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Abstract
We present a formalism for provenance in distributed
systems based on the π-calculus. Its main feature is that
all data products are annotated with metadata represent-
ing their provenance. The calculus is given a provenance
tracking semantics, which ensures that data provenance
is updated as the computation proceeds. The calculus
also enjoys a pattern-restricted input primitive which al-
lows processes to decide what data to receive and what
branch of computation to proceed with based on the
provenance information of data. We give examples to
illustrate the use of the calculus and discuss some of the
semantic properties of our provenance notion. We con-
clude by reviewing related work and discussing direc-
tions for future research.

1 Introduction

As a concept, provenance indicates the source and
derivation of an object, and is also known as origin, lin-
eage and pedigree. More concretely, provenance refers
to a record of such source and derivation [19]. This
record may include information about the ownership, in-
fluences, contributions and any other historical or con-
textual information which may be deemed relevant and
useful. Provenance has many applications such as au-
diting, detecting errors and ensuring reproducibility of
results. It is also central to the trust one places in data,
since it can be used as an indicator of quality, especially
in a setting where independent verification of other at-
tributes may not be possible.

Provenance tracking is the problem of recording
provenance information, and has been studied in a wide
range of settings, including databases [4; 5; 7; 8; 11],
scientific computing [12; 13; 21; 22] and file systems
[20]. Initially, most of the work on provenance relied on
intuitive and informal concepts such as influences, con-
tributes to, and depends on in defining what provenance

means. These notions were then used to provide mostly
ad hoc implementations, with no formal guarantees as to
their correctness or adequacy. However, lately there have
been a surge of interest in underpinning the more theo-
retical principles of provenance [4; 7; 11]. Such body of
work aims to establish a mathematical and semantic basis
for provenance, which is important if we are to compare
different notions of provenance and assess the correct-
ness of their implementations. The present work falls in
this latter line of research and aims to provide a formal
study of provenance-based trust in concurrent and dis-
tributed systems.

We choose the asynchronous π-calculus [3; 15], a ver-
sion of the π-calculus [18] where message output is non-
blocking, as the formalism for modelling distributed sys-
tems. The choice of asynchrony is motivated mainly by
the envisaged applications of our calculus and its impact
on possible implementations, however, it has minimal ef-
fect on our results. In order to be able to refer to individ-
ual agents, we extend this basic formalism with explicit
identities. These identities can be thought of as repre-
senting units of trust, and are merely labels for identify-
ing processes with no effect on communication (cf. lo-
calities in the D calculus [14]). With this extension we
can express the essence of computation in a distributed
setting, whereby multiple agents interact by exchanging
messages. For instance the code:

a[n 〈v1〉] | b[n 〈v2〉] | c[n (x).P]

denotes a system composed of three principals: a and
b that are sending values v1 and v2 on the same chan-
nel n and c that is attempting to read a value from the
channel n and use it in the continuation code P. Interest-
ingly, from the point of view of c, there exists a level of
non-determinism, that is a market of values on channel
n from which c is free to choose. However, assuming c
has no way of assessing the quality of the different val-
ues available on channel n, it cannot decide which of the
two values v1 or v2 to consume. In such situations, prove-
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nance may be used as a measure of the quality of data.
For example, the three principals may agree on a con-
vention whereby the senders (producers of data) attach a
provenance tag. Thus the code may be modified to:

a[n 〈a, v1〉] | b[n 〈b, v2〉] |
c[n (x, y).if x = a then P else Q ]

Now, the consumer of the data, c, can determine where
the data originated from and branch accordingly. Even
though this encoding works, it carries two major disad-
vantages: (1) it is cumbersome and muddles the code
carrying out the actual computation, and (2) principals
have to adhere to these provenance conventions, which
cannot be enforced. Crucially, the second point leads to
circular reasoning with respect to trust. For instance, in
the above code nothing stops principal b from forging
a’s identity using b[n 〈a, v2〉]. This simple problem may
be solved using a digital signature scheme for example,
however, in general the picture can be far more compli-
cated as messages may carry, not only data authored by
the agent itself, but also data obtained from other agents.
Moreover, agents may consult other agents about where
to get data from and what to do with it. These may also
be of interest to consumers of data in order to be able to
judge the trustworthiness of data.

A distinguishing feature of our distributed π-calculus
extension is the use of provenance annotated data. Every
value, v, is annotated with its provenance, κ, and denoted
as v : κ. The provenance κ is a sequence of ‘;’-delimited
events. The events in a provenance sequence e1; . . . ; en

are chronologically ordered with e1 being the most recent
event. An event ei may be an output event a!κ, which
says that the value has been sent by an agent a on a chan-
nel whose provenance is κ, or an input event a?κ, which
says that the value has been received by an agent a on a
channel whose provenance is κ; the rationale here is that
in the π-calculus channels are data too.

