
Models of Computation:
A Tribute to Ugo Montanari’s Vision

Roberto Bruni1 and Vladimiro Sassone2

1 Dipartimento di Informatica, Università di Pisa, Italia
2 ECS, University of Southampton, UK

Ugo Montanari’s Models of Computation

Ugo’s research activity in the area of Models of Computation (MoC, for short) has been
prominent, influential and broadly scoped. Ugo’s trademark is that undefinable ability
to understand and distill computational aspects into new models as if you were reading
them out of some evident connection between well-know models: only, most often, that
connection is really visible only after Ugo shows the way. Like experienced sailors have
trusted compasses and sextants to help them find the best routes to harbour, Ugo relies
on a bag of favourite tools which he has used along the years to deliver a variety of
contributions to the MoC area. To mention just three (in alphabetic order): algebraic
techniques, concurrency theory, and unification mechanisms.

In this introductory contribution we would like to recall some of the influential MoC
models put forward by Ugo which cut across the three approaches. Before doing that,
it is worth devoting some space to discuss the three aspects separately. Notably, the use
of category theory is a pervasive common trait.

Algebraic techniques. By algebraic techniques we refer broadly to the use of universal
algebras and initial model semantics; of universal coalgebras and final semantics; and of
bialgebras. Many interesting papers witness Ugo’s leading role in exploiting algebraic
techniques during his entire scientific career. Indeed, his contributions are too many to
mention all in the space allocated to this overview; we shall therefore attempt to convey
the sense of Ugo’s broad-spectrum contribution by recapping only a few key results.

Reference [43] is the first paper on final, observational semantics in abstract data
types, and the main reference for one of the MoC contributed papers in this volume.
It presented several key insights in software specification and development for the first
time, like the separation between given sorts and newly specified ones, whereby the
given sorts lay the ground to define the observable behaviour for the new sorts. Another
key suggestion is that the specification of new data types is often partial —in the sense
that it may include “don’t care” cases— and that many realisations can exist that ex-
hibit equivalent observable behaviour but are not isomorphic. In fact, [43] shows that
the isomorphism classes of observably equivalent algebras conforming to the partial
specification form a complete lattice, yielding a so-called loose semantics.

Possibly the best known of Ugo’s papers, [52] exposes the underlying monoidal struc-
ture of the category of Petri net computations. The title itself is revealing: Petri nets are
monoids. Besides doing what it says on the tin, this paper opened a long-lasting and
fruitful collaboration with José Meseguer, and a research line on the initial semantics of

P. Degano et al. (Eds.): Montanari Festschrift, LNCS 5065, pp. 503–509, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

504 R. Bruni and V. Sassone

computational models in which, after [33], we got deeply involved ourselves
[55,56,17,24,18]. The key insight is that by lifting the algebraic structure of (machine)
states to the level of computations via a so-called free construction, one can gain a deeper
understanding of the axioms which regulate equivalent computations (or processes), an
idea that is also the basis of Meseguer’s Rewriting Logic [51]. This theme of lifting the al-
gebraic structure of states to the level of concurrent computations has motivated the study
of Structured Transition Systems [30,39,37], while finding axiomatisations of computa-
tional structures has been reconsidered in [49,16,27,9,11].

A more recent result in coalgebraic semantics [57] has paved the way to the effi-
cient verification techniques for the π-calculus [35], and to the bialgebraic semantics
of fusion calculus [25]. The technique proposed in [57] addresses the issue of finding
a suitable setting to develop a coalgebraic semantics for the π-calculus, so as to char-
acterise minimal process realisations. The key difficulty is the proper handling of fresh
names, tackled by exploiting a category of name-permutation algebras which underpins
the coalgebraic treatment of the π-calculus operational semantics.

Concurrency theory. Concurrency theory encompasses many different techniques and
approaches, ranging from bisimilarity and contextual equivalences to event structure
semantics. It is harder here to make a representative selection of a few seminal papers,
because of the quality and volume of Ugo’s work in the area of concurrency models.

Given our previous lives in ‘Petri-land,’ we cannot help but mention the work on
unfolding semantics that generalised Winskel’s approach from the class of safe nets to
a wide class of place/transition nets [54]. An unfolding semantics accounts for a full
fledged view of the admissible computations, including concurrency, causality and con-
flict aspects: the so-called “truly concurrent” semantics. Exploiting mathematical tools
from category theory, the main result establishes that a chain of adjunctions (a suitable
categorical notion indicating that the corresponding construction is as good as possible)
leads from the category of Petri nets to the category of prime event structures, which
is equivalent to the category of coherent finitary prime algebraic domains (because of
this, the unfolding approach is sometimes referred to as a denotational semantics).

