
Computational Trust 1

Probabilistic Computational Trust

Karl Krukow1, Mogens Nielsen2, Vladimiro Sassone3

1Trifork
Denmark

kkr@trifork.com

2 University of Aarhus
Denmark

mn@science.au.dk

3University of Southampton
UK

vs@ecs.soton.ac.uk

Abstract

We argue briefly for the role of computational trust in ubiquitous
computing, and in particular for the need of a formal foundation for
computational trust. We provide two examples towards such a foun-
dation: a formal foundation for a some probabilistic approaches from
the literature, and a formal framework for comparing probabilistic
trust models.

Keywords. Computational Trust, Ubiquitous Computing.

1 Introduction

This paper surveys the notion of computational trust and illustrates
some initial progress towards developing its theoretical underpinning.
Computational trust refers to decision-making in computing applica-
tions where uncertainty is a dominant aspect. This may manifest itself
in several different ways, including unpredictability in the execution en-
vironment, as typical of e.g. mobile and sensor networks; in the emergent
behaviour of dynamic agglomerates of computational entities, as e.g. in
self-configuring, highly-distributed systems; and in applications where
the optimal strategy is itself uncertain, as typical of adaptation and
situational awareness in autonomous agent systems. The tract com-
mon to these examples is the move away from the ‘Eden’ of certain and
abundant information to a place where the only ‘truths’ available are
those that can be experienced directly. This is analogous to higher liv-
ing organisms, like we humans, which continuously have to assess the
evidence around them and decide whether or not to rely on the infor-
mation they determine from it. To provide a purposely naive example

2 Perspectives in Concurrency

in realm of computing, on the Internet it is ultimately a matter of trust
whether or not I expect that following a given URL will actually take
me to my bank’s website. Such is in fact the origin of the term ‘trust’
in our context: in the absence of complete and completely reliable in-
formation, computational entities must weigh the relative importance
of different factors —that is, determine their level of trust in them—
in their decision-making. Indeed, ‘decision-making’ remains the central
keyword here, and one can think of computational trust as a computer
abstraction underpinning it.

To develop such an abstraction is not as immediate as it might
appear at first. It is common experience to enter a room filled with
strangers, sit around a table and soon establish a level of trust sufficient
to function cooperatively (well, at least in most cases). This does not
come as naturally to machines, and it is in fact from our point of view
a superbly sophisticated collective behaviour: to achieve a similar level
of adaptability, awareness and responsiveness from computing agents
requires computational structures, algorithms, middleware infrastruc-
tures, models and theoretical foundations, and is exactly what the work
on computational trust aspires to.

An application field central to our interests is ubiquitous comput-
ing. That is a comprehensive term which indicates information process-
ing through a computational infrastructure embedded seamlessly and
pervasively in the surroundings. It encompasses very many issues of a
quite different nature, ranging from the design and deployment of low-
power, self-sustaining electronic devices in pervasive wireless networks,
to the investigation of innovative user interfaces, from the development
of semantic models of agent mobility and distribution, to the architec-
ture of communication networks and the corresponding programming
language primitives. Computational trust is intrinsic to ubiquitous com-
puting in that entities on the ‘global’ network have intrinsically unveri-
fiable identities, origins, and past histories.

The area of computational trust has produced several applications
within ubiquitous computing with truly impressive experimental per-
formance. However, we are not yet in a position where we understand
why, when, and how a particular approach is applicable, as expressed
e.g. in [20]. Such questions are typically formulated in terms of un-
derlying models. In this paper, we focus on just one type of models
considered within computational trust based on well known concepts
from probability theory.

Probabilistic approaches have proved useful in science to formulate
and test hypotheses over quantities not exactly known, as illustrated by
e.g. Thomas Bayes, who developed his eponymous method by solving
the so-called problem of ‘inverse probability:’ given that an outcome
has been observed (e.g., a red ball has been extracted from the urn),
what can be inferred about the model (e.g., number of red and yellow

Computational Trust 3

balls in the urn)? This adapts well to our ‘decision-making’ problem;
e.g.: given that the URL led to my bank’s website, what can be said
about the rest of the information on this page to inform my future deci-
sions? We shall illustrate in this paper how such an observation led to a
powerful computational idea, which has been exploited in several com-
putational trust algorithms. Indeed, as the field grows under the thrust
of suggestive analogies like the one above, and experimental successes
pile up, the need arises to understand at a deeper level and distil the
essence of the methods.

Our aim in this paper is primarily to illustrate that it is possible to
ask and to answer formally questions on the behaviour of systems ex-
pressed in underlying formal probabilistic trust models. We focus here
on behavioural notions like correctness. Traditionally in software de-
velopment, the notion of correctness is formulated in terms of a yes/no
question: does a piece of software satisfy its specification? It is our posi-
tion that in the setting of computational trust, we need to develop new
formal frameworks for a more general notion of correctness, which allows
us e.g. (i) to express and to argue how well a particular system behaves
under various assumptions about the environments (i.e. in which appli-
cation scenarios does the system do well?), and (ii) to express and argue
how robust a particular system is with respect to changes in the envi-
ronment. And in this paper we present ideas towards new frameworks
for addressing both these issues. However, these are just examples of
new types of formal frameworks to be developed within computational
trust. We hope this paper can serve to illustrate our results on ‘formal’
computational trust and as a ‘call-to-arms’ to tackle the open ones.