We propose a two-tiered framework which automates
the process of provenance tracking and separates it from
the actual computation.1 This two-tiered framework is
manifested by the provenance tracking reduction seman-
tics, which, in addition to describing the interaction be-
tween agents, keeps the provenance of values up-to-date.
For instance, the rule for sending data on a particular
channel has two facets:

a[m:κm 〈v : κv〉]→ m〈〈v : a!κm; κv〉〉

From the computational perspective, the rule represents
the first of a two-step communication process: a princi-
pal a wanting to output a value v : κv on a channel m : κm

generates a packaged message m〈〈v : a!κm; κv〉〉, where m
1In a typical implementation of our language, we would assign the

provenance tracking tier to a trusted underlying middleware.

represents the address and v : a!κm; κv the annotated data
content. From the provenance tracking perspective, the
rule also describes how the provenance of the value v is
updated to a!κm; κv after the output operation. This tells
us that the value has been most recently sent by agent a
on a channel whose provenance is κm.

Dually, the rule for receiving values, the second step
in communication, has two facets as well:

κv |= π

b[m:κm (π as x).P] ‖ m〈〈v : κv〉〉 → b[P{v : b?κm;κv/x}]

On the one hand, the rule states that principal b can in-
put a value from channel m and proceed as P if there
exists a packaged value with destination m in the system;
otherwise it blocks until such a packaged value becomes
available. More importantly though, this rule also de-
scribes how the provenance information attached to the
packaged data, κv, is first used for vetting purposes be-
fore consumption, and afterwards updated. More specif-
ically, the data input on channel m only progresses if the
provenance of the packaged data, κv, passes the input test
π; this is denoted as κv |= π. Should this test succeed,
the input is allowed to occur and, in addition, the prove-
nance attached to value v is updated to v : b?κm; κv in the
continuation P, thereby recording the fact that the value
was received by principal b on some channel with prove-
nance κm.

In addition to proposing a provenance-based calcu-
lus, we also formalise a notion of correctness for our
provenance annotations. We interpret the provenance κ
of an annotated value v : κ as a partial order of asser-
tions about events that occurred in the system, relating
specifically to value v. For example, the provenance of
annotated value v : a!κm; κv tells us that v has been sent
by principal a on some channel with provenance κm, and
that before this, the events described by κm and κv took
place, without restricting the relative ordering between
the events in κm and κv; the information in the recorded
event a!κm is also partial because it does not specify the
channel on which v was sent. To prove correctness, we
devise a technique whereby a decorated version of our re-
duction semantics constructs a global log which records
a total ordering of past events relating to all values. The
provenance of an annotated value is then correct if its
partial order denotation is, in some sense, consistent with
the total ordering of events specified by the global log.

The rest of the paper is structured as follows. In §2,
we give an overview of the calculus, review its syntax
and semantics, and provide examples to illustrate some
of its features. We discuss what past information is ex-
actly recorded by the provenance tracking reduction re-
lation and study its correctness properties in §3. In §4,
we review related work. In §5, we discuss possibilities
for future work and conclude the paper.
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2 The Provenance Calculus

The formalism we consider for studying provenance is a
variant of the asynchronous π-calculus, which we extend
with the following four main features:

1. Explicit identities: every process is located at a
named principal, which is used for provenance and
does not otherwise affect communication between
processes.

2. Annotated data: every value is annotated with its
provenance, which is updated as the computation
proceeds to reflect what happened to the value.

3. Provenance tracking: we specify the meaning of
the calculus by a provenance tracking reduction se-
mantics which, in addition to describing the possi-
ble interactions between principals, also tracks the
provenance of values as they are exchanged be-
tween principals.

4. Pattern restricted input: In order to allow princi-
pals to make use of the provenance information of
values, we adopt a version of guarded choice that is
restricted to inputs on the same channel with pos-
sibly differing patterns (similar in spirit to the one
used in [6]). This allows principals to restrict the set
of values they are willing to receive on a particular
channel to those that satisfy the patterns specified.
It also allows them to branch to different continua-
tions based on the provenance information.

2.1 Syntax
The formal syntax of the calculus is given in Table 1. We
assume a set X of variables, ranged over by x, y, z, . . ., a
set C of channel names, ranged over by l,m, n, . . ., and a
set A of principal names, ranged over by a, b, c, . . .. We
assume that all three sets are pair-wise disjoint and define
the setV of plain values to be C ∪A, and use the letters
u, v, . . . to range over this set.

