
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 1

Tagged Repair Techniques for Defect Tolerance in
Hybrid nano/CMOS Architecture

Saket Srivastava, Aissa Melouki and Bashir M. Al-Hashimi
School of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, UK
(ss3, am06r, bmah)@ecs.soton.ac.uk

Abstract—We propose two new repair techniques for hybrid
nano/CMOS computing architecture with lookup table based
Boolean logic. Our proposed techniques use tagging mechanism
to provide high level of defect tolerance and we present theoretical
equations to predict the repair capability including an estimate of
the repair cost. The repair techniques are efficient in utilization
of spare units and capable of targeting upto 20% defect rates,
which is higher than recently reported repair techniques.

I. INTRODUCTION

The gain in device density that can be achieved using
nanoscale devices presents a compelling case for developing
hybrid nano/CMOS computing architecture [1], [2], [3], [4]. In
a hybrid nano/CMOS architecture, unreliable but highly dense
nano devices are used to provide data storage and computation
while CMOS devices are utilized for interfacing and for highly
critical circuit operations. It is acknowledged that due to high
defect rates associated with nanotechnology, it is unlikely to
compete with CMOS for general purpose computing in the
near future and hence defect tolerance is necessary [5], [6],
[7], [8], [9]. While defect tolerance has been addressed to some
level in CMOS generation, it has gained importance recently
with the emergence of novel computational paradigms that
involve highly dense nano/CMOS architectures.

To achieve acceptable levels of manufacturing yield for
nano/CMOS architecture efficient repair techniques need to
be implemented [10]. There is a large body of literature
available for efficient CMOS memory repair techniques, recent
examples include [11], [12]. It is our intention to develop
repair techniques that use the available literature to provide
defect tolerance in hybrid nano/CMOS architecture. This in-
tention is motivated by the proven effectiveness of these repair
techniques in practice. Further, incorporating these proven
repair techniques will facilitate their greater acceptance by the
electronics design industry. While exact manufacturing defect
rate is not yet pinpointed, it is believed to exceed 10% [5].
Hence there is a need for more efficient repair techniques
that target higher defect rates. Moreover, most of the earlier
works in nano/CMOS design have targeted crossbar architec-
tures [13], [14], [15]. To advance computational nanocircuits,
new architectures must be pursued. One such promising ar-
chitecture is the Look-Up Table (LUT) based Boolean logic

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org .

approach considered in this paper. In this work, we target
a hybrid nano/CMOS computational paradigm based on a
LUT implementation of Boolean logic functions [16]. LUT
implementation is an effective functional-coding approach
that provides low-level protection of individual Boolean logic
functions [17]. In [16], the authors have targeted a LUT based
design paradigm that achieves 87% reliability at 10% defect
rate for ISCAS’85 benchmark circuits. We show that our
proposed repair techniques are capable of targeting higher de-
fect rates (upto 14%) for ISCAS’85 benchmark circuits while
achieving 100% reliability. To the best of our knowledge,
there are no reported repair techniques that target such high
defect rates in LUT based approach implemented using hybrid
nano/CMOS architecture. It should be noted that reliability
of nano/CMOS architecture using fault tolerance has been
achieved through Error Correcting Codes [18], [19]. However,
since our proposed techniques deal with defect tolerance, we
have not covered fault tolerance techniques in this paper.

The paper is organized as follows: in section II, pre-
liminaries and related work is outlined including a recent
repair technique in section III. In section IV, we present the
design and implementation of the proposed repair techniques.
Simulation results of the proposed techniques are given in
section V and the work is concluded in section VI.

II. PRELIMINARIES AND RELATED WORK

Three most prominent issues related to reliable nano/CMOS
design are: defect tolerance technique, choice of architecture,
and defect distribution model. Currently, most of the defect
tolerance techniques in nano/CMOS have been derived from
the memory repair techniques used in CMOS. The two most
common techniques to address high defect rate in nanoscale
system design have been reconfiguration and repair. Recon-
figuration [10], [20] circumvents physical defects by first
mapping defects on reconfigurable fabrics then synthesizing
a feasible configuration to realize an application for each
nanofabric instance. While reconfiguration is more popular in
nano-crossbar designs for ASIC/FPGA architecture, repair is
popular for nanoscale memory design [14]. Both techniques
have shown great promise addressing defect tolerance so far.
However, it is not meaningful to differentiate reconfiguration
and repair techniques since both techniques utilize spare units
to eliminate/minimize defective units and improve yield. Re-
configuration techniques use a graph theory approach to make

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 2

use of least defective units while leaving out the defective
ones. Repair techniques on the other hand use a hardware
approach that includes a mapping circuit to keep track of
defective units that are being replaced by the non-defective
spare units. In terms of cost both techniques rely on redundant
spare units and carry an additional overhead in terms of latency
and power dissipation.