Contents of paper: We present a formal foundation for two of the
well known probabilistic approaches from the literature. We then illus-
trate how a new approach to correctness and robustness can be applied
to answer questions on the relative performance of the two approaches.
We first summarise some of the arguments for trust playing a role in
ubiquitous computing, giving a brief historical account on the develop-
ment from trust management systems. We then focus on a few proba-
bilistic approaches to computational trust, and we illustrate how they
can be understood and explained formally in terms of standard concepts
from probability theory. Finally, we sketch ideas towards a theoretically
well-founded technique for comparing probabilistic systems in various
different environments. The paper is mainly based on selected parts of
the PhD dissertation of the first author [13]. Also, some of the results
have appeared in [21, 14].

2 The Role of Trust in Ubiquitous Computing

Many researchers have argued convincingly for the relevance of trust
management in distributed systems security (cf., Blaze, Feigenbaum et
al. [2]). We recapture some of these arguments, and try to highlight

4 Perspectives in Concurrency

a number of properties of ubiquitous computing which make the trust
management approach even more appealing, even if the limitations of
the traditional technology and models must first be overcome.

2.1 The Access Control List

The unique dynamic properties of the Internet and, more generally,
those envisioned for ubiquitous computing, imply that traditional the-
ories and mechanisms for security and resource access-control are often
inappropriate as they are of too static a nature. For example, tradi-
tional access control consists of a policy specifying which subjects (user
identities) may access which objects (resources), e.g., a user accessing a
file in a UNIX file system. Apart from inflexibility and lack of expres-
sive power, this approach assumes that resources are only accessed by a
static set of known subjects (and that resources themselves are fixed);
an assumption incompatible with open dynamic systems.

Many modern distributed systems use a combination of access con-
trol lists and user authentication, usually implemented via some public
key authentication protocol, i.e., deciding a request to perform an ac-
tion is done by authenticating the public key, effectively linking the key
to a user identity, and then looking up in the access control list to see
whether that identity is authorised to perform the action [2]. Further-
more, the security of current systems is often not verified, i.e., proofs
of soundness of the security mechanism are lacking (e.g., statements of
the form “if the system authorises an action requested by a public key,
then the key is controlled by user U , and U is authorised to perform
that action according to the access control list”).

In Internet applications there is an extremely large set of entities
making requests, and this set is in constant change as entities join and
leave networks. Furthermore, even if we could reliably decide who signed
a given request, the problem of deciding whether or not access should
be granted is not obvious: Should all requests from unknown entities be
denied?

Blaze et al. [2] present a number of reasons why the traditional
approach to authorisation is inadequate:

• Authorisation = Authentication + Access Control List. Authen-
tication deals with establishing identity. In traditional static en-
vironments, e.g., operating systems, the identity of an entity is
well-known. In ubiquitous computing applications this is often
not the case. This means that if an access control list (ACL) is to
be used, some form of authentication must first be performed. In
distributed systems, often public-key based authentication proto-
col are used, which usually relies on centralised and global certifi-
cation authorities.

Computational Trust 5

• Delegation. Since the global scale of ubiquitous computing im-
plies that each entity’s security policy must encompass billions
of entities, delegation is necessary to obtain scalable solutions.
Delegation implies that entities may rely on other (semi) trusted
entities for deciding how to respond to requests. In traditional
approaches either delegation is not supported, or it is supported
in an inflexible manner where security policy is only specified at
the last step of a delegation chain.

• Expressive power and Flexibility. The traditional ACL-based ap-
proach to authorisation has proved not to be sufficiently expres-
sive (with respect to desired security policies) or extensible. The
result has been that security policies are often hard-coded into
the application code, i.e., using the general purpose programming
language that the application is written in. This has a number
of implications: changes in security policy often means rewriting
and recompilation, and security reasoning becomes hard as secu-
rity code is intertwined with application code (i.e., violating the
principle of ‘separation of concerns’).

• Locality. The autonomy of ubiquitous computing entities means
that different entities have different trust requirements and rela-
tionships with other entities. Hence, ubiquitous computing en-
tities should be able to specify local security and trust policies,
and security mechanisms should not enforce uniform and implicit
policies or trusting relations.

2.2 The Traditional Trust Management Approach

In contrast to the ‘access control list’ approach to authorisation, trust
management is naturally distributed, and consists of a unified and gen-
eral approach to specifying security policies, credentials and trusting re-
lationships, backed up by general (application-independent) algorithms
to implement these policies. The trust management approach is based
on programmable security policies that specify access-control restric-
tions and requirements in a domain-specific programming language,
leading to increased flexibility and expressive power.

Given a request r signed by a key k, the question we really want
to answer is the following: “Is the knowledge about key k such that the
request r should be granted?” In principle, we do not care about who
signed r, only whether or not sufficient information can be inferred to
grant the request. The trust management approach does not need to
resolve the actual identity (e.g., the human-being believed to be per-
forming the request) but, instead, deals with the following question,
known as the compliance-checking problem: “Does the set C of creden-
tials prove that the request r complies with the local security policy
σ?” [2, 3]. Let us elaborate: a request r can now be accompanied by
a set C of credentials. Credentials are signed policy statements, e.g., of

6 Perspectives in Concurrency

the form “public key k is authorised to perform action a.” Each entity
that receives requests has its own security policy σ that specifies the
requirements for granting and denying requests. Policies can directly
authorise requests, or they can delegate to credential issuers that the
entity expects have more detailed information about the requester.

Policy is separated from mechanism: a trust management engine
takes as input a request r, a set of credentials C and a local policy σ; it
outputs an authorisation decision (this could be ‘yes’/‘no’, but also more
general statements about, say, why a request is denied, or what would
be further needed to grant the request). This separation of concerns
supports security reasoning needed in distributed applications, which
we believe to be an important feature for the ubiquitous computing
challenge.