We represent provenance as a sequence of events. The
events in a provenance sequence are assumed to be tem-
porally ordered from left to right, where the left-most
event (the head of the sequence) is the most recent event.
We use K for the set of provenance sequences and E for
the set of events and let κ, κ′, . . . and e, e′, . . . range over
elements of each set respectively.

The setD of annotated values is then defined to be the
set of terms of the form v : κ where v is a plain value and κ
its provenance. An output event a!κ in the provenance of
a value denotes that the value has been sent by principal a
on a channel whose provenance is κ, while an input event
a?κ denotes that the value has been received by principal
a on a channel whose provenance is κ. We also define

the set I of identifiers to beD∪X and let w, w′, . . . range
over identifiers.

To allow principals to query the provenance of values
we use patterns and pattern matching. Instead of defin-
ing a particular pattern matching language, we opt for a
more general approach and make the calculus parametric
on the choice of the pattern matching language. We do
give a concrete language to use with the examples how-
ever.

Definition 1. A pattern matching language is a pair
(Π, |=) where Π is a set of patterns, ranged over by
π, π′, . . ., and |= ⊆ K × Π is the pattern satisfaction (or
matching) relation, a relation between provenance se-
quences and patterns.

Processes in our calculus are based on those of the
asynchronous π-calculus and are ranged over by P,Q, . . ..
The main differences with respect to the asynchronous π-
calculus is our use of variants of the input and summation
constructs. For input, we use a variant that takes two pa-
rameters in the form π as x, where π is a pattern that is
used to restrict the set of values to be received to those
whose provenance matches the pattern π and x is the
standard variable binder, a placeholder for the value to
be received. We use the notation w (π as x).P for the pro-
cess that is ready to receive, on channel w, a value whose
provenance matches the pattern π and continue as P with
the appropriate substitution. For summation, we use a
restricted version that only allows input guarded choice
on the same channel, denoted by Σi∈Iw (πi as xi).Pi for
some finite index set I. We use the notation 0 as syn-
tactic sugar for the empty sum. The output form w 〈w′〉
denotes the process that is ready to send w′ on channel
w, while if w = w′ then P else Q denotes the process
that proceeds as P if w is equal to w′ and as Q otherwise.
Scope restriction of channel n to process P is denoted
by (νn)P. Parallel composition of processes P and Q is
denoted by P | Q while ∗ P denotes replication of pro-
cess P. It should be noted that all values in processes are
annotated values, except channel names in restrictions.
The reason for that is that we use restriction as usual to
delimit scope, yet within one scope a channel name may
have occurrences with possibly different provenance se-
quences.

A system is the composition of zero or more located
processes and messages. We use S ,T, . . . to range over
systems. A located process, a[P], is a process P that is
running under the authority of a principal a. We overload
the symbol 0 to denote the located process a[0]. As the
structure of our systems is flat, it should be obvious from
the context whether we mean by 0 the empty summation
or the located process a[0]. A message is a value that
has been sent but not yet received, and is denoted in the
calculus by n〈〈w′〉〉. Restriction is denoted by (νn)S while
parallel composition of two systems is denoted by S ‖ T .

3



Table 1. Syntax of the Provenance Calculus

P
P ::= w 〈w〉 Output
| Σi∈Iw (πi as xi).Pi input guarded sum
| if w = w then P else Q Matching
| (νn)P Restriction
| P | Q Parallel composition
| ∗ P Replication

S
S ::= a[P] Located process
| n〈〈w〉〉 Message
| (νn)S Restriction
| S ‖ T Parallel composition

P S
κ ::= ε Nil
| e Single event
| κ; κ Sequencing

E
e ::= a!κ Output
| a?κ Input

V x, y, z ∈ X
C l,m, n ∈ C
P a, b, c ∈ A
P π, π′ ∈ Π
P V v, u ∈ V , C ∪A
A V v : κ ∈ D
I w, w′ ∈ I , D∪X

2.2 Provenance Tracking Semantics

The semantics of the calculus is defined by two relations,
the structural congruence relation, ≡, and the prove-
nance tracking reduction relation, →. Structural con-
gruence allows us to make structural manipulations of
systems which makes the definition of reduction sim-
pler. The structural congruence relation is standard and
is omitted due to space limitations.