The repair capability of defect tolerance techniques can vary
greatly for different architecture designs [8]. There have been
a number of promising architecture proposed for the hybrid
nano/CMOS design paradigm. One of the first architectures us-
ing hybrid nano/CMOS design paradigm was proposed in [21],
using a double layered architecture. A FET based architecture
using Carbon Nanotube and Silicon Nanowire interconnects
was proposed by Dehon in [22], [23]. A field-programmable
nanowire interconnect (FPNI) based architecture was recently
proposed in [24]. In FPNI and CMOL [15] architectures,
logic is performed using CMOS components, while nanowires
are used for interconnects and routing. It appears from the
literature that hybrid nano/CMOS design paradigm offers the
most promise in achieving future computational needs [5]. In
this work we have proposed repair techniques for a generalized
hybrid nano/CMOS architecture that uses dense nanofabrics to
perform LUT based computation and CMOS components to
provide defect tolerance. For a general hybrid nano/CMOS
architecture random defect distribution can be assumed, how-
ever, a more effective way to deal with large number of defects
would be to identify and then target defect model inherent in a
particular nanotechnology [7]. To demonstrate the significance
of defect distribution we have also used the proposed repair
techniques on clustered and row/column defect distribution in
a nanofabric (in section V-C).

III. REPAIR MOST TECHNIQUE

To demonstrate the repair capability of current memory
repair techniques for LUT based nano/CMOS architecture, we
first implemented the Repair Most technique [14] that was
recently proposed in the context of highly dense terabit scale
nano/CMOS memory architecture. In Repair Most technique,
an instance of a 2N ×N LUT (here number of rows = 2N and
number of columns = N as shown in Fig. 1(a)) is created on a
defective nanofabric by deleting rows and columns on which
defective bits exist. An appropriate amount of redundancy
need to be allocated in both dimensions to compensate for the
removed/deleted rows and columns. Repair Most technique
has two phases: In the first phase, if the number of defects
per row (or column) exceeds the threshold rth (or cth), the
row (column) will be excluded from the LUT and replaced
with a spare row (column) as shown in Fig. 1(b). Here, rth
(or cth) represents the minimum number of errors present in
a row (or column) for it to be excluded. In the second phase,
the remaining defective cells are repaired by replacing the
defective columns (or rows) with the spare columns (rows).

We have simulated Repair Most technique for different
2N ×N LUT implementations with 25%-100% redundancy in
spare units. Fig. 1(b) shows the failure rate vs defect rate
obtained for a 23 × 3 LUT at different values of redundancy

T
o

ta
l R

o
w

s
 (2

N
+

 r
S

P)

Total Columns (N + cSP)

r S
P

S
p

a
re

R
o

w
s

cSP Spare

Columns

Original

2N x N LUT

Excluded

Rows

Excluded
Column

(a)

(b)

Fig. 1. Repair Most technique (a) Implementation for LUT based architecture
and repair mechanism by setting value of cth = 2 and rth = 0. Plot of Failure
rate Vs Defect rate using Repair Most technique for 23 ×3 LUT.

(% spares). The value of cth and rth were chosen as 2 and 0
respectively for illustration purposes. One of the limitations of
Repair Most technique is a different value of cth and rth need
to be chosen for a particular defect rate in order to achieve the
most optimized repair capability. As can be seen, the Repair
Most approach provides limited defect tolerance when defect
rate > 10% even if we provide 100% redundancy. Hence this
technique can target at most 10% defect rate for a 23×3 LUT
implementation. For larger LUT sizes (upto 26 × 6) similar
results were obtained, however, larger LUT implementations
(such as 26×6) failed at a much smaller defect rate even with
100% redundancy. To estimate the CMOS area overhead of
the Repair Most technique, the authors in [14] have proposed
a special mapping table implemented in CMOS to map the
physical addresses of the good nanodevices. The overall chip
area for Repair Most technique for the implementation shown
in Fig.2 is given by:

Atotal = ALUT decoders +L× [ALUT unit +ALUT unit decoder
+ Amapping table +AWiring/Routing]

(1)
where L is the number of LUTs in the architecture. The area
of this mapping table Amapping table (not shown in Fig.2) will
depend on the size of LUT block being addressed. For more
details on this technique, refer to [14].

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 3

LUT

unit

LUT Address Decoder (CMOS)

L
U

T
 A

d
d

re
s
s
 D

e
c
o

d
e
r

(C
M

O
S

)

LUT

unit

LUT

unit

LUT

unit

LUT

unit

LUT

unit

LUT
unit

LUT
unit

LUT
unit

Tagging and
Decoding
(CMOS)

2N x N LUT
and spares
(Nanodevice)

I/O
 In

te
rfa

c
e

Fig. 2. Implementation of LUT based Boolean logic approach using hybrid
nano/CMOS architecture