2.3 Security in Ubiquitous Computing

The above reasoning argues that traditional authorisation mechanisms
are inadequate in modern distributed systems. When one considers
ubiquitous computing applications, we can add further to this list. Most
of the dynamic properties of ubiquitous computing entities (e.g., mobil-
ity, autonomy, ubiquity, global connectivity, . . .) affect their security
requirements. For example, mobility implies that an entity might find
itself in a hostile environment, disconnected from its preferred security
infrastructure, e.g., certification authorities. Further, the autonomy re-
quirement means that even in this scenario, it must be able to assign
privileges to other entities, privileges that are meaningful based on the
usually incomplete information that the assigning entity has about the
assigned entity.

• Active decisions. Trust management systems focus on deciding
how to respond to requests. However, ubiquitous computing en-
tities do not only need to respond meaningfully to requests, i.e.,
taking passive security decisions, but often need to actively and
autonomously select among equivalent services provided by a num-
ber of apparently similar providers. Such decisions may also affect
security: interaction often entails exposing personal data, as well
as requiring resources like time, computation, battery and stor-
age. When taking active decisions, there are usually no credentials
available; hence, other information, e.g., reputation information,
must be taken into account to make meaningful decisions.

• Information vs. credentials. Traditional trust management sys-
tems focus on credentials as the main source of proving compli-
ance of a request with a policy. However, even when no delega-
tion chain may establish sufficient information about a requesting
entity, sometimes, collaboration may still be the most beneficial
action. Notions of risk of an interaction, and cost/benefit of the

Computational Trust 7

outcome of an interaction are relevant concepts that are not con-
sidered in traditional trust management policies. For example,
histories, that is, memory of past interactions with an entity, may
contain enough information to risk interaction. This entails that
trusting relationships change dynamically, based on information
about the history of an entity.

• Probability. Incomplete information leads naturally to probabilis-
tic decision-making. Trust management systems that focus on
information could consider probabilities explicitly (as an alterna-
tive to, or, to complement the establishing of credentials in the
traditional sense). Ideally, security policies would be amenable to
probabilistic yet rigorous reasoning which leads to more generality
and flexibility. Additionally, as factors such as cost and benefit
of interactions enters the equation, a notion of risk emerges as a
product of cost/benefit and probability.

2.4 Computational Trust

In the arguments above, we have considered only a single notion of
trust in ubiquitous computing, namely the concept of ‘trust manage-
ment’ coined by Blaze, Feigenbaum and Lacy [3]. In fact, there are
many different strands of research on trust addressing the challenges
of ubiquitous computing. A whole range of trust based alternatives to
existing technologies have appeared, collectively referred to as compu-
tational trust. For comprehensive surveys on computational trust, the
reader is referred to e.g. [8, 12, 20, 19, 14].

In this paper we deal with just one particular approach within com-
putational trust based on probability theory. Before focusing on that,
we would like to comment briefly on some of the other approaches aim-
ing specifically for a computational formalisation of the human notion
of trust, i.e., trust as a sociological, psychological and philosophical con-
cept (for a good survey of these, see [1]). However, the human concept
of trust is elusive and its many facets make it hard to define formally
[17, 5]. We believe that to live up to the ubiquitous computing challenge,
it is necessary that the two concepts be merged in a ‘unified’ theory of
trust which combines the strengths of both notions. To be more precise,
our ideal would be to combine the rigour of traditional trust manage-
ment with the dynamics and flexibility of the human notion. Let us
elaborate: traditional trust management deals with credentials, policies,
requests and the compliance-checking problem. Rigourous security rea-
soning is possible: the intended meaning of a trust management engine
is formally specified, correctness proofs are feasible, and many security
questions are effectively decidable [16]. In contrast, we have yet to see
a system based on the human notion of trust which, with realistic as-
sumptions, guarantees any sort of rigourous security property. On the
other hand, such systems are capable of making intuitively reasonable

8 Perspectives in Concurrency

decisions based on information such as evidence of past behaviour, rep-
utation, recommendations and probabilistic models. A combination of
these two approaches would lead to powerful frameworks for decision-
making which incorporates more general information than credentials,
yet which remains tractable to rigorous reasoning.

3 Probabilistic Computational Trust

In the survey [14], computational trust is characterised as being either
credential-based (following the ideas of Blaze et al. above) or experience-
based. The latter term refers to approaches to trust, where an entity’s
trust in another is based on past behaviour, covering many so-called
reputation-based trust management systems, which are often used in
peer-to-peer (P2P) and eCommerce applications.

3.1 Experience-based Trust

Consider a set P of principal identities. From time to time, principals
will interact in a pair-wise manner, and such interactions result in each
principal observing a set of time-stamped events. In the following we
make a number of simplifications, but stay general enough to capture
most of the principles of existing experience-based systems: we assume
that each time p interacts with another principal, say q ∈ P , the inter-
action generates only a single event e, drawn from some set E of events
(left unspecified here).

Let (T,≤) be a totally ordered set of time-stamps, e.g., T =
{0, 1, . . .} for discrete time. Principal p records its interactions with
other principals so that at each point in time, t0 ∈ T , there is a set
Histp(t0) consisting of triples (q, t, e) where q ∈ P , e ∈ E; and t ∈ T
satisfies t ≤ t0. To be clear, a triple (q, t, e) ∈ Histp(t0) represents that:
“In an interaction between p and q, principal p has observed event e at
time t.” We write Histp

q(t) for the q-projection, i.e., the set of pairs
(t′, e) such that (q, t′, e) ∈ Histp(t).