Interaction between located processes is described by
the reduction relation →. As we mentioned previously,
the reduction relation also tracks and updates the prove-
nance of values as the system evolves. The reduction
relation is defined on closed systems (i.e., those that con-
tain no free variables) and is given in Table 2. The two
main reduction rules are R S and R R, which
describe sending and receiving values respectively. The
reason we split communication into the two steps of
sending and receiving is to make the semantics sim-
pler by only adding a single event to the provenance se-
quence at a time. In the rule R S, a located process
a[m:κm 〈v : κv〉] may output the value v : κv on the chan-
nel m : κm which results in the message m〈〈v : a!κm; κv〉〉.
What should be noted here is that the provenance of the
value v changes from κv to a!κm; κv after the output action
to reflect the fact that the value has been most recently
sent by principal a on a channel whose provenance is
κm. In the rule R R, a message m〈〈v : κv〉〉 may be re-
ceived by the located process a[Σi∈Im : κm (πi as xi).Pi] if
the provenance of the value satisfies one of the patterns
πi. The process P j whose pattern π j is satisfied is chosen
for the continuation. If more than one such pattern exists,
one of them is chosen non-deterministically. Note that
here too, the provenance of the value v is updated from
κv to a?κm; κv to reflect the fact that it has most recently
been received by principal a on a channel with prove-
nance κm. The value with the updated provenance is then

substituted for the variable in the continuation chosen.
The capture avoiding substitution of w1, . . . , wn for the
free occurrences of variables x1, . . . , xn in P is denoted
by P{w1,...,wn/x1,...,xn } and its definition is standard. We let
σ,σ′, . . . range over substitutions. The rules R IFt and
R IF f give the semantics of matching. It should be
noted here that only the plain values are tested for equal-
ity while their provenance is ignored.2 This means that if
the two plain values are equal, irrespective of their prove-
nances, the process in the then branch is chosen for the
continuation as indicated by the rule R IFt. If the two
plain values are not equal, then the process in the else
branch is chosen for the continuation as indicated by the
rule R IF f . The other three rules are standard and state
that reduction is preserved under restriction, system com-
position as well as under structural congruence.

2.3 Examples
In this section, we will give a few examples to illustrate
the use of the provenance calculus. First, however, we
have to give a concrete pattern matching language.

2.3.1 A Sample Pattern Matching Language

As our provenance sequences have a structure that is sim-
ilar to that of XML documents, we choose to base our
sample pattern language on regular expression pattern
matching [16]. The formal syntax and semantics of the
language is given in Table 3.

The pattern Any matches any provenance sequence
while the pattern ε is used to match the empty prove-
nance sequence (denoted by ε as well). The two pat-
terns G!π and G?π match send and receive events re-

2Depending on the intended application, the provenance of the two
values tested could be useful and hence should be tracked in the con-
tinuation. This is not considered here however as it is not important for
the aims of this paper.
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Table 2. Semantics of the Provenance Calculus - Reduction

R S
a[m:κm 〈v : κv〉]→ m〈〈v : a!κm; κv〉〉

R R
κv |= π j

a[Σi∈Im:κm (πi as xi).Pi] ‖ m〈〈v : κv〉〉 → a[P j{
v : a?km;κv/x j }]

R It
a[if m : κm = m : κ′m then P else Q ]→ a[P]

R I f
a[if m : κm = n : κn then P else Q ]→ a[Q]

if m , n

R R
S → S ′

(νn)S → (νn)S ′
R P

S → T ′

S ‖ T → T ′ ‖ T
R S

S ≡ T T → T ′ T ′ ≡ S ′

S → S ′

Table 3. The Sample Pattern Matching Language

S  

π ::= ε
| α
| π; π
| π ∨ π
| π∗

| Any

α ::= G!π
| G?π

G ::= a
| ∼

| G +G
| G −G

S

S E
ε |= ε

S S
a ∈ ~G� κ |= π

a!κ |= G!π
S R

a ∈ ~G� κ |= π

a?κ |= G?π

S C
κ |= π κ′ |= π′

κ; κ′ |= π; π′
S AL

κ |= π

κ ∨ κ′ |= π
S AR

κ′ |= π

κ ∨ κ′ |= π

S R
∀i ∈ 1 . . . n.κi |= π

κ1; . . . ; κn |= π
∗

S A
κ |= Any

D  ~−�

~a� = {a} ~∼� = A ~G +G′� = ~G� ∪ ~G′� ~G −G′� = ~G� \ ~G′�

spectively. The use of group expressions G in these pat-
terns allows us to perform more general tests against the
principal that performed the event. The group expres-
sion a denotes the singleton set containing principal a
only, while ∼ denotes the set of all principals. G + G′

and G − G′ denote union and difference of groups re-
spectively. The denotation of group expressions is given
by the function ~−�. The pattern π; π′ matches a prove-
nance sequence that is composed of two parts that match
π and π′ respectively. The alternation of patterns π and
π′, denoted by π ∨ π′, matches a sequence that matches
either patterns, while the repetition of pattern π, denoted
by π∗, matches any provenance sequence that is the com-
position of zero or more sub-sequences, each of which
matches the pattern π.