More recently, it was shown that such event structure semantics can be extended to a
more sophisticated setting of contextual nets and graph transformation systems, where
e.g., multiple concurrent read accesses to the same resource and inhibiting conditions
for the occurrence of certain events can be accounted for. The price to pay was the intro-
duction of more complex event structures [3,28,2,4,5]. Significantly related is also [1].
The extension has made it possible to provide event structure semantics to mobile cal-
culi for free by encoding them in graph transformation systems [14,15].

The paper [21] presents a mathematical setting building upon some analogies in the
representation of names, locations and causal links as shared entities. Such a uniform
treatment of different concepts opens the way to the definition of a general-purpose
meta-model to be instantiated to several cases of interest. The main result shows that
the framework can be applied to the basic parallel processes with weak synchronisation,
by defining an operational semantics that accounts for concurrency aspects and a causal
abstract semantics and showing it equivalent with bisimilarity via “causal trees” [32].

It is finally worth to mention Ugo’s work on transactional extensions of concurrent
frameworks [44,20,12,13,7].

Models of Computation: A Tribute to Ugo Montanari’s Vision 505

Unification mechanisms. Logic programming and its extensions, in particular with con-
current constraints, are one of the long-term research interests of Ugo’s. In logic pro-
gramming, resolution steps are based on the notion of unification between the head of
a logic clause and a selected atomic sub-goal. The Martelli-Montanari algorithm [50]
is arguably the best known unification algorithm for constructing the “most general
unifier” (mgu) between a sub-goal and the head of a clause. Since those brilliant begin-
nings, the view of unification as an elegant coordination mechanism has been a recurrent
source of inspiration in Ugo’s work on MoC. We mention here three cases.

Reference [30] builds on the view of mgu as a categorical “equaliser:” clauses are
seen as rewrite rules whose variables can be further instantiated freely, and the compu-
tational model of a logic program is a suitable 2-category. The interesting point is that
the 2-cells of the 2-category are equipped with an algebraic structure that captures some
concurrency aspects. If there exists a refutation for the goal G with computed answer
substitution θ, then in the 2-category model we can find a refutation for the goal Gθ but
not necessarily one for G. This situation is improved in [22], where the mgu is expressed
as a categorical “pullback” square and double-categories are considered instead of 2-
categories. This setting can account for the dynamic creation of fresh variables and deal
with the computed answer substitutions instead of just the correct answer substitutions.

The ideas in [22] are further developed in [6], where logic programming “resolution
rule” is generalised to MoC tailored to the needs of the general server-to-client bindings
required by the service oriented applications. When a new service is discovered, not
only it must adapt to the client, e.g., accepting a list of parameters, but vice versa the
client too must sometimes adapt to the server in order to establish the connection. Then,
the mgu represents the minimal possible adaptation that should be sought in order to
minimise the possible degradation.

Combined approaches. Much of Ugo’s scientific thinking can be characterised as the
aspiration to combine modelling elements so that the combination of the parts is more
expressive and flexible than their mere sum. Below we point out some examples.

The CHARM [31], Concurrency and Hiding in an Abstract Rewriting Machine, is an
abstract machine that combines algebraic techniques typical of process calculi with the
experience in constraint logic programming and graph transformation systems. Charac-
teristic of the CHARM is the ability to capture the essence of concurrent computations
in systems composed by a global, shared part and locally distributed resources.

GDS [26,34], Grammars for Distributed Systems, combines distributed computation
based on Hoare synchronisation with concurrent histories. This model later evolved
in Synchronized Hyperedge Replacement, SHR [45,46,40,36,48], where different syn-
chronisation mechanisms are considered together with node merging and splitting.

HD-automata [57] (see also the section on Software Verification in the present vol-
ume), for History Dependent Automata, are an extension of ordinary automata aimed
to endow them with name handling features: states and transition labels may contain
names which can represent, e.g., communication channels or locations in distributed
systems. Each transition establishes a correspondence between the names in the source
state, those in the label and those in the target state. HD-automata permit an adequate
representation of the behavior of calculi with name mobility, as names can be garbage-
collected and reused to identify ‘verification-friendly’ processes semantics.