IV. PROPOSED REPAIR TECHNIQUES

We propose two new repair techniques that have been
developed specifically for LUT based Boolean logic approach
implemented in nano/CMOS. Fig.2 shows the implementation
of the proposed LUT based hybrid nano/CMOS architecture.
Defect tolerance techniques in hybrid nano/CMOS architec-
tures can be implemented at different levels of abstraction.
In [25], the authors have used an orthogonal approach as
compared to our work (i.e. replacing defective LUTs with
redundant non-defective LUTs). We have a twofold objective
to implement wire level defect tolerance: First, wire level
repair techniques are able to target highest defect rates since
they provide maximum resolution for implementing repair.
Secondly, since the defects occur in nanofabric, it is practical
to incorporate different defect distribution models at wire level
in order to propose most efficient repair scheme (as compared
to defect tolerance implemented at higher level of abstraction).
The general repair concept proposed in this work is derived
from a memory repair technique that has been used in CMOS
rather than nanodevice based systems [11] as outlined earlier
in section I. The technique proposed in [11] is not applicable
by itself to LUT based architecture proposed in this work
because an individual LUT size is much smaller as compared
to a highly dense memory architecture targeted in [11], hence
we do not require replacement of blocks of memory unit which
is the key difference between our proposed techniques and
the memory repair techniques. Moreover, the original memory
architecture if applied to LUT based nano/CMOS architecture
will impose a significant CMOS area overhead due the the
presence of a mapping table (Eq.1) which will nullify the gain
in device density achieved by using nano components. Hence
we propose the following mechanism to make the algorithm
reported in [11] more suitable to LUT based nano/CMOS
architecture. The modified algorithm involves replacing rows
and columns instead of blocks of defective units. We have also
included a tagging mechanism to isolate defective rows and
columns. Each row/column is associated with a CMOS tag that

holds one bit of information. A ‘1’ or ‘0’ tag value specifies
whether or not a row/column is selected in the final LUT after
repair. We refer to this technique as Tagged Repair technique.
A further improvement in this technique, in terms of targeted
defect rate, has been achieved by dividing the original LUT
into smaller sub-LUTs (column-wise). This approach, is called
the Modified Tagged Repair method which will be discussed in
section IV-B. The overall area estimate for the implementation
shown Fig. 2 for the two proposed techniques will be:

Atotal = ALUT decoders +L× [ALUT unit
+ ALUT unitdecoder/tagging +AWiring/Routing]

(2)

Comparing Eq. 2 and Eq. 1 shows that the proposed
techniques have an area advantage over the Repair Most
implementation due to the absence of mapping table. The size
of the mapping table can be significantly large depending on
the block size of unit being repaired. The tagging mechanism
for the proposed techniques is relatively simple and can be
accommodated in the LUT unit decoder circuit. Since the
primary motivation of this work is to propose repair tech-
niques for a defect tolerant hybrid nano/CMOS computational
architecture, we have not focussed on the fabrication issues
related to LUT architecture and interconnect issues between
nano and CMOS components [26]. For example, one way to
implement CMOS tags can be to use nanoscale FET as a
capacitive switching device [25], [27].

r
SP

spare rows

(Nanofabric)

c
SP

spare columns

(Nanofabric)

spare rows/

columns

(Nanofabric)

(2
N

+
 r

S
P
)

s
in

g
le

 b
it

 r
o

w
 t

a
g

s
 (

C
M

O
S

)

(N + cSP) single bit column tags (CMOS)

2N x N LUT

(Nanofabric)

N columns

(Nanofabric)

2N x N LUT

(Nanofabric)

2
N

ro
w

s

(N

a
n

o
fa

b
ri

c
)

Fig. 3. Tagged Repair Technique: Implementation for a 2N ×N LUT using
1-bit CMOS tags

A. Tagged Repair Technique

Fig. 3 shows the implementation of the Tagged Repair
technique. For a LUT of size 2N ×N, we provide csp spare
columns and rsp spare rows. It can be seen that the overall
nanodevice area of this technique is csp × rsp less than Repair
Most technique [14] shown in Fig. 1(a). Unlike the Repair
Most technique, there is no need to specify the values of row
threshold and column threshold. This technique uses a tagging
method to tag rows and columns that are least defective.
Initially the tags for the original 2N rows and N columns in
LUT are set to 1 and tags for the spare rows and spare columns
(rsp and csp respectively) are set to 0. The implementation
algorithm for the Tagged Repair technique is:

1: Initialize LUT size, spare rows and spare columns

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 4

2: Initialize all LUT tags
{S}can Column-wise

3: for all i(< N) do
4: for all j(< csp) do
5: if totalDefects(csp(j)) < totalDefects(column(i))

(Tag(csp(j)) = 1, Tag(column(i)) = 0)
6: end for
7: end for

{R}epeat scan Row-wise
After the repair process, the tags will hold ‘1’ for the least

defective rows and columns and ‘0’ for the excluded ones. The
aim of our proposed Tagged Repair technique is to identify
a defect-free instance of a LUT of size (2N × N) within a
defective fabric given a certain amount of spare columns csp
and spare rows rsp. Hence, a theoretical estimation of the
circuit failure rate of this technique reduces to the calculation
of the probability of the non-existance of a subset of defect-
free resources (2N × N) within the partially-usable fabric(
(2N + rsp)× (N + csp)

)
. We first calculate the probability

P(col,L) of a column of size (r+L) is defective (i.e. in which
the total number of defective bits exceeds the number of spare
rows L), which is given by the following equation:

Pcol(L) =
r+L

∑
k=L+1

(
r+L

k

)
Pk(1−P)r+L−k (3)

where r and c are the number of rows (2N) and columns (N)
of the LUT respectively, P is the defect rate of the fabric and
L = rsp for Tagged Repair technique. To successfully create an
instance of the LUT on the fabric, columns should not only
have less than L (rsp) defective bits but also there should be at
least r defect-free rows in at least c columns that are aligned.
We have illustrated this with an example in Fig. 4 where the
size of the LUT is 4× 3. Although the number of defective
bits in column 3 are less than L, it was excluded because
its defect-free bits are not aligned with the defect-free bits in
the other columns. Hence, the probability of a column being
excluded is equal to the sum of probabilities of being defective
and not defective but not aligned with the other non-defective
columns.