2.3.2 Example Systems

Authentication. Provenance can be used to establish
the authenticity of messages, for example by checking
their immediate sender, their original sender or any prin-
cipal in between. The following system illustrates this.

a[m (c!Any; Any as x).P] ‖ b[m (Any; d!Any as y).Q] ‖ S

In the above example, principal a wants to receive only
data coming from c directly, no matter where it has been
before, whereas principal b wants to receive data that
originated at d, no matter what the intermediary links
were.

Auditing. Provenance can also be used as an auditing
and troubleshooting tool to establish who might have
been responsible for an error. For example, in the fol-
lowing system:

S , a[m 〈v〉] ‖ s[m (x).n′ 〈x〉] ‖ c[n′ (x).P] ‖ b[n′′ (x).Q]

principal a is trying to send a value v to principal b, and
this has to be done through an intermediary s (because a
does not have a direct link to b for example). Because of
faulty code at s, the value gets forwarded to c instead, as
indicated by the following reduction:

S →∗ c[P{v : c?ε;s!ε;s?ε;a!ε/x}] ‖ b[n′′ (x).Q]

Now when c detects the error, perhaps due to the unex-
pected value, c can use the provenance c?ε; s!ε; s?ε; a!ε
to tell what principals were involved in making this er-
ror. In this case, a, s, and c itself. The three principals
may be further investigated to determine who and what
exactly caused the error.

Photography Competition. The following example
describes a photography competition. Contestants sub-
mit their entries for the competition to the organiser of
the competition, who forwards those entries to the ap-
propriate judges. Each judge rates the entries allocated
to them and returns the results to the organiser. The
organiser then publishes the results and announces the
winners. We consider a version of the competition with
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three contestants: c1, c2 and c3, one organiser: o, and
two judges: j1 and j2. The contestants submit their en-
tries to the organiser on channel sub and receive the pub-
lished results on channel pub. The organiser forwards
entries submitted by c1 and c3 to judge j1 and the entry
by c2 to j2. The judges return the entries together with
their ratings to the organiser. Note that below we are us-
ing polyadic versions of the send and receive constructs,
such an extension to the calculus being straightforward.

C(c, entry, P) , c[sub 〈entry〉 |

pub (Any; c!Any as x , Any as y).P]

O , o[∗ (Σi∈{1,2}sub (πi as x).ini 〈x〉 |

res (y, z).∗ pub 〈y, z〉)]

J( j, inc) , j[inc (x).res 〈x, rate(x)〉]

Comp , C(c1, e1, P1) ‖ C(c2, e2, P2) ‖ C(c3, e3, P3) ‖

O ‖ J( j1, in1) ‖ J( j2, in2)

where π1 , (c1 + c3)!Any; Any and π2 , c2!Any; Any.
The system above evolves as follows, where Πi∈{1,...,n}S i
is used to denote S 1 ‖ . . . ‖ S n.

Comp→∗ Πi∈{1,2,3}o[∗ pub 〈ei : κei, rate(ei) : κri〉] ‖

O ‖ Πi∈{1,2,3}ci[Pi{
ei : κ′ei ,rate(ei) : κ′ri/x,y}]

where:

κei ,

o?ε; j1!ε; j1?ε; o!ε; o?ε; ci!ε if i ∈ {1, 3}
o?ε; j2!ε; j2?ε; o!ε; o?ε; ci!ε if i ∈ {2}

κri ,

o?ε; j1!ε if i ∈ {1, 3}
o?ε; j2!ε if i ∈ {2}

κ′ei , ci?ε; o!ε; κei

κ′ri , ci?ε; o!ε; κri

After receiving the results from the judges, the organ-
iser publishes them on channel pub as shown in the repli-
cated output processes ∗ pub 〈ei : κei, rate(ei) : κri〉 for i ∈
{1, 2, 3}. Every contestant listens on channel pub to re-
ceive their own results. This is achieved by the input
construct pub (Any; c!Any as x , Any as y). The pat-
tern specifications allow the contestant to receive the pair
containing the result for their own entry.

3 Properties of Provenance

In this section, we look at the properties of the prove-
nance notion and the provenance tracking reduction rela-
tion we proposed.

3.1 Logs
We start by introducing logs. Logs are meant as a repre-
sentation of the past behaviour of systems. They may be
thought of as edge-labelled trees whose directed edges
(from parent to child) are labelled with actions that oc-
curred in a system at some point in the past. An edge
leading out of a parent node represents an action that oc-
curred more recently in time than those leading out of its
children. Sibling subtrees are assumed to be temporally
independent, in the sense that the order between their ac-
tions is unknown. The formal syntax of logs is as fol-
lows.