At any point in time, t ∈ T , the sets Histp(t), for p ∈ P , consti-
tute the basic or direct data of an experience-based system at time t.
When p needs to make a decision at time t, e.g., about a principal q,
it does so based on information from the direct data of the system at
time t. Usually, such information is incomplete: while p typically knows
Histp(t), the sets Histr(t) for r 6= p may not be known exactly. This
may be due to several reasons, e.g.: p may only have Histr(t′) for some
t′ < t; when asked about Histr(t′), r may lie; principal p may not be
able to obtain any information about Histr(t′); principal p may only
see some abstracted version of r’s direct data; and any combinations of
the above.

Most experience-based systems work on some abstracted version
of the direct data, denoted AbsHistp(t). Some systems are centralised,

Computational Trust 9

so that (abstract versions of) the direct data are stored on a global
server, whereas other system are distributed. In the following we focus
on models, not architectures (e.g., centralised vs distributed). Given our
general model, an experience-based system is designed by (i) choosing if
and how to abstract (or aggregate) the sets Histp(t) to obtain the ‘ab-
stract’ sets AbsHistp(t); (ii) choosing if and how each principal p will
obtain information about Histq(t) for q 6= p; (iii) optionally choosing
how principals combine personal data with the data of others; and (iv)
designing an architecture and algorithms (possibly distributed) to im-
plement the system. The optional step (iii) often works in the following
way: principal p computes for each other principal, say q, a ‘score’ or
‘rating’, Tpq ∈ D, for some set D of possible scores. The score Tpq is
usually computed from some of the the abstracted versions of the direct
data, i.e. (AbsHistr

q(t) | r ∈ I) for some I ⊆ P , and represents q’s
trustworthiness (or reputation), seen from the point-of-view of p. Some
systems have a uniform mechanism where Tpq = Tp′q for all p, p′ ∈ P ,
i.e., q has a unique ‘global’ score.

A common example of an abstraction is the following. At time t0,
principal p is interested in information about principal q. Each record
(q, t, e) is evaluated as either ‘positive’ or ‘negative’, and time is ignored;
hence, Histp

q(t0) is abstracted to a pair consisting of the number of ‘pos-
itive’ interactions and the number of ‘negative’ interactions. Principals
then obtain information about AbsHistr

q(t) by asking a central repos-
itory. Sets of records (AbsHistr

q(t) | r ∈ I ⊆ P) are combined into
a single pair by adding-up the total number of ‘negative’ interactions,
and similarly adding-up total number of ‘positive’ interactions. This
example system is much like the eBay system.

Probabilistic computational trust refers to a particular kind of an
experience-based approach, which assumes a probabilistic model, say
λ, for the behaviour of principals. The goal is then to predict the be-
haviour of principals in future interactions, given the model λ and their
behaviour in past interactions. The abstractions, i.e., AbsHist(t), are
then chosen to be as efficient as possible while preserving as much in-
formation as is relevant with respect to the model. For example, λ may
specify that each principal (intrinsically) is either ‘good’ or ‘bad’, and
that interaction with ‘good’ principals always results in event e, whereas
interaction with ‘bad’ principals always results in event f . In this model,
one only needs to interact with a principal once to know if he is a ‘good’
type or ‘bad’ type. Hence, the sets AbsHistp

q(t) need only have three
values to preserve sufficient information: ‘good’, ‘bad’ or ‘unknown.’

3.2 Two Probabilistic Models

Despotovic et al. [6, 7] propose a probabilistic system and an estimation
algorithm based on maximum likelihood. It is assumed that peers inter-

10 Perspectives in Concurrency

act with each other in a binary way: in each interaction they can either
be ‘honest’ or ‘cheat.’ Furthermore, peers can report to other peers on
past behaviour (and they are allowed to lie in their reports).

The probabilistic model of Despotovic et al., λD, assumes that each
principal j ∈ P is ‘probabilistic’ in the sense that there is a fixed proba-
bility θj ∈ [0, 1] of peer j acting honestly in any interaction. Note, this
assumes that j is always honest with probability θj , independently of
any other information we might have (e.g., the time, the past, etc.). The
parameters, θj , are unknown and the goal is to estimate them. Further-
more, each principal k ∈ P can report on its past interactions with j;
it is assumed that k’s report is also probabilistic so that the probability
of observing a report yk ∈ {0, 1} (‘0’ means cheated, ‘1’ means honest)
from principal k is given by

P (Yk = yk | θj, lk) =

{
lk(1− θj) + (1− lk)θj if yk = 1;
lkθj + (1− lk)(1− θj) if yk = 0

where lk (like θj) are fixed parameters specifying the probability of k
submitting a false report. Hence for each principal j, there are two
parameters that probabilistically decides its behaviour: θj and lj .

Let us write AbsHist×j (t) for the collection of information that a
particular principal has about j. In the system, this collection consists of
a number of reports ((y1, p1), (y2, p2), . . . , (ym, pm)) where yi ∈ {0, 1},
pi ∈ P , and (yi, pi) means that principal pi has filed report yi (we do
not consider here how reports are obtained). Hence, time is abstracted
away and events are ‘rated’ in a binary fashion.

Now given AbsHist×j (t) = Y = ((y1, p1), (y2, p2), . . . , (ym, pm)) of
independent reports, the so-called likelihood function is:

L(θj, l) = P (Y | θj, l, λD) =
m∏

i=1

P (Yi = yi | θj, lpi
)

(note this expression depends also on l, which is not clear from the
authors’ presentation [6]). Given current estimates for l and the data
Y the goal is to estimate the behaviour of principal j, i.e., to estimate
θj .

The system uses a maximum likelihood procedure which seeks to
find a θj which maximises the likelihood expression. In the computation
of likelihood function, estimates for the lk are based on past interactions,
but it is unspecified exactly how these are computed. The authors also
present an approach based on normal distributions instead of the fixed
θj ’s. Similarly, the maximum likelihood techniques are used to estimate
the parameters of the normal distribution.

