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Abstract—Event-B is a formal method for specification and
verification of reactive systems. Its Rodin toolkit provides com-
prehensive support for modelling, refinement and analysis using
theorem proving, animation and model checking. There has
always been a need to reuse existing models and their associated
proofs when modelling related systems to save time and effort.
Software product lines (SPLs) focus on the problem of reuse by
providing ways to build software products having commonalities
and managing variations within products of the same family.
Feature modelling is a well know technique to manage variability
and configure products within the SPLs. We have combined
the two approaches to formally specify SPLs using Event-B.
This will contribute the concept of formalism to SPLs and re-
usability to Event-B. Existing feature modelling notations were
adapted and extended to include refinement mechanism of Event-
B. An Eclipse-based graphical feature modelling tool has been
developed as a plug-in to the Rodin platform. We have modelled
the ‘production cell’ case-study in Event-B, an industrial metal
processing plant, which has previously been specified in a number
of formalisms. We have also highlighted future directions based
on our experience with this framework so far.

I. INTRODUCTION

Formal Methods provide mathematically based languages,
tools and techniques for specifying and verifying systems dur-
ing construction. They allow identification of inconsistencies,
ambiguities and defects earlier in the software development
life-cycle and reduce the need for unit and integration testing
[1]. Successful application of formal methods can be seen in
aerospace, transportation, defence and medical sectors [1], [2].
Improvements in formal specification languages, verification
techniques and robust tools are ongoing, in particular, by the
DEPLOY1 and RODIN2 projects, including industrial partners
such as Bosch, SAP, Siemens and Space Systems Finland.
These projects are developing tools, as well as strengthening
the theoretical base, for the formal specification language
Event-B [3].

Event-B [3] is a formal specification language, a successor
of Abrial’s classical B [4]. It was developed as part of the
RODIN and earlier EU projects. The DEPLOY project, along
with industrial partners, is currently focused on deploying this
work into the industry. Event-B is based on set theory and
first-order logic and allows the specification and verification
of reactive systems. This is supported by integrated Rodin

1DEPLOY - Industrial deployment of system engineering methods EU
Project IST-214158. http://www.deploy-project.eu

2RODIN - Rigorous Open Development Environment for Open Systems:
EU Project IST-511599. http://rodin.cs.ncl.ac.uk

toolkit comprising editors, theorem provers, animators and
model checkers.

A Software Product Line (SPL) refers to a set of re-
lated products built from a shared set of resources having
a common base [5]. Further members of the product line
are built by reusing existing core components and adding
extra functionality. SPLs provide the benefits of reusability
in reducing the time to market, lower costs and reduce effort
involved in product development. Feature modelling [6] is a
well known technique for building SPLs. It has been used in
many domains, product line projects and organizations where
a feature (usually written in a programming language) is the
unit of reuse, specialization and composition. It provides ways
to manage variabilites and commonalities within a product
line. Feature modelling was suggested as part of the Feature-
Oriented Domain Analysis (FODA) [7] in the early 90’s and
several tools have been developed to support feature modelling
for SPL engineering [6].

Our objective is to combine feature modelling with Event-B
to formally specify software product lines, in order for SPLs
to benefit from automated verification that formal methods
provide. As a lot of time and effort is involved in speci-
fying and verifying formal models, this can certainly help
in reusing existing specifications and already proven models
when building similar system. This can be encouraging for
SPL community to use formal methods as we have adapted
and extended existing feature modelling notations. Our earlier
work on feature composition ([8], [9]) is now part of the
formal product line development framework presented here.
This paper highlights our contribution of extending existing
feature modelling notations and the development of a feature
modelling tool which can be used to build feature models of
product lines with variability and constraints embedded in it.
These feature models can then be configured to build instances
of the product lines. A number of interesting issues came up
during the development and then later on while applying it to
the example case-study discussed later.

Section 2 gives a technical introduction of Event-B lan-
guage. Feature modelling is discussed in Section 3 followed
by the tool development discussion in Section 4. Section
5 discusses our experience on the application of case-study
example to the tool. Related work and conclusion/future work
is given in Sections 6 and 7 respectively.