φ ::= ∅ | α; φ | φ |ψ
α ::= a.snd(V,V) | a.rcv(V,V) | a.ift(V,V) | a.iff(V,V)

We use Φ for the set of logs, φ, ψ, . . . to range over logs
and α, β, . . . to range over actions. We also define the set
Dx to beV∪X∪{?} and use the metavariables U,V, . . . to
range over its elements. Variables in logs are used to de-
note unknown values, so for example, action a.snd(x, v)
says that principal a sent value v on some channel x, the
identity of which is unknown. The special symbol ? de-
notes an unknown private channel name, and its use will
be demonstrated later. We use ∅ for the empty log, α; φ
for the log with edge labelled α leading to subtree φ, and
φ |ψ for the composition of logs φ and ψ. Note that the
composition of logs φ |ψ joins their roots and hence re-
sults in a well-formed tree. Operator ‘;’ has higher prece-
dence than ‘ | ’ and parentheses may be used in the usual
way. We also omit trailing ∅ to ease readability. We have
four types of actions; (1) the output action, a.snd(V,V ′),
which says that principal a sent V ′ on V , (2) the input
action, a.rcv(V,V ′), which says that principal a received
V ′ on V , (3) the if true action, a.ift(V,V ′), which says that
principal a tested V and V ′ for equality and this returned
true, and (4) the if false action, a.iff(V,V ′), which says
that principal a tested V and V ′ for equality and this re-
turned false. Note that, in the log a.snd(x,V); φ, the oc-
currence of variable x in action a.snd(x,V) binds occur-
rences of x in φ. The same holds for x in a.rcv(x,V); φ.
All other occurrences of variables in logs are considered
free. We use fv(φ) for the set of free variables in φ, bv(φ)
for the set of bound variables in φ and define closed logs
to be those containing no free variables. Furthermore,
we consider indistinguishable those logs which only dif-
fer by alpha conversion (change of bound variables) or
by application of the commutative monoid laws for the
log composition operator | (with identity element ∅).

As we have already mentioned, logs are meant as
records of the past behaviour of systems. It is natural
then to ask: what is the relation between two logs φ and
ψ that both record the past of the same system? To an-
swer this question, we start by defining α � α′ to mean
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that there exists a (possibly empty) substitution σ of val-
ues for variables such that α′ = ασ. Note that since we
are requiring σ to strictly substitute variables with val-
ues, then α′ must be just like α except that it has less
variables. Now, since we are using variables to stand
for unknown values, this simply means that α′ contains
as much or more information about the past as that con-
tained in α. With this, we proceed to overload the symbol
� and define the relation � on the set of closed logs. In-
tuitively, φ � ψ can be taken to mean that log ψ tells us
at least as much about the past as log φ does. Relation
� is defined to be the smallest relation closed under the
following inference rules, where σ and σ′ denote closing
substitutions.

LN
∅ � φ

LP1
α � α′ φσ � ψσ′

α; φ � α′;ψ
LP2

φ � ψ

φ � α;ψ

LC1
φ � ψ φ′ � ψ

φ | φ′ � ψ
LC2

φ � ψ

φ � ψ |ψ′

The empty log ∅ tells us nothing about the past, and
hence we have that ∅ � φ for every log φ as expressed
by Rule LN. Rule LP1 can be understood as fol-
lows: if we have two logs α; φ and α′;ψ, then in order
to prove that α; φ � α′;ψ holds, we need to prove that
both α � α′ and φσ � ψσ′ hold. Note that here we are
using φσ and ψσ′ to denote the application of the (pos-
sibly empty) closing substitutions σ and σ′ to logs φ and
ψ respectively and that this is needed as � only applies
to closed logs. Rule LP2 simply says that if φ � ψ,
then adding an action at the beginning of ψ will only add
more information to it, and hence, φ � α;ψ holds too.
Rule LC1 says that φ | φ′ � ψ holds if it is the case that
both φ � ψ and φ′ � ψ hold. The definition of LC1 im-
plies that we are taking a nonlinear interpretation of logs,
that is we allow φ and φ′ in φ | φ′ to reference the same
actions, in effect duplicating the information conveyed
about the past. This interpretation is required as the cal-
culus allows the copying of values and their provenance.
Rule LC2 says that in order to show that φ � ψ |ψ′, we
need to show that φ � ψ holds.