Jøsang et al. [11] and Mui et al. [18] were among to first to (inde-
pendently) develop reputation systems based on a Bayesian probabilistic

Computational Trust 11

approach with beta priors. In the following we recall the beta distribu-
tion and explain the underlying theoretical model for the beta-based
reputation systems.

The beta family Beta(·,×) is a parameterised collection of contin-
uous probability density functions (pdfs) defined on the interval [0, 1].
There are two parameters α > 0 and β > 0 that select a specific beta
distribution from the family. The pdf Beta(α, β) is given by

f(θ | α, β) =
1

B(α, β)
θα−1(1− θ)β−1 =

θα−1(1− θ)β−1∫ 1

0
dt tα−1(1− t)β−1

where B is the beta function, and B(α, β)−1 is a normalising constant.
The expected value and variance are given by

Ef(θ|α,β)(θ) =
α

α + β
, σ2

f(θ|α,β)(θ) =
αβ

(α + β)2(α + β + 1)

The beta distributions provide a so-called family of conjugate prior
distributions for the family of distributions for Bernoulli trials. To ex-
plain the notion of conjugate priors, consider the general problem of
estimating a parameter θ given some data x and background informa-
tion I. Let Hθ be some hypothesis about parameter θ. The Bayesian
approach (see the excellent book of Jaynes [9]), is to compute the pos-
terior P (Hθ | xI) (i.e., the probability after seeing the data) from the
prior P (Hθ | I) (the a priori probability, given only information I) and
the likelihood function Hθ 7→ P (x | HθI), using Bayes’ Theorem:

P (Hθ | xI) = P (Hθ | I)
P (x | HθI)
P (x | I)

Different priors P (Hθ | I) may make this probability more or less dif-
ficult to calculate, but certain choices of the prior lead to the the pos-
terior P (Hθ | xI) having the same algebraic form as the prior. Now,
a family of conjugate prior distributions for the family of distributions
Hθ 7→ P (x | HθI) is a collection of distributions such that when the
prior P (Hθ | I) belongs to the family, the posterior P (Hθ | xI) is also
in that family (one might say that the family is Bayes-closed, i.e., is
closed under the application of Bayes’ Theorem).

3.3 Probabilistic Models and Trust

The reader may wonder what this has to do with trust and reputation.
In the following we give our personal explanation of the Bayesian beta-
based approach in reputation systems. The explanation is not explicitly
presented in such detail in the papers describing beta-systems [11, 18,
4, 22], and, hence, the authors may have different perspectives.

12 Perspectives in Concurrency

Consider again sequences of independent experiments with binary
outcomes, each yielding one of the outcomes with some fixed probability
(i.e., Bernoulli trials). In systems where principal-interactions consists
of binary outcomes (or where interactions are rated on a binary scale,
e.g., ‘cooperate’ or ‘defect’; ‘success’ or ‘failure’), one can model re-
peated interaction (or repeated ratings) as Bernoulli trials. Let us be
more precise: let p, q ∈ P be principals, and assume that p and q have
interacted n times; that in each interaction q takes an action; and that
the whole interaction is given a binary rating by p (which depends only
on q’s action). Let Xpq

i ∈ {0, 1}, for i = 1, 2, . . . , n, be p’s rating (i.e.,
subjective evaluation) of the ith interaction with q. Let us assume that
principal q’s behaviour is so that there is a fixed parameter such that
at each interaction we have, independently of anything we know about
other interactions, the probability θ for a ‘success’ and therefore prob-
ability 1 − θ for ‘failure.’ This gives us a probabilistic model, and let
us call it the beta model. Note, this is like the model λD of Despotovic
et al., except for the parameters lk for k ∈ P . Let λB denote a formal
proposition representing the beta model, i.e., the assumptions about the
behaviour of q; also, let θ ∈ [0, 1] be the parameter determining success
in the ith trial. Finally, let X be the conjunction of statements Zi of
the form

Zi ≡ (Xpq
i = 0) or Zi ≡ (Xpq

i = 1),

so X = ∧n
i=1Zi, and let there be f statements of the first form and

s statements of the second form (there is one statement for each i, so
s + f = n). Then, by definition of our model λB, we have the following
likelihood.

P (X | θλB) =
n∏

i=1

P (Zi | θλB) = θs(1− θ)f

Hence, we can obtain the posterior pdf as

g(θ | XλB) = g(θ | λB)
P (X | θλB)
P (X | λB)

= g(θ | λB)
θs(1− θ)f∫ 1

0
dθ P (X | λBθ)g(θ | λB)

= g(θ | λB)
θs(1− θ)f∫ 1

0
dθ θs(1− θ)fg(θ | λB)

(where g(θ | λB) is the prior pdf for θ —cf. Jaynes [9]). If we postulate
the prior pdf g(θ | λB) to be Beta(θ | α0, β0) (which in particular is
the uniform distribution when α0 = β0 = 1), then we can compute the

Computational Trust 13

posterior:

g(θ | XλB) = g(θ | λB)
θs(1− θ)f∫ 1

0
dθ θs(1− θ)fg(θ | λB)

Since the normalizing constant in g(θ | λB) cancels out, we obtain

g(θ | XλB) =
θα0+s−1(1− θ)β0+f−1∫ 1

0
dθ θs+α0−1(1− θ)f+β0−1

=
1

B(α0 + s, β0 + f)
θα0+s−1(1− θ)β0+f−1

which means that g(θ | XλB) is Beta(θ | α0 + s, β0 + f).
Now let Zn+1 ≡ (Xpq

n+1 = 1), i.e., the statement that the (n + 1)st
interaction is rated as a ‘success’, then P (Zn+1 | XλB) is a predictive
probability: given no direct knowledge of θ, but only past evidence (X)
and the model (λB), then P (Zn+1 | XλB) is the probability that the
next interaction will be a ‘good’ one. We can compute it as follows.