II. EVENT-B LANGUAGE

An Event-B model consists of a machine and multiple
contexts. The machine specifies behavioural or dynamic part
of the system where as the context contains static data which
includes sets, constants, axioms and theorems. The set defines
types where as the axioms give properties of the constants
such as typing etc. Theorems must be proved to follow from
axioms. The machine includes context(s) using the sees clause.
The variables provide state space of the machine and their
typing is given as invariants which are predicates and also
specify correctness properties that must always hold. The state
transition mechanism is accomplished through events which
modify the variables. An event can have conditions known
as event guards which must be true in order for the event to
take place. It can also have parameters (also called as local
variables). The machine variables are initialized using a special
event called INITIALIZATION which is unguarded. An event
has the following syntax:

e = Any t when G(t,v) then A(v) end

An event e having parameters t can perform actions A on
variables v if the guards G on t and v are true. A model is said
to be consistent if all events preserve the invariants. This is
checked by the tool using proof obligations (POs). POs are the
verification conditions automatically generated by the tool and
then discharged using theorem provers to verify correctness of
the model.

Refinement is at the core of Event-B modelling where we
start by specifying the system at an abstract level and gradually
add further details in each refinement step until the concrete
model is achieved. Refinement is usually considered to reduce
non-determinism and each of the refinement steps must be
proved to be the correct refinement of the abstract model
by discharging the refinement POs. Typically, we classify
the refinement into horizontal and vertical refinements. In
horizontal refinement, we add more details to the abstract
model to include further requirements where as in vertical
refinement the focus is on the design decisions. Refinement
can also be categorized as event and data refinements. In case
of event refinement, when a new event is added in the refined
model, it is said to refine skip which means it can not change
any of the abstract state variables. New variables are related
to the abstract ones using ‘gluing invariants’. Both types of
refinement can take place in a single refinement step.

III. SOFTWARE PRODUCT LINES (SPLS)

A software product line is a set of related products built
from a shared set of resources while having significant vari-
ability to meet the user requirements. Variability can be a
particular functionality that differentiates products within the
product line. The major advantage of SPLs approach is that
of reusing existing artefacts to build similar systems with
slight variations. The benefits of reusability are obvious when
applied in a systematic way. These include less time to market
in order to compete with the fast paced competitors, increased
productivity and lower development costs by reusing already

built components. It also improves on quality as existing
components repeatedly go through testing and other v&v
techniques. There are obviously some issues while reusing
existing components such as integration problems but these
can be overcome by carefully planning and designing the
systems and building the components that can be reused in
the future and that is where the concept of SPLs play its
part. SPLs have been practiced in the industry for a couple
of decades now and some success have been reported [5].

There are a number of approaches for specifying product
lines. These include use-case driven and feature-based ap-
proaches. The use-case approach is more suitable for SPLs
developers as it includes implementation level details and the
feature-based approach is more suitable for non-development
stakeholders where features are generally black-box objects
and lower level technical details are abstracted [10]. We have
selected the feature-based approach widely known as “feature
modelling”, as it seems more practical to combine with our
formal methods domain.

A. Feature Modelling in Event-B

Feature modelling provides means to organize features
and configure them in order to build products of a product
line. The feature has been defined as “a logical unit of
behaviour specified by a set of functional and non-functional
requirements”[11] and usually referred as a property of the
system that is of some value to the stakeholders. We define
feature as an Event-B model which consists of a machine
and multiple contexts. We have adapted the cardinality-based
feature modelling notations[12] and extended it to add the
refinement mechanism required for Event-B modelling. The
reason for doing so is that the existing tools are not flexible
enough to give Event-B semantics to the features and it is
also hard to integrate with the Rodin platform. This can also
be referred as domain-specific feature modelling.

Feature models are used to specify a product line and
are represented using tree-structured feature diagrams. These
include variability among the product line members and the
ways in which these feature models can be instantiated to
generate various products.

The graphical notations used in our feature modelling
framework are given in Figure 1. A feature model consists of
a tree structured feature diagram which has a root feature that
gives it a name and can have many features. The filled circle
on a feature shows that it is mandatory feature and optional
otherwise. The features with a triangle attached represent
group features which are containers for other features and
specify any constraints on the features within that group.
One such is the cardinality constraint that indicates how
many of the features in the group must be present in a
particular instance. Non-filled triangle means alternative or
the cardinality stated with it and the filled triangle means
OR, i.e. the cardinality ‘1..k’, where k is the number of
features in that group. There are four types of connections
that can be used to connect various model elements: features,
includes, excludes and refines. The includes and excludes serve



as constraints in the feature model. A feature can include other
features, i.e. selecting that feature must also select the included
features. Similarly, a feature can exclude other features and
it is mutually exclusive, which means you can not have any
two features with excludes connection between them in the
configured instance. Our major extension to existing notations
is the refinement concept of Event-B. A feature can be refined
by multiple features. This implicitly puts a constraint on the
selection of features in the refinement chain as only one of the
features in the chain can be present in the generated feature
instance. Any feature in the tree (except root), which does not
have a features connection below it, is actually mapped to an
Event-B feature during configuration, i.e. leaf level features or
refined features (even non-leaf).