Successful
instantiation of LUT

col 1 col 2 col 4col 3

Defective
bits

Fig. 4. A 4× 3 LUT example using Tagged Repair technique: defect-free
bits in columns should be aligned to ensure successful instantiation of LUTs.

To predict the probability of failure for a defective LUT, we
first calculate the probability that two non-defective columns
col1 with k defective bits (0≤ k≤ L) and col2 with k′ defective
bits (0 ≤ k′ ≤ L) are aligned:

P(col1,col2,L) =
(

r+L
k

)
Pk(1−P)r+L−k

×
k′

∑
n=0

k+k′−n≤L

(
k
n

)(
r+L− k

k′−n

)
×Pk′(1−P)r+L−k′

(4)

where k′ ≤ k. The probability that col1 and col2 are not aligned
with each other is given by the following equation:

P′(col1,col2,L) =
(

r+L
k

)
Pk(1−P)r+L−k

×
k′

∑
n=0

k+k′−n>L

(
k
n

)(
r+L− k

k′−n

)
×Pk′(1−P)r+L−k′

(5)

Using equations (3), (4) and (5), we can estimate the
probability that n columns out of (c+ csp) are not defective
and aligned. This is given by the following equation:

Pinst(n,L) =
n

∑
a=1

[(n

∏
b=1
a ̸=b

L

∑
k=0
k′=0

P(a,b,L)
)

×
c+csp−a

∏
d=1

(L

∑
k=0
k′=0

P′(a,d,L)+Pcol(L)
)] (6)

Hence, the probability of successfully finding enough re-
sources to create an instance of a given LUT using our Tagged
Repair technique where the number of spare rows is L = rsp:

Psucc =
c+csp

∑
x=c

(
c+ csp

x

)
Pinst(x,rsp) (7)

and therefore, the overall failure rate is:

Pf ailure = 1−Psucc (8)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ai

lu
re

ra
te

0.0 0.05 0.1 0.15 0.2 0.25 0.3

Error rate

Simulation
Theoretical

2
4

4 LUT
100% Spares

Fig. 5. Tagged Repair technique: Failure rate obtained both by theory and
simulation for a 24 ×4 LUT and 100% redundancy.

Fig.5 illustrates the failure rate obtained both theoretically,
based on Eq. 8 and by simulation. There is a strong correla-
tion between the two plots, validating the derived theoretical

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 5

equations. The slight mismatch in the two plots is due to the
rounded off values of failure rate used in the simulated plot
as compared to exact data values in the theoretical plot.

B. Modified Tagged Repair Technique

As shown in section V, Tagged Repair technique (Fig. 3)
is capable of handling upto 17% defect rate in a hybrid
nano/CMOS architecture implemented as LUTs. To address
even higher defect rates, we propose another technique as
presented in Fig. 6, which is called Modified Tagged Repair
technique. As can be seen in Fig. 6, in Modified Tagged Repair
technique instead of replacing entire columns, we have split
the columns in two equal sections before applying tagging and
replacement, to make more optimized use of the spare units
as compared to the Tagged Repair technique.

Spare Rows/

Columns

(Nanofabric)

2x(N + cSP) single bit column tags (CMOS)

r
SP

spare rows

(Nanofabric)

c
SP

spare columns

(Nanofabric)

N columns

(Nanofabric)

2N x N LUT

(Nanofabric)

2
N

ro
w

s

(N

a
n

o
fa

b
ri

c
)

(2
N

+
 r

S
P
)

s
in

g
le

 b
it

 r
o

w
 t

a
g

s
 (

C
M

O
S

)

2N x N LUT

(Nanofabric)

Fig. 6. Modified Tagged Repair Technique Implementation for a 2N ×N
LUT using 1-bit CMOS tags

In the Modified Tagged Repair technique, a successful
instantiation of a LUT on the fabric is achieved by successfully
instantiating each half of the LUT (2N−1 ×N) on the fabric
given the amount of spare columns csp for each half and
the spare rows rsp that is reserved for both of them. Eq.(9)
represents the total probability Psucc of instantiating a 2N ×N
LUT with rsp spare rows and csp spare columns. Variable i
in Eq.(9) represents the number of spare rows used by our
technique to repair the defective rows in the first half, whereas
the rest of spare rows (rsp − i) are used in the repair of the
second half of the LUT. Hence Psucc can be computed as
follows:

Psucc =
rsp

∑
i=0

[(c+csp

∑
x=c

(
c+ csp

x

)
Pinst(x, i)

)
×
(c+csp

∑
x′=c

(
c+ csp

x′

)
Pinst(x′,rsp − i)

)] (9)

The implementation algorithm used for the Modified Tagged
Repair technique is similar to Tagged Repair technique but it
has the following distinctive feature. In the algorithm for the
Modified Tagged repair technique, the column-wise scan needs
to be done in two stages and the row-wise scan will be done
in a single stage. The reason for this is as follows: since a
2N ×N LUT will always have even number of elements (2N)

in each column, hence it is easy to split each column halfway
in size 2N−1. A similar technique to split and tag rows cannot
be used since the size of a row can be odd or even depending
on the value of N and an odd value of N cannot be split
in two equal integers. The downside of using this technique
is that it will cause an increase in CMOS area overhead of
the tagging circuitry, increasing the implementation cost (as
seen later in section V-B. The number of column tags required
will be double that of the Tagged Repair technique while the
number of row tags remain the same.