P (Zn+1 | XλB) =
∫ 1

0

dθ P (Zn+1 | XλBθ)g(θ | XλB)

=
∫ 1

0

dθ θg(θ | XλB)

= Eg(θ|XλB)(θ)

Now recall the expectation of beta distributions; then

P (Zn+1 | XλB) = Eg(θ|XλB)(θ) =
α0 + s

α0 + s + β0 + f
(1)

since g(θ | XλB) is Beta(θ | α0 + s, β0 + f).

To summarise, given the assumptions of the beta model, one can
compute the probability of a success in the next interaction as the expec-
tation of the beta pdf g(θ | XλB) which results via Bayesian updating
given the past history X. Hence, the beta based systems (that deploy
the technique we have described here) are mathematically well-founded
on probability theory.

Jøsang et al. [11], Mui et al. [18], Buchegger et al. [4], Jennings
et al. [22] all present systems based on the beta model. Buchegger et
al. and Jennings et al. also propose mechanisms for dealing with lying
reputation sources. Technically, all the systems work by maintaining
the two parameters (α, β) of the current pdf g(θ | XλB). However,
the systems (except for [18] and [22]) deviate from the model λB in the
following sense: the parameters (α, β) are adjusted as time passes; for

14 Perspectives in Concurrency

instance, Jøsang uses exponential decay where α and β are multiplied
by a constant 0 < u < 1 each time parameters are updated (or a fixed
time limit is exceeded). The intuition is that somehow information
about more recent interactions should we considered more important
than information about older interactions.

Several models are based on a notion of ‘belief theory’ which is re-
lated to probability theory: Yu et al. developed a distributed reputation
system [23], and Jøsang developed the subjective logic of opinions [10].
Indeed, the subjective logic is closely linked to the probabilistic beta
model [10].

4 Towards Formal Computational Trust

Sabater and Sierra argue in [20] that the field of computational trust
is lacking a more formal foundation, including a way of comparing the
qualities of the many proposed trust-based systems. Sabater and Sierra
propose that our field develop “(. . .) test-beds and frameworks to eval-
uate and compare the models under a set of representative and common
conditions” [20].

We fully agree with these views. Also, as mentioned earlier, we
believe that computational trust needs new notions of the correctness
of systems, as well as frameworks for talking about the robustness of
systems relative to their environments.

As an example, consider the issue of correctness of the maximum
likelihood algorithm of Despotovic et al. introduced above. The tradi-
tional notion of correctness of algorithms would require a proof that the
algorithm is correct with respect to its specification, i.e., that it indeed
computes the maximum likelihood as specified above. However, in the
setting of ubiquitous computing, we are more interested in the question
of how well the algorithm approximates θ in the chosen probabilistic
model. In the following, we introduce a particular framework for for-
malising such questions: a generic measure of how well an algorithm
approximates the behaviour of entities in a given probabilistic model.
And this framework is then applied in order to compare the performance
of the two probabilistic algorithms from above: the maximum likelihood
algorithm of Despotovic et al. and the the beta-based algorithm of Mui
et al.

Our generic measure is intended to ‘score’ specific probabilistic
trust-based systems in a particular environment (i.e., “a set of repre-
sentative and common conditions”). The score, which is based on the
so-called Kullback-Leibler divergence, is a measure of how well an algo-
rithm approximates the ‘true’ probabilistic behavior of principals.

Consider a probabilistic model of principal behavior, say λ. We
consider only the behavior of a single fixed principal p, and we consider
only algorithms that attempt to solve the following problem: suppose
we are given an interaction history X = [(x1, t1), (x2, t2), . . . , (xn, tn)]

Computational Trust 15

obtained by interacting n times with principal p, observing outcome xi

at time ti. Suppose also that there are m possible outcomes (y1, . . . , ym)
for each interaction. The goal of a probabilistic trust-based algorithm,
say A, is to approximate a distribution on the outcomes (y1, . . . , ym)
given this history X. That is, A satisfies:

A(yi | X) ∈ [0, 1] (for all i),
m∑

i=1

A(yi | X) = 1.

We assume that the probabilistic model, λ, defines the following prob-
abilities: P (yi | Xλ), i.e., the probability of “yi in the next interaction
given a past history of X” and P (X | λ), i.e., the “a priori probability
of observing sequence X in the model.”

Therefore (P (yi | Xλ) | i = 1, 2, . . . ,m) defines the ‘true’ distri-
bution on outcomes for the next interaction (according to the model);
in contrast, (A(yi | X) | i = 1, 2, . . . ,m) attempts to approximate
this distribution. The Kullback-Leibler divergence [15], which is closely
related to Shannon entropy, is a measure of the distance from a true
distribution to an approximation of that distribution. The Kullback-
Leibler divergence from distribution p̂ = (p1, p2, . . . , pm) to distribution
q̂ = (q1, q2, . . . , qm) on a finite set of m outcomes, is given by

DKL(p̂ || q̂) =
m∑

i=1

pi log2

(
pi

qi

)
(any log-base could be used). The Kullback-Leibler divergence is almost
a distance (in the mathematical sense), but the symmetry property fails.
That is DKL satisfies DKL(p̂ || q̂) ≥ 0 and DKL(p̂ || q̂) = 0 only if p̂ = q̂.
The asymmetry comes from considering one distribution as ‘true’ and
the other as approximating.