To illustrate the application of the above rules, let us
consider the two logs φ , a.snd(x, v); a.rcv(n, x) and
ψ , a.snd(m, v); a.rcv(n,m). Log φ tells us that a sent
v on some unknown channel x which it received on chan-
nel n while ψ tells us that a sent v on channel m which
it received on channel n. Clearly ψ tells us more infor-
mation about the past than φ and the unknown channel
x in φ is actually channel m (inferred from ψ). To show
this using the inference rules above, we first apply Rule
LP1 as follows:

a.snd(x, v) � a.snd(m, v) a.rcv(n, x){m/x} � a.rcv(n,m)

a.snd(x, v); a.rcv(n, x) � a.snd(m, v); a.rcv(n,m)

Then, we show that a.snd(x, v) � a.snd(m, v) and that
a.rcv(n,m) � a.rcv(n,m). The former holds since
a.snd(x, v){m/x} = a.snd(m, v) whereas the latter may be
shown to hold by further application of LP1 and LN.

Proposition 1. The relation � is a partial order.

3.2 Denotation of Provenance
We interpret the provenance κ in an annotated value v : κ
to be a set of assertions about the past of the value v.
These assertions tell us about events that took place in the
system and that are relevant to the value v. For example,
consider the value v : a?κ; b!κ′; κ′′, its provenance tells us
that (a) v was most recently received by a on a channel
whose provenance was κ; (b) before that, it was sent by
b on a channel with provenance κ′; (c) before that, it had
provenance κ′′; (d) κ and κ′ in turn tell us about the past
of the two channels used by a and b, while κ′′ tells us
about the past of v before it was sent by b . It is important
here to note that the provenance of v does not reveal the
identities of the channels used for communication, nor
does it tell us about the ordering between events in κ and
those in b!κ′, κ′′ or between events in κ′ and those in κ′′.

Assertions such as those above may be encoded in a
“condensed form” as logs. We define the function ~−�
which maps V : κ to a log φ that represents what the
provenance sequence κ tells us about the past of V . The
definition of ~−� in Definition 2 below uses a different
grammar for provenance sequences than that given in Ta-
ble 1 in order to make the definition of ~−� simpler. It
is easy to check, however, that for our purposes the two
grammars are equivalent.

Definition 2 (Denotation of provenance). The function
~−� : Dx → Φ is defined inductively on the structure of
provenance sequences as follow:

~V : ε� = ∅
~V : a!κ′; κ� = a.snd(x,V); (~V : κ� | ~x : κ′�)
~V : a?κ′; κ� = a.rcv(x,V); (~V : κ� | ~x : κ′�)

The empty provenance sequence ε in an annotated value
V : ε tells us that V originated here, and hence ~V : ε�
is taken to be the empty log ∅. The annotated values
V : a!κ′; κ and V : a?κ′; κ denote that V was sent (respec-
tively received) on some unknown channel x, and that be-
fore that the logs denoted by ~V : κ� and ~x : κ′� occurred
in some unknown order. It is clear that a log ~V : κ� is
a partial record of what took place in a system. Indeed,
it does not contain information about the identities of the
channels used for communication, and it lacks informa-
tion about the order in which some actions took place.
This is to be expected of course as the provenance of a
value is meant to only record information about actions
that are relevant to the value itself.
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3.3 Monitored Systems
In order to be able to assess the correctness and com-
pleteness of provenance, we introduce the notion of mon-
itored systems. A monitored system is one where every
action that takes place is recorded in a global log. The
global log provides a repository where every action is
logged and whose content is not accessible by principals.
It is only meant as a proof tool against which the proper-
ties of provenance can be formulated and judged.

We use M,N, . . . to range over monitored systems and
give their formal syntax below.

M,N ::= φ . S | (νn)M | M ‖ S

The notation φ . S denotes the monitored system com-
posed of global log φ and system S . Restriction (νn)M
and parallel composition M ‖ S are needed to allow the
global log to behave like other parts of the system with
respect to scope extrusion and intrusion. More specif-
ically, the form (νn)M allows channel scopes to be ex-
truded to include the log while the form M ‖ S is needed
to allow channels whose scope includes the log but not
some part of the system S . Note that indeed the above
syntax allows exactly one global log per monitored sys-
tem. We also define versions of structural congruence
and reduction for monitored systems and denote them by
≡m and →m respectively. These are given in Table 4. It
should clear from the definition of →m that the original
provenance tracking semantics of systems is preserved,
and that all →m adds is the recording of actions in the
global log. We formalise this in Proposition 2. This latter
makes use of the log erasure function, |−|, which given
a monitored system, removes the log and returns just the
system part of it. The function |−| is defined inductively
on the structure of monitored systems as follows.

|φ . S | = S |(νn)M| = (νn)|M| |M ‖ S | = |M| ‖ S

Proposition 2. M →m M′ implies that |M| → |M′|. Vice
versa, |M| → S implies that M →m M′ for some M′ such
that |M′| = S .