V. SIMULATION RESULTS

We first evaluate the performance of the two proposed repair
techniques (Tagged Repair and Modified Tagged Repair). Sim-
ulations were performed on randomly-generated symmetric
LUTs where the probability that each element of the LUT
stores a 0 or 1 are equal. The LUTs are of sizes ranging from
23 × 3 to 26 × 6. We also experimented with larger circuits
such as ISCAS’85 benchmarks by synthesizing them into
smaller LUTs using synthesis tools such as Synplicity [28]. We
estimate the Failure rate (or circuit failure probability), Pf ailure,
resulting from randomly injecting m defects, by calculating
the ratio of defective LUTs after repair to the total number of
simulation iterations I = 5000. In our experimental simulations
we have seen that a value of I > 5000 is suitable to obtain
a convergence for Pf ailure. The Targeted defect rate for a
particular repair technique is the maximum defect rate for
which 0% failure rate can be achieved. Redundancy (or Spares)
is the percentage of extra rows/columns that are allocated for
repair. Further in section V-C, we investigate the effect of
Gaussian and row/column defect distribution on the circuit
failure probability (Pf ailure). All the simulations were carried
out in C++ and the results were compared with Repair Most
technique [14] to determine the gain in repair capability.

A. Repair Capability of the Proposed Techniques

Fig. 7 shows the plot of failure rate Vs defect rate us-
ing Tagged Repair technique for different LUT sizes with
percentage redundancy varying between 25% to 100%. As
can be seen in Fig. 7(a) at 25% redundancy, the Tagged
Repair technique exhibits higher defect tolerance in the case
of smaller sized LUTs (such as 23×3 LUT) than larger LUTs
(such as 26 ×6 LUT). This is because for a particular defect
rate, the likelihood of finding a non-defective row/column to
replace a defective one decreases since the number of defects
in the LUT increase as the LUT size increases. Since we have
defined Psucc as the probability of obtaining a defect-free LUT
instantiation, the presence of even a single defect (after the
repair process) is considered as a failure. Hence synthesis of
larger circuits into smaller LUTs will result in improved defect
tolerance for the targeted nano/CMOS architecture. Similarly,
we have simulated the failure rate Vs defect rate plots for
50%, 75% and 100% redundancy shown in Fig. 7(b)-(d). An
example of 23×3 LUT using 100% spares is used to compare
the repair capability of this technique with the Repair Most
technique. As can be seen in Fig. 1(c) for 100% redundancy
and Fig. 7(d) we can see that the Repair Most could only

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 6

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il
u

r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il
u

r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il

u
r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

(a) (b) (c)
Fig. 7. Plot of Failure rate Vs Defect rate using Tagged Repair technique for different LUT sizes with (a) 25% redundancy (b) 50% redundancy and (c)
100% redundancy in rows and columns.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il

u
r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il

u
r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

Defect Rate

F
a
il
u

r
e
 R

a
te

2^3x3 LUT

2^4x4 LUT

2^6x6 LUT

(a) (b) (c)
Fig. 8. Plot of Failure rate Vs Defect rate using Modified Tagged Repair technique for different LUT sizes with (a) 25% redundancy (b) 50% redundancy
and (c) 100% redundancy in rows and columns.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
01

0.
03

0.
05

0.
07

0.
09

0.
11

0.
13

0.
15

0.
17

0.
19

0.
21

0.
23

0.
25

0.
27

0.
29

Defect Rate

F
a

il
u

r
e

 R
a

te

Repair Most[9]

Tagged Repair

Modified Tagged Repair

Fig. 9. Comparative study for the failure rate of 24 × 4 LUT with 100%
redundancy

handle defect rates < 10%, whilst the Tagged Repair technique
with 100% redundancy can target defects upto 17%.

Fig. 8 shows the plot of the Modified Tagged Repair
technique for different LUT sizes with varying redundancy.
Taking an example of a 23 × 3 LUT with 100% redundancy,
we compare the results of Tagged Repair technique (Fig. 7(d))
with Modified Tagged Repair technique (Fig. 8(d)). It can
be seen that while the Tagged Repair technique can achieve
0% failure rate at defect rates of upto 17%, the Modified
Tagged Repair technique can target defect rate upto 20%. This
improvement in repair capability (1−Pf ailure) is due to the
more optimized usage (by splitting the columns in two before
applying repair) of the redundant spare units.

