requires conditions (12) and (13) which, as the
simple example with limit profile (10) shows, is too weak
in some cases.

It is also possible to characterize strong practical stability
in terms of the poles of the example considered, where the
concept of a pole for a 2-D linear system is much more
complex than in the standard linear systems case [10]. The
poles are the component-wise nonzero points in 2-D complex
space where the following matrix fails to have full rank:

H(z1,2) = [ZliéAzl_iB%)o] (16)
Introducing the characteristic polynomial as
p(z1,2) = det H(z1, 2) a7
it follows that the poles are given by:
p(z1,2) =0. (18)

The set {aj, ay} that satisfies this last equation is termed the
pole-variety. Also stability along the pass holds if and only if

p(z1,2) #0, (19)

The poles are given by the vanishing of a single 2-D non-
unit polynomial and it is guaranteed to be a 1-D geometric
set in 2-D complex space. Moreover, the pole variety must

lztl =1 |z = 1.
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be complex, even though the entries of the matrices A, By, C,
and Dy are real. This property is required to capture the full
exponential-type dynamics of the process.

The poles of discrete linear repetitive processes can be
interpreted in terms of exponential trajectories, which in the
case considered here have a clear physical interpretation.
In particular, stability along the pass requires no poles with
|z1] = 1 and |z| > 1, which is a direct generalization of the
standard linear systems case. For strong practical stability, it
is easy to see that (14) is equivalent to p(z1, 1) # 0, |z1| > 1,
and (15) to p(1,z) # 0, |z| > 1. Hence for this stability prop-
erty, the only exponential trajectories considered are identical
to those for a standard discrete linear system and these are
clearly a subset of those given by (18).

In terms of design to track a given reference vector,
imposing the requirement for stability along the pass means
that the control law must achieve the required level of attenu-
ation over the complete frequency range [due to condition 3)
above expressed in terms of the transfer-function matrix
G(z1)] and, by comparison with the standard linear systems
case, this is most likely to result in a very difficult
design problem. In such cases, strong practical stability
may lead to acceptable design, especially for applica-
tions where an unstable limit profile is not acceptable
and/or some control is required over the along the pass
dynamics.

The following result is the basis for the ILC design devel-
oped and experimentally tested in this brief.
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Fig. 5. MSE against pass number (k) when K 1 = —45.5 is constant for
different K shown in the legend.

Theorem 1 [6]: A discrete linear repetitive process described
by (1) is strongly practically stable if and only if there exist
matrices Wi > 0, Wo > 0, Q1 > 0, Q> > 0, and nonsingular
matrices S; and Sy such that the following set of LMIs is
feasible:

_ .
]
— Wy WoAT]
[ij _2W2 <0 @1
=01 STAT
|:A151 01 —E8; - sTET| <° (22)
-0 S A7 |
|:A252 0) —E»5 — sTET | <© 23)
where A0 B
_ _ |1 —Bo
A= [CO} B = [o 1—]]])0}
and

Consider the application of the repetitive process stability
analysis to the ILC state-space model described by (7) and (8).
The first result is the following.

Lemma 1 [11]: The ILC state-space model described by
(7) and (8) cannot be strongly practically stable if the matrix
CBK is singular. If the matrix CBK is nonsingular, the
condition (14) always holds.

Remark 2: In previous work, such as [5] ILC design using
stability along the pass for discrete linear repetitive processes
was considered. The results obtained are also expressed in
terms of LMIs which are sufficient, but not necessary, for
the stability property. In contrast, the conditions for strong
practical stability are necessary and sufficient. Strong practical
stability is a necessary condition for stability along the pass,
but the conditions under which strong practical stability hold
cannot be obtained as special cases of those for stability
along the pass. The reason for this is, as discussed above,
that stability along the pass and, in particular, the poles are
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defined in terms of two indeterminates whereas for strong
practical stability they are defined in standard discrete linear
systems terms. The control law in [5] also used the current
pass state vector. Previous work has shown how to replace
current pass state feedback with pass profile (output) based
control action [11] and design for strong practical stability.

IV. ILC DESIGN

Using Lemma 1, the requirement that (14) holds in the ILC
application is redundant and the following are now an obvious
set of necessary and sufficient conditions for strong practical
stability.

Theorem 2: The ILC state-space model given by (7) and (8)

with CBK nonsingular is strongly practically stable if and
only if

(I — CBK) < 1

r(A) <1 (25)
r(I —CBK — CA(I — A)"'BK) < 1. (26)
Condition (24) is that obtained from applying the result
in [7] obtained by a 2-D Roesser model analysis with the
control law (3). To illustrate the problems that can result
if (26) does not hold, consider the case of (2) with the ILC
law applied when A = 0.9 and CBK = 1/2. Then (24)
and (25) hold but not (26) and, by (11), unacceptable pass-
to-pass dynamics will result. Hence in ILC applications, it is
possible that stable plants will produce unacceptable dynamics
and a design method that prevents such cases from arising,
by enforcing both (25) and (26), is required. The new design
algorithm of this brief meets this requirement and is a major
advantage of the 2-D systems approach.