506 R. Bruni and V. Sassone

The Tile Model [41,53,58,19,29,38,8,47,16,42,10,23] combines the modularity of
Structured Transition Systems with Meseguer’s Rewriting Logic approach. While rewrite
rules in Rewriting Logic can be applied in any context and with any actual parameters, the
Tile Model allows rewritings to be inhibited under certain contexts. In category theory,
this correspond to move from 2-categories to double-categories. Moreover, as tiles have
been designed around concurrent systems, it is common to consider a monoidal struc-
ture of states that gives raise to a monoidal double-category of computations. Thanks
to these features, the Tile Model offers a framework where the specification of process
calculi with name passing, causality and locality becomes uniform and several important
results can be accounted for at the meta-theoretical level.

Papers on Models of Computation in This Volume

The six contributed papers in this section of the present volume cover several of Ugo’s
favourite topics; other papers on models of computation are included in other chapters
dealing with more specific contexts and applications.

Martı́n Abadi: Automatic mutual exclusion and atomicity checks. This contribution
presents a calculus for studying the Automatic Mutual Exclusion (AME) programming
model. Roughly, the AME calculus consists of a concurrent lambda calculus with ref-
erences, extended with constructs for thread spawning, yielding, blocking and atomic
execution. A type system ensures that atomic blocks are not violated through yield ex-
ecutions. The main results show soundness and progress theorems.

Samson Abramsky: Petri nets, discrete physics, and distributed quantum computation.
This inspired paper builds interesting connections between separate fields, and does
so by building upon some of Ugo’s best known work. In fact, it describes analogies
between Petri Nets, monoidal categories with additional structure, and quantum me-
chanics (in particular quantum information).

Filippo Bonchi, Maria Grazia Buscemi, Vincenzo Ciancia and Fabio Gadducci: A cat-
egory of explicit fusions. The paper introduces a suitable category E of equivalence
relations and shows it suitable to represent (abstract) syntax and semantics (via an endo-
functor B on SetE) of the calculus of explicit fusions. The main result gives a bijection
between inside-outside bisimulations and coalgebraic bisimulations for B.

José Luiz Fiadeiro: What do semantics matter when the meat is overcooked? This paper
presents a model for configuration management of service-oriented applications mod-
elled with the language developed by the EU funded Sensoria project. The model makes
use of various of Ugo’s favourite ingredients: roughly, business configurations are repre-
sented as graphs; constraint systems play the role of business policies; a module requir-
ing a set of services is seen as a clause in logic programming style; the reconfiguration
that happens when a service is called for instantiation (via the usual service-oriented
mechanism of discovery, selection, and binding) is modelled by a sort of resolution.

Nicoletta Sabadini and Robert Walters: Calculating Colimits Compositionally. Recent
years witnessed a renewed interest in exploring the dichotomy between the algebraic
and the graphical presentations of a system, a topics to which Ugo has also contributed.
Along these lines, the paper gives an algebraic description for finite colimits in a cate-
gory based on the cospan construction, whence the graphical counterpart.

Models of Computation: A Tribute to Ugo Montanari’s Vision 507

Donald Sannella and Andrzej Tarlecki: Observability concepts in abstract data type
specification, 30 years later. Last but not least, the paper is ideal for closing our
overview, because it presents in a modern fashion the pioneering ideas of Ugo on ab-
stract data type specification [43], commenting upon which we opened this contribution.

References

1. Baldan, P., Bruni, R., Montanari, U.: Pre-nets, read arcs and unfolding: A functorial presen-
tation. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 145–164. Springer, Heidelberg (2003)

2. Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph
grammars. In: Thomas, W. (ed.) ETAPS 1999 and FOSSACS 1999. LNCS, vol. 1578, pp.
73–89. Springer, Heidelberg (1999)

3. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures,
and processes. Inform. and Comput. 171(1), 1–49 (2001)

4. Baldan, P., Corradini, A., Montanari, U.: Relating SPO and DPO graph rewriting with Petri
nets having read, inhibitor and reset arcs. Elect. Notes in Th. Comput. Sci. 127(2), 5–28
(2005)

5. Baldan, P., Corradini, A., Montanari, U., Ribeiro, L.: Unfolding semantics of graph transfor-
mation. Inform. and Comput. 205(5), 733–782 (2007)

6. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In: Proc. of
LICS 2006, pp. 69–80. IEEE Computer Society Press, Los Alamitos (2006)