Fig. 9 compares the repair capability of the proposed
techniques with the Repair Most technique [14] for LUTs of

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

Defect Rate

F
a
il

u
r
e
 R

a
te

C499

C432

C880

C1335

C1908

C2670

C3540

C5315

C6288

C7552

Fig. 10. Failure probability of synthesized ISCAS’85 benchmark circuits
using Modified Tagged Repair technique.

size 24×4 LUT with 100% redundancy (csp = 4 spare columns
and rsp = 24 spare rows). As can be seen, the Modified Tagged
Repair technique targets the highest defect rate followed by the
Tagged Repair and Repair Most respectively. For example,
when the defect rate is 15%, the Modified Tagged repair
technique gives a failure rate of 0%, and the original Tagged
Repair technique gives a failure rate of 2%, whereas, the
Repair Most technique almost fails completely.

To assess the repair capability of our proposed techniques
for larger circuits, we performed an analysis on the ISCAS’85
benchmark circuits using the Modified Tagged Repair tech-
nique. The failure rates for synthesized ISCAS’85 circuits are
shown in Fig. 10. The ISCAS’85 benchmark circuits were
first synthesized into smaller LUTs sizes (between 22 × 2
to 26 × 6). However, as can be seen from Table I, majority

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 7

22×2
LUTs

23×3
LUTs

24×4
LUTs

25×5
LUTs

26×6
LUTs

Targeted
Defect
Rate

C499 0 0 2 2 8 13.0%
C432 3 1 2 1 5 13.0%
C880 1 4 2 4 5 14.0%
C1335 5 0 4 5 5 13.0%
C1908 2 2 2 4 10 13.0%
C2670 2 4 5 3 9 13.0%
C3540 6 2 10 13 22 13.0%
C5315 8 8 12 8 25 13.0%
C6288 20 4 14 9 48 13.0%
C7552 6 18 16 20 30 14.0%

TABLE I
TARGETED DEFECT RATE OF ISCAS’85 BENCHMARK CIRCUITS

SYNTHESIZED INTO SMALLER 2N ×N LUTS USING THE MODIFIED
TAGGED REPLACEMENT TECHNIQUE.

of the synthesized circuits contain a higher proportion of
25 × 5 and 26 × 6 LUTs and hence the targeted defect rate
of various benchmark circuits is around 13%-14% with little
variation. This can be addressed by further synthesizing the
circuits into LUTs of smaller sizes. Recently, a defect tolerance
technique was reported in [16] for nano/CMOS architecture
and it has been shown to achieve 87% success in mapping
of synthesized ISCAS’85 benchmark circuits at 10% defect
rate which is less than what is achieved with the proposed
techniques (100% success for upto 14% defect rate). In [16],
the authors used a mapping technique with a greedy algorithm
on synthesized ISCAS’85 benchmark circuits implemented as
LUTs. Since the size of synthesized LUTs in [16] is N ×1, it
only permits column replacement of defective columns, since
row replacement will be quite expensive to achieve.

B. Estimation of Repair Cost

As shown in section IV-A and V-A, the proposed Tagged
Repair technique uses considerably less redundancy to tolerate
even higher defect rates compared to Repair Most technique.
This reduction is explained as follows: the overall nanodevice
area advantage of Tagged Repair technique as compared to
Repair Most for a 2N ×N LUT with csp spare columns and
rsp spare rows will be csp × rsp. With 100% redundancy
(csp = N and rsp = 2N), this will result in a 25% advantage in
nanodevice area. To calculate the nanodevice area advantage
of the proposed techniques quantitatively, the total nanodevice
area of 24 ×4 LUT implementation with 100% spares for the
proposed techniques (Fig. 3 and 6) will be 3×24 ×4 = 192
units/LUT. However, due to the implementation architecture of
Repair Most technique (Fig. 1), we can see that the total area
(including original LUT and the spare units) of the Repair
Most implementation will be 4 × 24 × 4 = 256 units/LUT,
which is 25% more as compared to the proposed techniques.
Table II shows the comparative repair cost of the proposed
techniques and the Repair Most technique in terms of targeted
defect rate. It can be seen that in case of a 23 × 3 LUT,
Modified Tagged Repair can target upto 10% defect with only
25% spares, while Repair Most is not able to target 10% defect
rate with even 100% spares. The targeted defect rate values
given in this table have been rounded off to the nearest 1.0%.

Spares LUT
size

Repair
Most [14]

Tagged
Repair
(proposed)

Mod. Tagged
Repair
(proposed)

3x3 7.0% 10.0% 12.0%
25% 4x4 4.0% 5.0% 6.0%

6x6 2.0% 3.0% 4.0%
3x3 8.0% 11.0% 14.0%

50% 4x4 6.0% 9.0% 9.0%
6x6 2.0% 6.0% 6.0%
3x3 9.0% 17.0% 20.0%

100% 4x4 8.0% 14.0% 15.0%
6x6 2.0% 10.0% 11.0%

TABLE II
COMPARATIVE REPAIR COST OF THE PROPOSED TECHNIQUES WITH THE

REPAIR MOST TECHNIQUE IN TERMS OF TARGETED DEFECT RATE

Similarly the amount of spare units have been rounded off to
the nearest whole number based on percentage of spares.