For each n let On denote the set of interaction histories of length n.
Let us define, for each n, the nth expected Kullback-Leibler divergence
from λ to A:

Dn
KL(λ || A)

(def)
=

∑
X∈On

P (X | λ)DKL(P (· | Xλ) || A(· | X)),

that is,

Dn
KL(λ || A) =

∑
X∈On

P (X | λ)

(
m∑

i=1

P (yi | Xλ) log2

(
P (yi | Xλ)
A(yi | X)

))
.

Note that, for each input sequence X ∈ On to the algorithm, we
evaluate its performance as DKL(P (· | Xλ) || A(· | X)); however,
we accept that some algorithms may perform poorly on very unlikely

16 Perspectives in Concurrency

training sequences, X. Hence, we weigh the penalty on input X, i.e.,
DKL(P (· | Xλ) || A(· | X)), with the intrinsic probability of sequence
X; that is, we compute the expected Kullback-Leibler divergence.

Due to the relation to Shannon’s Information Theory, one can in-
terpret Dn

KL(λ || A) quantitatively as the expected number of bits of
information one would gain if one would know the true distribution
instead of A’s approximation on n-length training sequences.

4.1 An example.

As an example of the applicability of our measure, we compare the
beta-based algorithm of Mui et al. [18] with the maximum-likelihood
algorithm of Despotovic et al. [6] introduced above. We can compare
these because they both deploy the same fundamental assumptions:

Assume that the behavior of each principal is so that there
is a fixed parameter such that at each interaction we have,
independently of anything we know about other interactions,
the probability θ for a ‘success’ and therefore probability
1− θ for ‘failure.’

This gives us the beta model, λB. Let s stand for ‘success’ and f stand
for ‘failure,’ and let X ∈ {s, f}n for some n > 0.

We have the following likelihood for any X ∈ {s, f}n:

P (X | λBθ) = θNs(X)(1− θ)Nf (X),

where Nx(X) denotes the number of x occurrences in X.
Let M denote the algorithm of Mui et al., and let D denote the

algorithm of Despotovic et al. Then,

M(s | X) =
Ns(X) + 1

n + 2
and M(f | X) =

Nf (X) + 1
n + 2

,

and it is easy to show that:

D(s | X) =
Ns(X)

n
and D(f | X) =

Nf (X)
n

.

For each choice of θ ∈ [0, 1], and each choice of training-sequence
length, we can compare the two algorithms by computing and com-
paring Dn

KL(λBθ || M) and Dn
KL(λBθ || D). For example:

Theorem 1. If θ = 0 or θ = 1 then for all n

Dn
KL(λBθ || D) = 0 < Dn

KL(λBθ || M),

and if 0 < θ < 1 then for all n

Dn
KL(λBθ || M) < Dn

KL(λBθ || D) = ∞.

Computational Trust 17

Proof. Assume that θ = 0, and let n > 0. The only sequence of
length n with non-zero probability is fn, and we have D(f | fn) = 1; in
contrast, M(f | fn) = (n + 1)/(n + 2), and M(s | fn) = 1/(n + 2).
Since P (s | fnλBθ) = θ = 0 = D(s | fn) and P (f | fnλBθ) = 1− θ =
1 = D(f | fn), we have

Dn
KL(λBθ || D) = 0.

Since Dn
KL(λBθ || M) > 0 we are done. The argument for θ = 1

is similar. For the case 0 < θ < 1 the result follows from similar
arguments, and the fact that D assigns probability 0 to s on input fk

(for all k ≥ 1), which results in Dn
KL(λ || D) = ∞. 2

The degenerate property of algorithm D of Despotovic et al. stated
in the Theorem above when 0 < θ < 1 follows from a general property of
the Kullback-Leibler measure: given two distribution p̂ = (p1, . . . , pn)
and q̂ = (q1, . . . , qn), if one of the ‘real’ probabilities, pi is non-zero and
the corresponding ‘approximating’ probability qi is zero, then we have
DKL(p̂ || q̂) = ∞. To obtain stronger and more informative results, we
shall consider a continuum of algorithms, denoted Aε for a real number
ε > 0 , defined as

Aε(s | X) =
Ns(X) + ε

n + 2ε
and Aε(f | X) =

Nf (X) + ε

n + 2ε
.

Note that one can think of Aε as approximating D (which is A0) for
small values of ε.

As an illustration of the type of comparison results one may obtain,
we are going to show just two results formally addressing the question
of how best to choose between this continuum of algorithms. The first
theorem states that unless behaviour is completely random, for any fixed
θ there exists one particular algorithm, which out-performes all other
Aε algorithms.

Theorem 2. For all θ ∈ [0, 1], θ 6= 1
2
,Dn

KL(λBθ || Aε) assumes a
minimal value compared to all Aε algorithms (ε > 0) for

ε =
2θ(1− θ)
(2θ − 1)2

Proof. Follows form standard analysis of Dn
KL(λBθ || Aε) as a func-

tion of ε. 2

Correspondingly, the following theorem states that for a fixed ε0 >
0, algorithm Aε0 is the optimal choice amongst all Aε algorithms for
precisely two values of θ.

18 Perspectives in Concurrency

Theorem 3. For any fixed real number ε0, for all ε > 0,

Dn
KL(λBθ || Aε0) ≤ Dn

KL(λBθ || Aε) iff θ =
1
2
± 1

2
√

2ε0 + 1

Proof. Follows from the analysis in the proof of Theorem 2. 2

As an illustrative corollary of this theorem, we see that the algo-
rithm M of Mui et al. is the optimal choice for precisely θ = 1

2
± 1√

12
.