7. Bruni, R., Butler, M.J., Ferreira, C., Hoare, C.A.R., Melgratti, H.C., Montanari, U.: Com-
paring two approaches to compensable flow composition. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg (2005)

8. Bruni, R., de Frutos-Escrig, D., Martı́-Oliet, N., Montanari, U.: Bisimilarity congruences for
open terms and term graphs via tile logic. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 259–274. Springer, Heidelberg (2000)

9. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theoret.
Comput. Sci. 286(2), 247–292 (2002)

10. Bruni, R., Gadducci, F., Montanari, U., Sobocinski, P.: Deriving weak bisimulation congru-
ences from reduction systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS,
vol. 3653, pp. 293–307. Springer, Heidelberg (2005)

11. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theoret. Com-
put. Sci. 366(1-2), 98–120 (2006)

12. Bruni, R., Melgratti, H.C., Montanari, U.: Extending the zero-safe approach to coloured,
reconfigurable and dynamic nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003.
LNCS, vol. 3098, pp. 291–327. Springer, Heidelberg (2004)

13. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi: Extending join.
In: Proc. of IFIP TCS 2004, pp. 563–576. Kluwer Academic Publishers, Dordrecht (2004)

14. Bruni, R., Melgratti, H.C., Montanari, U.: Event structure semantics for nominal calculi. In:
Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 295–309. Springer,
Heidelberg (2006)

15. Bruni, R., Melgratti, H.C., Montanari, U.: Event structure semantics for dynamic graph gram-
mars. In: Proc. of PNGT 2006. Elect. Communic. of the EASST, vol. 2, EASST (2007)

16. Bruni, R., Meseguer, J., Montanari, U.: Symmetric monoidal and cartesian double categories
as a semantic framework for tile logic. Math. Struct. in Comput. Sci. 12(1), 53–90 (2002)

17. Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial models for Petri nets. Inform.
and Comput. 170(2), 207–236 (2001)

508 R. Bruni and V. Sassone

18. Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Algebraic theories for contextual pre-
nets. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 256–270. Springer,
Heidelberg (2003)

19. Bruni, R., Montanari, U.: Cartesian closed double categories, their lambda-notation, and the
pi-calculus. In: Proc. of LICS 1999, pp. 246–265. IEEE Computer Society Press, Los Alami-
tos (1999)

20. Bruni, R., Montanari, U.: Zero-safe nets: Comparing the collective and individual token ap-
proaches. Inform. and Comput. 156(1-2), 46–89 (2000)

21. Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theoret. Comput.
Sci. 281(1–2), 131–176 (2002)

22. Bruni, R., Montanari, U., Rossi, F.: An interactive semantics of logic programming. Theory
and Practice of Logic Programming 1(6), 647–690 (2001)

23. Bruni, R., Montanari, U., Sassone, V.: Observational congruences for dynamically reconfig-
urable tile systems. Theoret. Comput. Sci. 335(2-3), 331–372 (2005)

24. Bruni, R., Sassone, V.: Algebraic models for contextual nets. In: Welzl, E., Montanari, U.,
Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 175–186. Springer, Heidelberg (2000)

25. Buscemi, M.G., Montanari, U.: A compositional coalgebraic model of fusion calculus. J.
Log. Algebr. Program 72(1), 78–97 (2007)

26. Castellani, I., Montanari, U.: Graph grammars for distributed systems. In: Ehrig, H., Nagl,
M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 20–38. Springer, Hei-
delberg (1983)

27. Coccia, M., Gadducci, F., Montanari, U.: GS-lambda theories: A syntax for higher-order
graphs. Elect. Notes in Th. Comput. Sci. 69 (2002)

28. Corradini, A., Ehrig, H., Löwe, M., Montanari, U., Rossi, F.: An event structure semantics
for safe graph grammars. In: Pro. of PROCOMET 1994. IFIP Transactions, vol. A-56, pp.
423–444. North-Holland, Amsterdam (1994)

29. Corradini, A., Heckel, R., Montanari, U.: Tile transition systems as structured coalgebras. In:
Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 13–38. Springer, Heidelberg
(1999)

30. Corradini, A., Montanari, U.: An algebraic semantics for structured transition systems and
its application to logic programs. Theoret. Comput. Sci. 103, 51–106 (1992)

31. Corradini, A., Montanari, U., Rossi, F.: An abstract machine for concurrent modular systems:
CHARM. Theoret. Comput. Sci. 122(1–2), 165–200 (1994)