As can be seen from Fig 3(b), the CMOS area overhead
for the for a 2N(rows)×N(columns) LUT with spare rows
(rsp) and spare columns (csp) using Tagged Repair technique
is (2N + rsp) single bit row tags and (N + csp) single bit
column tags. When compared to the Tagged Repair technique,
the Modified Tagged Repair technique will require an extra
(N + csp) single bit CMOS column tags (making it a total
of 2× (N + csp) column tags). Here the multiplication factor
2 accounts for the splitting of columns into equal halves
to obtain better repair capability. Considering a single bit
SRAM cell requires 6 transistors [29], the overall CMOS
area overhead in terms of transistor count can be calculated
accordingly. The number of row tags will be equal to the
Tagged Repair technique. For example, in case of a 24×4 LUT
with 100% redundancy, the CMOS area overhead for Tagged
Repair technique will be a total of 2× (24 + 4) = 40 single
bit tags. However, for the Modified Tagged Repair technique,
the CMOS area overhead will be 2× (24 + 4+ 4) = 48 tags
for a single LUT which will result in 8 × 6 = 48 extra
transistors/LUT as compared to Tagged Repair technique.

C. Effect of Defect Distribution Model

Fig. 11 shows the effect of defect distribution on the
repair capability of the proposed repair techniques. As can
seen, with Gaussian and row/column defect distribution, the
Modified Tagged Repair technique can target defect rates upto
22% and 27% respectively. The row/column defects in this
simulation are assumed to be concentrated along the columns.
The mean and standard deviation values for the Gaussian
defect distribution plot are 0 and 2.0 respectively. Another
interesting observation from the plot shown in Fig. 11 is the
rate of change of Failure rate. While the Failure rate of for
random defects shows a smooth curve, there is an abrupt
increase in failure rate for the Gaussian defect distribution.
This abrupt change in failure rate (for > 22% defect rate)
can be attributed to a large number of defects that lie outside
the cluster. The failure rate for row/column defect distribution
increases much more slowly.

IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2010 8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0
.0

1

0
.0

3

0
.0

5

0
.0

7

0
.0

9

0
.1

1

0
.1

3

0
.1

5

0
.1

7

0
.1

9

0
.2

1

0
.2

3

0
.2

5

0
.2

7

0
.2

9

0
.3

1

0
.3

3

0
.3

5

0
.3

7

0
.3

9

Defect Rate

F
a

il
u

r
e

 R
a

te

Random Defects

Gaussian Defects

Row/Column Defects

Fig. 11. Effect of defect distribution on defect tolerance for a 24 ×4 LUT
with 100% redundancy using the Modified Tagged Repair technique

VI. CONCLUSION

Two new and effective Tagged Repair techniques for hybrid
nano/CMOS architecture implemented as LUTs have been
proposed. The techniques achieve higher defect tolerance than
recently reported repair techniques with upto 20% defect rate
for a 23 × 3 LUT implementation and upto 14% defect rate
for synthesized ISCAS’85 benchmark circuits.

VII. ACKNOWLEDGEMENT

We acknowledge the EPSRC (UK) for funding this project
in part under grant EP/E035965/1 and the Algerian Ministry
of Higher Education and Scientific Research.

REFERENCES

[1] M. Ziegler and M. Stan, “CMOS/nano co-design for crossbar-based
molecular electronic systems,” Nanotechnology, IEEE Transactions on,
vol. 2, pp. 217–230, Dec. 2003.

[2] C. Jeffery, A. Basagalar, and R. Figueiredo, “Dynamic sparing and
error correction techniques for fault tolerance in nanoscale memory
structures,” Nanotechnology, 2004. 4th IEEE Conference on, pp. 168–
170, Aug. 2004.

[3] A. DeHon, S. Goldstein, P. Kuekes, and P. Lincoln, “Nonphotolitho-
graphic nanoscale memory density prospects,” Nanotechnology, IEEE
Transactions on, vol. 4, pp. 215–228, March 2005.

[4] F. Sun and T. Zhang, “Defect and Transient Fault-Tolerant System
Design for Hybrid CMOS/Nanodevice Digital Memories,” Nanotech.,
vol. 6, no. 3, pp. 341–351, 2007.

[5] M. Stan, P. Franzon, S. Goldstein, J. Lach, and M. Ziegler, “Molecular
electronics: from devices and interconnect to circuits and architecture,”
Proceedings of the IEEE, vol. 91, pp. 1940–1957, Nov 2003.

[6] M. Jacorne, C. He, G. de Veciana, and S. Bijansky, “Defect tolerant prob-
abilistic design paradigm for nanotechnologies,” DAC ’04. Proceedings.
41st, pp. 596–601, 2004.

[7] M. Tahoori, “Defects, yield, and design in sublithographic nano-
electronics,” in 20th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005, pp. 3–11, Oct. 2005.

[8] A. DeHon and H. Naeimi, “Seven strategies for tolerating highly
defective fabrication,” Design and Test of Computers, IEEE, vol. 22,
pp. 306–315, July-Aug. 2005.

[9] M. B. Tahoori, “Application-independent defect-tolerant crossbar nano-
architectures,” in ICCAD ’06: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, (New York, NY,
USA), pp. 730–734, ACM, 2006.