In fact, it is not so much the concrete comparison of algorithms
M and D that interests us; rather, our message is that using proba-
bilistic models enables such theoretical comparisons. We have focused
here purely on the application of our framework in comparing two spe-
cific algorithms from the literature of computational trust, but it is
clear to us that the framework in general opens up the possibility of
formalising many other relevant questions. As an example, the ques-
tion of robustness of say algorithm M can be asked in terms of how
Dn

KL(λBθ || M) varies with θ, and investigate by a standard analysis
techniques on Dn

KL(λBθ || M) as a function of θ.

5 Concluding remarks

In this paper we retraced some of the fundamental steps in the de-
velopment of the concept of computational trust. We illustrated how
the analogy with the common notion of trust leads to a new powerful
computational paradigm for decision-making in the absence of complete
and reliable information, and explained why this has a potentially ma-
jor impact in several important application fields, and in particular on
the emerging ubiquitous computing infrastructure. We focussed on the
most prominent probabilistic approaches to computational trust, and
showed how they can be expressed formally in terms of basic concepts
from probability theory. Indeed, the experimental evidence in favour
of such techniques is compelling; we argued however that as a commu-
nity we do not yet possess a sufficient understanding of how, when and
why a particular approach is superior, or at least fit for purpose, and
we presented a formal framework in which such questions can be asked.
We exercised our framework on comparing probabilistic trust algorithms
‘quality-wise,’ and obtained some new insights; yet, our main message
is that a formal framework empowers us to formulate and investigate
all sort of new questions, in particular those concerned with quantita-
tive and relative measures of correctness and robustness for probabilistic
computational trust systems.

References

[1] A. Abdul-Rahman. A Framework for Decentralised Trust Reasoning. PhD
thesis, University of London, Department of Computer Science, University
College London, England, 2005.

Computational Trust 19

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of
trust management in distributed systems security. In Secure Internet Pro-
gramming: Security Issues for Mobile and Distributed Objects, volume 1603
of Lecture Notes in Computer Science, pages 185–210. Springer, 1999.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In
Proceedings from the 17th Symposium on Security and Privacy, pages 164–
173. IEEE Computer Society Press, 1996.

[4] S. Buchegger and J.-Y. Le Boudec. A Robust Reputation System for Peer-
to-Peer and Mobile Ad-hoc Networks. In P2PEcon 2004, 2004.

[5] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand, N.
Dimmock, A. Twigg, J. Bacon, C., English, W. Wagealla, S. Terzis, P. Nixon,
G. M. Serugendo, C. Bryce, M. Carbone, K., Krukow, and M. Nielsen, Using
trust for secure collaboration in uncertain environments. IEEE Pervasive
Computing, 2(3):52–61, 2003.

[6] Z. Despotovic and K. Aberer. A probabilistic approach to predict peers’
performance in P2P networks. In Proceedings from the Eighth International
Workshop on Cooperative Information Agents (CIA 2004), volume 3191 of
Lecture Notes in Computer Science, pages 62–76. Springer, 2004.

[7] Z. Despotovic and K. Aberer. P2P reputation management: Probabilistic
estimation vs. social networks. Computer Networks, 60(4):485–500, 2006.

[8] T. Grandison and M. Sloman. A survey of trust in internet applications.
IEEE Communications Surveys & Tutorials, 3(4), 2000.

[9] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge Univer-
sity Press, 2003.

[10] A. Jøsang. A logic for uncertain probabilities. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, 2001.

[11] A. Jøsang and R. Ismail. The beta reputation system. In Proceedings from
the 15th Bled Conference on Electronic Commerce, 2002.

[12] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems
for online service provision. In Decision Support Systems 43(2), 618–644.
Elsevier Science, 2006.

[13] K. Krukow. Towards a Theory of Trust for the Global Ubiquitous Computer.
PhD thesis, University of Aarhus, Denmark, 2006. Available online: http:
//www.brics.dk/~krukow.

[14] K. Krukow, M. Nielsen, and V. Sassone. Trust models in ubiquitous comput-
ing. Philosophical Transactions of the Royal Society A, 366(1881), 3781-93,
2008.

[15] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of
Mathematical Statistics, 22(1):79–86, March 1951.

[16] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond proof-of-compliance:
Security analysis in trust management. Journal of the ACM, 52(3):474–514,
2005.

[17] S. P. Marsh. Formalising Trust as a Computational Concept. PhD thesis,
Department of Computer Science and Mathematics, University of Stirling,
1994.

[18] L. Mui, M. Mohtashemi, and A. Halberstadt. A computational model of trust
and reputation (for ebusinesses). In Proceedings from 5th Annual Hawaii
International Conference on System Sciences (HICSS’02), 188. IEEE, 2002.

[19] S. D. Ramchurn, D. Huynh, and N. R. Jennings. Trust in multi-agent sys-
tems. The Knowledge Engineering Review, 19(1):1–25, 2004.

[20] J. Sabater and C. Sierra. Review on computational trust and reputation
models. Artificial Intelligence Review, 24(1):33–60, 2005.

[21] V. Sassone, K. Krukow, and M. Nielsen. Towards a formal framework for
computational trust. In Proceedings from 5th International Symposium on
Formal Methods for Components and Objects, volume 2562 of Lecture Notes
in Computer Science, pages 175–184. Springer, 2007.

20 Perspectives in Concurrency

[22] W. T. L. Teacy, J. Patel, N. R. Jennings, and M. Luck. Coping with inaccu-
rate reputation sources: experimental analysis of a probabilistic trust model.
In AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 997–1004, ACM Press,
2005.

[23] B. Yu and M. P. Singh. An evidential model of distributed reputation man-
agement. In Proceedings of the first international joint conference on Au-
tonomous agents and multiagent systems, pages 294–301, ACM Press, 2002.