The aim is to develop a computationally efficient method of
designing the control law. The task is more complicated than
that of deriving a test for strong practical stability since there
is only one matrix K that has to simultaneously satisfy the
first and third conditions of Theorem 2.

Introduce the notation

(24)

0 BK ~
AZZ[OI—CBK}:A2+HK

I—-—A0
Ez:[ CA 1}
where

~ 00 =~ B ~
Azz[(”}, 1= [_CB}, K=[0K]. (27)
The following is the major new result of this brief.

Theorem 3: The ILC scheme described by (7) with

r(A) <1 and CBK nonsingular is strongly practically
stable if

STAT + NTTIT

X-axis mse (mz)

I I I I I I I I I
0 20 40 60 80 100 120 140 160 180
Trial Number

(a)

I I I I I I I I
20 40 60 80 100 120 140 160 180
Trial Number

(b)

10’ b

X-axis mse (m?)

I I I
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(c)

Fig. 6. MSE against pass number (k) for three values of K1 and constant
value of K = 190. (a) MSE against pass number (k) for K 1 = —257.60 and
K = 190. (b) MSE against pass number (k) for 131 = —157.47 and K = 190.
(c) MSE against pass number (k) for 121 = —357 and K = 190.

-0
[AzS +TIN Qs — ExS — (EZS)T] <0 @8
holds for Q> > 0, nonsingular matrix S = diag(S, S»)

and rectangular matrix N = [0 N]. Also if (28) holds, a
stabilizing K is given by

K = Ns; . (29)

Proof: First, (28) guarantees that (26) of Theorem 2 holds.
This follows by applying the fourth condition of Theorem 1
to the LMI (28) with the previously introduced notation. To
find the stabilizing control law matrix K, we have to use the
block diagonal matrix S = diag(S;, $2) and introducing the
additional variable N = K S> completes this part of the proof.
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The next step is to show that the LMI (28) guarantees
that (24) holds, where this latter condition is equivalent to
following LMI:

S — NTBTCT} 0 30)

—W
S, —CBN W, -8, - ST
and hence (28) can be written in the following extended form
using the matrices defined in (27):

—Q2T11 * * *
KB SIS Pr

0 S,—CBN Qf,-CAS; Q

where Y = Q1 — S1 — SIT + AS] + SITAT and
Q=00 — 85— SZT. For (31) to hold the following must be
satisfied [the lower 3 x 3 block principal minor of the matrix
in 31)]:

-0 NTBT | ST —NTBTCT
BN Y Osp — STATCT | <0. (32)
S, —CBN QF, — CAS,| Q
Next, left- and right-multiply this last result by
01
10
to obtain
Q |S, — CBN Q1,, — CAS)
(S, — CBN)T —0m NT BT <0. (33)
(0%, —cAasp’| BN Y
For (33), with Q defined by (31), to hold
0222 — S — SZT Sy — CBN1|
<0 34
[ (8~ CBN)"  —0Qmn 34)

Finally, left- and right-multiply this last inequality by

7o

to obtain (30) with Q220 = Wj and the proof is complete. B

The result of this theorem is sufficient but not necessary
since there is only one matrix K available for selection to
simultaneously satisfy two conditions. This, of course, results
in possible conservativeness but note again that in design for
stability along the pass both the stability condition and the
control law design are based on sufficient only conditions
whereas with strong practical stability only the latter require-
ment has this property.

Theorem 3 requires that the plant matrix A is stable. If this
is not the case, apply the preliminary control law

ur(p) = Kiyve(p) = KiCxe(p) (35)

which is output based to avoid the need for state vector
measurements or the use of a state observer. The following
lemma is an immediate consequence of the main result in [12].

Lemma 2 [12]: Suppose that the control law (35) is applied
to (2). Then r(A + B K 1C) < 1 in the resulting state-space
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Fig. 8. Input progression for K1 =—300.29 and K = 325.69.

model if there exist matrices V > 0, F', M, and S such that
the following LMI holds:

-V (AS + BFC)T
|:AS+BFC V—S—ST]<O (36)
MC = CS. 37
If this LMI holds, stabilizing K/ can be computed using
Ki=FM™". (38)
The control law applied to the plant is
wi1(p) = uk(p) + Kilyk1(p) — ye(p)]
+ Klyret(p+1) = ye(p + D] (39)

where the matrices K; and K are obtained using Lemma 2
and Theorem 3 as appropriate. The control law (39) (see,
for example, [13]) is known in the ILC literature and what
is developed in this brief is a new design method. This
method automatically enforces (26) and in comparison to
alternative designs this is a major advantage of 2-D systems-
based analysis and control law design.
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V. EXPERIMENTAL VERIFICATION

To experimentally assess the new design method, it was
applied to a multiaxis gantry robot. This robot, shown in
Fig. 1 with the axes marked, has previously been used for
testing and comparing the performance of other ILC algo-
rithms, see, for example, [14]. Each axis of the gantry robot
is modeled based on frequency response tests where, since
the axes are orthogonal, it is assumed that there is minimal
interaction between them. An approximate continuous-time
transfer-function representation for each of the three axes has
been obtained through use of straight line approximations of
the Bode gain plots. Here, we only give the final result for
the X-axis in the form of a seventh-order transfer-function
and those for the y and z-axis can be found in [14] and [15],
including a detailed description of how the transfer-function
used for design was obtained from the Bode plots.