[10] M. Mishra and S. Goldstein, “Defect tolerance at the end of the
roadmap,” In ITC, vol. 1, pp. 1201–1210, 30-Oct. 2, 2003.

[11] S.Lu and C. Hsu, “Fault Tolerance Techniques for High Capacity RAM,”
IEEE Transactions on Reliability, vol. 55, pp. 293–304, June 2006.

[12] D. Chang, J. Li, and Y. Huang, “A Built-In Redundancy-Analysis
Scheme for Ramdom Access Memories with Two-Level Redundancy,”
Journal of Electron Test, vol. 24, no. 1, pp. 181–192, 2008.

[13] W. Zhang, N. K. Jha, and L. Shang, “NATURE: a hybrid nan-
otube/CMOS dynamically reconfigurable architecture,” in DAC ’06:
Proceedings of the 43rd annual conference on Design automation, (New
York, NY, USA), pp. 711–716, ACM, 2006.

[14] D. B. Strukov and K. K. Likharev, “Prospects for terabit-scale nanoelec-
tronic memories,” Nanotech., vol. 16, no. 1, pp. 137–148, 2005.

[15] D. Strukov and K. Likharev, “CMOL FPGA: a reconfigurable architec-
ture for digital circuits with two-terminal nanodevices,” Nanotechnology,
vol. 16, no. 6, pp. 888–900, 2005.

[16] S. Paul, R. S. Chakraborty, and S. Bhunia, “Defect-Aware Configurable
Computing in Nanoscale Crossbar for Improved Yield,” IEEE Interna-
tional On-Line Testing Symposium, vol. 0, pp. 29–36, 2007.

[17] N. R. Shanbhag, S. Mitra, G. de Veciana, M. Orshansky, R. Marculescu,
J. Roychowdhury, D. Jones, and J. M. Rabaey, “The Search for Alter-
native Computational Paradigms,” IEEE Design and Test of Computers,
vol. 25, no. 4, pp. 334–343, 2008.

[18] A. Singh, H. Zeineddine, A. Aziz, S. Vishwanath, and M. Orshansky,
“A heterogeneous CMOS-CNT architecture utilizing novel coding of
boolean functions,” NANOARCH 07, pp. 15–20, Oct. 2007.

[19] D. Strukov and K. Likharev, “Defect-tolerant architectures for nanoelec-
tronic crossbar memories,” Journal of Nanoscience and Nanotechnology,
vol. 7, pp. 151–167, Jan 2007.

[20] S. Goldstein and M. Budiu, “NanoFabrics: spatial computing using
molecular electronics,” IEEE ISCA, pp. 178–189, 2001.

[21] M. M. Ziegler and M. R. Stan, “A Case for CMOS/nano co-design,”
in ICCAD ’02: Proceedings of the 2002 IEEE/ACM international
conference on Computer-aided design, (New York, NY, USA), pp. 348–
352, ACM, 2002.

[22] A. DeHon, “Array-based architecture for FET-based, nanoscale elec-
tronics,” Nanotechnology, IEEE Transactions on, vol. 2, pp. 23–32, Mar
2003.

[23] A. DeHon, “Nanowire-Based Programmable Architectures,” ACM Jour-
nal of Emerging Technologies in Computing Systems, vol. 1, pp. 109–
162, July 2005.

[24] G. S. Snider and R. S. Williams, “Nano/CMOS architectures using a
field-programmable nanowire interconnect,” Nanotechnology, vol. 18,
no. 3, p. 035204 (11pp), 2007.

[25] S. Li and T. Zhang, “Exploratory study on circuit and architecture
design of very high density diode-switch phase change memories,” in
ISQED ’09: Proceedings of the 2009 10th International Symposium on
Quality of Electronic Design, (Washington, DC, USA), pp. 424–429,
IEEE Computer Society, 2009.

[26] S. Li and T. Zhang, “Hybrid resistor/fet-logic demultiplexer architecture
design for hybrid cmos/nanodevice circuits,” in Computer Design, 2007.
ICCD 2007. 25th International Conference on, pp. 574–579, Oct. 2007.

[27] K. Chakraborty and P. Mazumdar, “Fault-Tolerance and Reliability
Techniques for High-Density Random-Access Memories,” Prentice Hall,
. 2002.

[28] “http://www.synplicity.com/,”
[29] A. Bellaouar and M. Elmasry, “Low-Power Digital VLSI Design:

Circuits and Systems,” Springer Publication, . 1995.

Saket Srivastava received the Ph.D. degree in electrical engineering from the
University of South Florida, Tampa, USA, in 2008.

He worked as a postdoc researcher at the shool of electronics and computer
science, University of Southampton, Southampton, U.K.

Aissa Melouki received the M.Eng. degree in computer systems engi-
neering from the University of Warwick, Coventry, U.K., in 2006. He is
currently working towards the Ph.D. degree in electronics at the University
of Southampton, Southampton, U.K.

His current research interests include developing fault and defect tolerance
techniques for nanometre CMOS and nanoscale devices.

Bashir M. Al-Hashimi (F’09) received the Ph.D. degree in electronic system
design from York University, York, U.K., in 1989.

He is a Professor of computer engineering at the University of Southamp-
ton, Southampton, U.K.