Fig. 1. Feature Modelling Graphical Notations

Figure 2 shows an example feature model drawn using our
feature modelling notations. The root feature PC has a group
of six features with cardinality “4..6” which means an instance
must select at least four of the group features. The features
table and depositBelt of the PC group are optional and rest
of the group features are mandatory having filled circles. The
feature crane includes depositBelt which means an instance of
the feature model having crane feature must have depositBelt.
Where as, using the feature advCrane (a refinement of crane)
excludes depositBelt, which means both of these can not be
present in a particular variant of PC derived from this feature
model.

We developed an EMF3 [13] metamodel based on these
feature modelling notations as shown in Fig. 3. A Feature-
Model, representing the system being modelled, has a name
and may contain features or feature groups. A Feature also has
a name and may have constraints. It can also contain further
features or groups. Similarly, a Group may have features
and any constraints as required. This metamodel has been
developed with a view to possible future extensions to our
feature modelling tool which have not been included in the
current version such as annotating the feature models with
composition rules and other constraints.

Feature modelling in Event-B can be used in two ways.
Firstly, when the Event-B specification already exists and we
want to use feature modelling to add variability and to allow

3Eclipse Modelling Framework (EMF), a part of Model Driven Architecture
(MDA), is a Java based framework which provides facility for designing and
implementing structured models

Fig. 2. Feature Model Example

users to configure these features in different ways to build
similar systems. Secondly, where we start system development
by building feature model of the system and then write Event-
B specification afterwards. The later approach can also be used
as a design activity during the system development and allows
user to design the model in a way to be more reuse-oriented.
It also helps in visualizing the refinement tree for the Event-B
features to be specified.

1) Feature Model Validation: Model validation is an im-
portant issue that must be addressed in any model-driven
development. Hence, we need to provide a way to make
sure that our models are valid. By valid we mean that they
conform to certain defined criteria or rules. In our feature
modelling framework, the feature models must conform to the
metamodel (which defines our feature modelling notations)
and any constraints given in the metamodel must be satisfied.
Also, there are other constraints that can not be expressed
in a simple metamodel and requires the use of a constraints
language (this will be considered in the future if needed based
on the experience with the current tool). Following are the
properties that must be satisfied in order to build consistent



Fig. 3. Feature Modelling Metamodel

and correct feature models. To be more precise, a correct
feature model conforms to its metamodel, does not violate
any constraints and can be instantiated.

• A feature model may not have cycles, i.e. a feature x has
a child feature y, which is a parent feature of x.

• A feature may not include and exclude the same feature.
• A feature refined by other feature should not have further

features or groups as it represents an Event-B feature that
can not have further features. It can only have further
refinement features.

• A feature x may not include features y and z, which
exclude each other. If this scenario is present in the
feature model, it is not possible to generate a valid
instance of the feature model.

• A feature may not exclude any of its ancestor features.
• A feature may not be unreachable during the configu-

ration or may not be selected in any valid configuration.
An example would be a group of two features with group
cardinality ‘1..1’ and one of the features is mandatory. In
this case, the user will never be able to have the optional
feature selected in a valid configuration as doing that will
violate the group cardinality due to the other mandatory
feature.

• A feature model may not have orphan features. All the
features must be connected to the feature tree in order
for these features to be configured as part of the feature
model.

IV. TOOL SUPPORT

We have developed a feature modelling tool (FMT)4 to
specify feature models of product lines and to configure the
feature models to generate their instances. The tool is open

4http://wiki.event-b.org/index.php/Feature Modelling Tool

source, developed in Eclipse using Java and integrated as a
plug-in to the Rodin platform. Figure 4 shows architecture of
the tool. It consists of a graphical feature model editor, a model
transformation module and a feature configurator, discussed
below.