32. Darondeau, P., Degano, P.: Causal trees. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-
Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 234–248. Springer, Heidelberg
(1989)

33. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra of net computations and
processes. Acta Inform. 33(7), 641–667 (1996)

34. Degano, P., Montanari, U.: A model for distributed systems based on graph rewriting. Journal
of the ACM 34(2), 411–449 (1987)

35. Ferrari, G.L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification envi-
ronment for mobile processes. ACM Transactions on Software Engineering and Methodol-
ogy 12(4), 440–473 (2003)

36. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hyperedge re-
placement as a model for service oriented computing. In: de Boer, F.S., Bonsangue, M.M.,
Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 22–43. Springer, Hei-
delberg (2006)

37. Ferrari, G.L., Montanari, U.: Parameterized structured operational semantics. Fundam. In-
form 34(1-2), 1–31 (1998)

38. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inform. and Com-
put. 156(1/2), 173–235 (2000)

Models of Computation: A Tribute to Ugo Montanari’s Vision 509

39. Ferrari, G.L., Montanari, U., Mowbray, M.: Structured transition systems with parametric
observations: observational congruences and minimal realizations. Math. Struct. in Comput.
Sci. 7(3), 241–282 (1997)

40. Ferrari, G.L., Montanari, U., Tuosto, E.: A LTS semantics of ambients via graph synchro-
nization with mobility. In: Restivo, A., Ronchi Della Rocca, S., Roversi, L. (eds.) ICTCS
2001. LNCS, vol. 2202, pp. 1–16. Springer, Heidelberg (2001)

41. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in
Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)

42. Gadducci, F., Montanari, U.: Comparing logics for rewriting: rewriting logic, action calculi
and tile logic. Theoret. Comput. Sci. 285(2), 319–358 (2002)

43. Giarratana, V., Gimona, F., Montanari, U.: Observability concepts in abstract data type spec-
ifications. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 576–587. Springer,
Heidelberg (1976)

44. Gorrieri, R., Marchetti, S., Montanari, U.: A2CCS: Atomic actions for CCS. Theoret. Com-
put. Sci. 72(2&3), 203–223 (1990)

45. Hirsch, D., Inverardi, P., Montanari, U.: Reconfiguration of software architecture styles with
name mobility. In: Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906,
pp. 148–163. Springer, Heidelberg (2000)

46. Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mobility. In:
Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 121–136. Springer,
Heidelberg (2001)

47. König, B., Montanari, U.: Observational equivalence for synchronized graph rewriting with
mobility. In: Kobayashi, N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 145–164.
Springer, Heidelberg (2001)

48. Lanese, I., Montanari, U.: Hoare vs Milner: Comparing synchronizations in a graphical
framework with mobility. Elect. Notes in Th. Comput. Sci. 154(2), 55–72 (2006)

49. Laneve, C., Montanari, U.: Axiomatizing permutation equivalence. Math. Struct. in Comput.
Sci. 6(3), 219–249 (1996)

50. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Transactions on Pro-
gramming Languages and Systems 4, 258–282 (1982)

51. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoret. Com-
put. Sci. 96, 73–155 (1992)

52. Meseguer, J., Montanari, U.: Petri nets are monoids. Inform. and Comput. 88, 105–155 (1990)
53. Meseguer, J., Montanari, U.: Mapping tile logic into rewriting logic. In: Parisi-Presicce, F.

(ed.) WADT 1997. LNCS, vol. 1376, pp. 62–91. Springer, Heidelberg (1998)
54. Meseguer, J., Montanari, U., Sassone, V.: Process versus unfolding semantics for

place/transition Petri nets. Theoretical Computer Science 153(1–2), 171–210 (1996)
55. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition Petri nets.

Math. Struct. in Comput. Sci. 7(4), 359–397 (1997)
56. Meseguer, J., Montanari, U., Sassone, V.: Representation theorems for Petri nets. In: Freksa,

C., Jantzen, M., Valk, R. (eds.) Foundations of Computer Science. LNCS, vol. 1337, pp.
239–249. Springer, Heidelberg (1997)

57. Montanari, U., Pistore, M.: Structured coalgebras and minimal HD-automata for the pi-
calculus. Theoret. Comput. Sci. 340(3), 539–576 (2005)

58. Rossi, F., Montanari, U.: Graph rewriting, constraint solving and tiles for coordinating dis-
tributed systems. Applied Categorical Structures 7(4), 333–370 (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