The Bode gain and phase plots for the X-axis are shown in
Fig. 2, and the resulting transfer-function used for design is
shown in (40) at the bottom of the page.

This robot system is designed to emulate a pick and
place task that arises in many applications to which ILC
is applicable. In operation, the robot must undertake the
following operations in synchronization with a conveyor
system: 1) collect an object from a fixed location; 2) transfer
it over a finite duration; 3) place it on the moving conveyor;
4) return to the original location for the next object; and
5) repeat the previous four steps for as many objects as
required. The 3-D trajectory used in the results given here
is shown in Fig. 3 with the X-axis component in Fig. 4.

The model used for the extensive experimental investigation,
of which the results given in this section are a representative
selection, was constructed using zero-order hold discretization
with sampling period of 0.01 s.

In the control law (39), the K| term is required and use of
Lemma 2 gives one choice as K| = —45.5. In the first set
of experiments, the trends resulting from particular strategies
for selecting 131 and K in (39) were investigated. The first
case considered was with constant K 1, that is, the eigenvalues
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Fig. 11. MSE against pass number (k) for 1%1 = —300.29 and K = 325.69.

of the matrix A are fixed once K 1 is selected, and the design
task is then to chose a corresponding K, where the LMIs to
be solved provide a family of solutions.

Consider the case when K 1 = —45.5. Then admis-
sible values of K include 13.5,112.59, 325.69,415.69, and
Fig. 5 shows the mean squared error (MSE) for these
choices plotted on one axis. These indicate that increasing
the value of K leads to faster convergence from pass-to-
pass but also that performance begins to degrade again if
K is too large. This demonstrates that enforcing fast pass-to-
pass error convergence can result in degraded along the pass
performance.

To consider the effects of focusing on the selec-
tion of K 1, consider the case when K = 190 and
K, = —257.60, —157.47, and —357, respectively. Inspecting
the results of Fig. 6 confirms that the speed of the pass-to-
pass error convergence is unchanged (as expected with the
fixed K), but the levels of oscillation in the error vary and
hence the possibility of potentially large-scale oscillations in
the along the pass responses.

13077183.4436(s + 113.4)

(s> 4+30.285 4+ 2.13 x 10%)

G =
X() = 161575 + 1125 x 109)

(s2 4 227.95 + 5.647 x 10%)(s2 + 466.1s + 6.142 x 10°)

(40)
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Since in applications only a finite number of trials will ever
be completed, clearly there is interest in selecting K and K to
give the desired level of performance in terms of, for example,
the minimum MSE over a finite number of trials, say 200.
On the basis of extensive numerical evaluations the case is
considered when 1%1 = —300.29 and K = 325.69, where
Fig. 7 shows the experimentally measured output, input and
error on pass k = 100 and Figs. 8—10 the progression with pass
number k of the input, error, and output, respectively. Finally,
Fig. 11 shows the resulting MSE against pass number k.

VI. CONCLUSION

This brief has continued the development of design algo-
rithms for ILC schemes using a 2-D system setting for
analysis, where both pass-to-pass error convergence and along
the trial performance were considered. The control law is
phase-lead ILC augmented by output feedback on the current
pass if required. This form of control law is well known
in the literature where if the output feedback term [I% 1
in (35)] is required to pre-stabilize the plant dynamics and
also meet any performance specifications on the along the
trial dynamics), many design methods exist. These were based
on first selecting K, and then applying ILC via, for example,
lifting to the resulting controlled plant. It is, however, possible
that placement of the poles of the plant in stable locations
will not guarantee acceptable along the pass dynamics as
consideration of the limiting case when K is finite and the
pass length o — oo via (11) and hence Theorem 1 shows.
If such a case arises in an application, the algorithm in this
brief automatically enforces (26) for the K arising from
the stabilization of the plant matrix. The LMI-based design
also produces a family of solutions and hence permits the
opportunity to tune the final design. Furthermore, the LMIs
are of lower dimension and potentially less conservative than
alternatives from the repetitive process-based approach to ILC
design. In more general terms, the 2-D systems approach does
allow simultaneous design for pass-to-pass error convergence
and also transient response along the passes. The latter aspect
requires the ability to arbitrarily assign the spectrum of the
state matrix and if this is not possible, as with the partic-
ular control law in this brief where (35) is a static output
feedback for the plant, then the control law structure must be
enhanced.

The ILC law design algorithm developed in this brief has
been experimentally tested on a gantry robot that has been
previously used to benchmark other ILC algorithms. Hence,
the same reference signal has been used. The experimental
results show that the design method of this brief is capable of
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delivering high quality performance in terms of pass-to-pass
error convergence and along the pass performance. Much
further work is required before a detailed comparative assess-
ment of this design method against alternatives can be under-
taken. One immediate issue is robust control to allow for
uncertainty in the model to be used for design. Also there is
a need to do more comparative experimental studies to fully
determine the merits of this algorithm against alternatives.
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