Fig. 4. Feature Modelling Tool Architecture

A. Feature Model Editor

Our feature modelling tool includes a graphical feature
model editor (FME) 5 developed using GMF [14] to build the
feature models. The GMF (Graphical Modelling Framework)
is an Eclipse modelling project which provides infrastructure
for building graphical editors based on models. The FME
allows feature models to be built in a free form and uses
common graphical notations of feature modelling which are
mostly used when drawing feature models by hand. The FME
also implements validation mechanism based on the validation
properties/constraints mentioned above and does not allow
users to build inconsistent models. It also warns the user if
any of the validation properties are being violated upon saving
the model.

B. Model Transformation

The feature models built using the feature model editor are
then transformed into EMF metamodels at run-time and for
each product line. This model to metamodel transformation is
needed in order to instantiate the feature models and this in
a way forces the instances to conform to their metamodel.
This transformation is done using Epsilon Transformation
Language (ETL)[15] which is part of the Epsilon framework.
It provides execution engine for the transformation rules. By
using a transformation language, we can achieve the benefits
of Model-Driven Development. It is also easier to use rule-
based language compared to a programming language. We
might need to use the Epsilon validation framework later on
to validate that the generated instances are valid instances of
the feature models. We have looked at other transformation

5Contributed by Nikola Milikic (a University of Southampton Intern)



languages such as ATL [16] and RDL [17], but ETL is more
suitable for Eclipse development and better in terms of docu-
mentation and support compared to others. After transforming
feature models into metamodels, for different product lines,
these are then used as an input to the feature configurator
discussed below.

C. Feature Configurator

The feature configurator (FECON) allows the modeller to
select a configuration of features. The tool then composes
these selected Event-B features into a single feature. The
FECON is a collapsible tree-structure editor (see Fig. 6) which
extends our feature composition tool [8]. It provides a configu-
ration mechanism where the user selects features that he wants
to include in a particular product or a feature model instance.
It enforces the constraints provided in the feature model. It
automatically selects the mandatory features and highlights
any violation of cardinality constraints. Whenever a feature
is selected, it automatically selects/deselects features specified
using includes/excludes constraints. The FECON also shows
the associated Event-B machines and contexts for the features
and highlights any conflicts that need to be resolved. At the
moment, it detects naming conflicts (e.g. variables or events
with same name) and provides ways to automatically resolve
these name clashes either by making them disjoint through
renaming or by simply deselecting repeating entries in multiple
features. It also helps the user in automatically selecting any
dependencies, for example, if an event is selected, it can
then select the related variables and their invariants to build
the correct model. Once all the desired features are selected
and conflicts are resolved, these are composed to generate a
composite Event-B feature i.e. all the machines are merged
into a machine and all the contexts are merged into a context.
It also enables the user to merge multiple events into a single
event. This concatenates the actions and conjoins the guards to
maintain invariant preservation. This composition of Event-B
features into a composite feature is required in order for us
to reason about the complete model of the generated instance
e.g. using animation, theorem provers etc. Figure 6 shows a
configuration of the example feature model on the left and
event fusion is shown on the right.

The composition of refined features here is not straight
forward. When a refined machine is composed with other
models, its variables may be typed in abstract models along
with other invariants. These variables and invariants should
also be composed along with the refined model. The user needs
to guide the tool in selecting such elements. Now that we have
a tool which can be used to build example case-studies, it
would help us to figure out common patterns for composition
and will be extended in the future to include such patterns to
automate the composition process.

V. PRODUCTION CELL EXAMPLE

We have used the Production Cell (PC) case-study, an
example of reactive system, which has been specified in a
number of formal modelling languages. The PC is metal

Fig. 5. PC Feature Model

Fig. 6. Feature Configurator Screenshot

processing plant where metal blanks enter into the system
through the feed belt and dropped on to the elevating-rotary
table. The table elevates and rotates to a position where the
first robot arm can pick up the blanks. The robot rotates anti-
clockwise to drop the blanks in the press. The press forges
the blanks which are then picked up by the second robot arm
dropping on to the deposit belt. A moving crane then picks the
blanks from the deposit belt and brings them back to the feed
belt and completes a processing cycle. We have modelled this
using Even-B, starting with the abstract model and refined
by gradually adding further details in each refinement step.
All of this is horizontal refinement. The proof obligations
at each refinement step were discharged automatically and
interactively to prove each step as a valid refinement.

The decomposition plays important role when modelling
complex systems. It is easier to model and refine subsystems or
modules than that of the entire system at once. It also enables
several independent modules to be dealt with in parallel by
different teams. Hence, we have decomposed the Event-B



model of the PC in two ways i.e. one based on physical
components and the other based on the various controllers.
These two types of decomposition were used as example
cases for the feature composition tool [8]. This experience
showed some interesting results such as the control based
decomposition/composition was more reusable than the one
based on the physical components and also discovered the
need to model the system fairly generic which can then be
specialized and composed at instantiation stage.

We have used the same case-study for the feature modelling
tool to build product line of a production cell. Figure 5
shows a feature model of the Production Cell. Here we have
six features which are basically physical components in the
processing unit. We have refined each one of these further
using horizontal refinement, i.e., adding more functionality
in each step. The variability here is in terms of refinement
selection e.g. the feature ‘table’ is mandatory which means
one of the features in the table’s refinement chain must be
selected. In this example, we had the Event-B features already
specified, so feature modelling is useful in understanding the
ways these features and/or their refinements can be composed
to build instances of the production cell.

After building the PC feature model, we configured it to
generate an instance, i.e., a product of the PC product line as
shown in the Figure 6. As we selected the features that we
wanted to include, the tool highlighted any conflicts which
were then resolved using the automatic deseletion of redundant
elements, as most of the features were sharing the same state
variables. The box on the right shows the merging of all the
INITIALIZATION events from selected machines into one, as
we can only have one such event in the composite machine.
After all the conflicts were resolved, an instance was generated
by composing all the features i.e. all the machines into one
machine and all the contexts into one context. We had to
reprove the composite model because proofs were not carried
through to the composite feature. This is what we will be
exploring next as discussed in the future work section.

VI. RELATED WORK

To our knowledge, there is no tool support for feature-
oriented modelling or product line reuse within the formal
methods domain. But various tools exist which support feature
modelling for product lines such as CaptainFeature, XFea-
ture, Pure::Variants, FeaturePlugin etc. [18]. The underlying
concepts discussed in [19] are quite similar to our feature-
oriented modelling in the domain of formal product line
development. A brief comparison and discussion on these tools
is given by Antkiewicz et al. [18]. Most of these tools do
not mention how actual product-derivation works or how a
feature model can be used to instantiate working application
instance for a product line. They do not have clear mapping
of features to actual components or program units and are
mostly generic as compared to our domain specific feature
modelling. The real problem arises when actual components
are composed or integrated and then how to resolve any
conflicts that may occur due to the components sharing the

environment or how to deal with components having cross-
cutting concerns. Our combination of feature modelling and
Event-B can cover the complete development cycle i.e. feature
models are instantiated as Event-B specification which can
then be used to produce executable code for a particular
product (e.g. using Event-B to C code generator [20]).

Another area that is closely related to our work is the
definition of composition rules. Work is in progress where
composition rules are used while composing Event-B features
[21] and we will be extending our approach to include this in
the future.

VII. CONCLUSION & FUTURE WORK

We have given an overview of our approach to introduce
product line reuse i.e. the concept of feature modelling within
formal methods using Event-B. We have developed a feature
modelling tool for building feature models, configuring Event-
B features and composing them to instantiate software product
line systems by reusing and extending existing features. This
was required because existing feature modelling tools do not
provide enough facilities to give semantics to features and the
resulting formal verification capabilities such as offered by
Event-B. Our prototype tool will enable us to experiment with
different case studies to figure out common practices and at
the same time will help us to define design patterns for such
type of formal product line development. This contribution
should substantially increase productivity and improve user
confidence in using feature-oriented modelling and formal
methods for systems development.

In future, we will explore how to reuse proofs associated
with the features. When we compose Event-B features into
a composite feature to generate a feature model instance, the
tool generates proof obligations (POs) for verification. Most of
the POs for the composed features still exist for the composite
feature, and may have already been discharged interactively.
Hence, it would be useful if the tool could reuse interactively
discharged POs to save user time and effort. We will extend
and implement the ideas of composition POs as discussed in
[21]. There is also a need to automate the composition process
so as to avoid user interaction as much as possible. This might
require adding composition rules as annotations to the feature
models which can then be used while instance generation.
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