3.4 Correctness
The first provenance property we look at is correctness.
A provenance sequence κ in an annotated value v : κ is
considered correct if what it tells us about the past of v
agrees with what actually took place. This is defined rel-
ative to the global log which is assumed to be a correct
and complete record of the past of a system. If every
value in a system has correct provenance, then we say
that the system as a whole has correct provenance. The-
orem 1 states that provenance correctness is preserved
by the reduction relation. That is, starting from a sys-
tem with correct provenance, we are guaranteed to get

a system with correct provenance after reduction. Def-
inition 3 makes use of two auxiliary functions: log(−),
which returns the global log of a monitored system, and
values(−), which returns the set of “annotated values” of
a monitored system. The definition of log(−), by induc-
tion on the structure of monitored systems, is straight-
forward and hence omitted. This is mostly the case for
values(−) too and hence, we only discuss the most in-
teresting cases below. The set of values in a monitored
system is defined to be that in its system part (i.e., we
ignore the global log and top level restrictions). This is
expressed by the following three rules:

values(φ . S ) , values(S ) values((νn)M) , values(M)
values(M ‖ S ) , values(M) ∪ values(S )

For systems, we proceed simply by gathering anno-
tated values, that is “subterms” of the form v : κ, and
substituting ? for any restricted channel names. So
for example, we have that values(a[P]) , values(P),
values(m〈〈v : κ〉〉) , {v : κ}, values(S ‖ S ′) , values(S ) ∪
values(S ′), and values((νn)S ) , values(S ){?/n}. Note
that restriction here is treated differently from that at the
top level of monitored systems. The rationale behind this
discrepancy is that restricted names at the top level are
known to the global log whereas those occurring here
are not. The substitution is done to avoid any clashes
with names appearing in the log and is inspired by [17].
Definition of values(P) for processes P is similar.
Definition 3. A monitored system M has correct prove-
nance if for all V : κ in values(M), we have that ~V : κ� �
log(M).
Lemma 1. M has correct provenance and M ≡m M′

implies that M′ has correct provenance.
Theorem 1. (Provenance correctness). M has correct
provenance and M →m M′ implies that M′ has correct
provenance.
Proof. We assume that M has correct provenance and
that M →m M′. We show that M′ has correct provenance
by induction on the derivation of M →m M′. The details
of the proof are straightforward and therefore omitted.

�

3.5 Towards a Notion of Completeness
We have already shown informally that the provenance
of a value is not a complete record of what took place in
the whole system. We formalise this below.
Definition 4. A monitored system M has complete
provenance if for all V : κ in values(M), we have that
log(M) � ~V : κ�.
Proposition 3 (Provenance incompleteness). M has
complete provenance and M →m M′ does not imply that
M′ has complete provenance.
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Table 4. Semantics of Monitored Systems - Reduction

S C

S ≡ T =⇒ φ . S ≡m φ . T (φ . S ) ‖ S ′ ≡m φ . (S ‖ S ′) M ≡α M′ =⇒ M ≡m M′

(νn)(νm)M ≡m (νm)(νn)M (νn)M ‖ S ≡m (νn)(M ‖ S ) if n < fn(S ) M ‖ (νn)S ≡m (νn)(M ‖ S ) if n < fn(M)

R R

MR S
φ . a[m : κm 〈v : κv〉]→m a.snd(m, v); φ . m〈〈v : a!κm, κv〉〉

MR R
κv |= π j

φ . a[Σi∈Im : κm (xi, πi).Pi] ‖ m〈〈v : κv〉〉 →m a.rcv(m, v); φ . a[P j{
v : a?κm,κv/x}]

MR It
φ . a[if m : km = m : k′m then P else Q ]→ a.ift(m,m); φ . a[P]

MR I f
φ . a[if m : km = n : kn then P else Q ]→ a.iff(m, n); φ . a[Q]

if m , n

MR R
M →m M′

(νn)M →m (νn)M′
MR P

M →m M′

M ‖ S →m M′ ‖ S
MR S

M ≡m N N →m N′ N′ ≡m M′

M →m M′

Proof. Let us consider the monitored system M defined
as follows:

M , ∅ . a[m : ε 〈v : ε〉] ‖ b[m : ε (x).P]

Assuming P has complete provenance, then it is clear
that M has too. Now, we have that M →m M′ where M′

is defined as follows:

M′ , a.snd(m, v);∅ . m〈〈v : a!κm〉〉 ‖ b[m : ε (x).P]

M′ does not have complete provenance, since m : ε does
not. �

Completeness is too strong since we are requiring ev-
ery value to have complete information about the past of
the whole system. In fact, in general it is not even pos-
sible for a single value, as it can be easily demonstrated
by considering a system where a value gets forgotten at
some point in the evolution of the system, such as the
following:

φ . a[m : κm (x).0] ‖ m〈〈v : κv〉〉 ‖ S

where, assuming that S does not contain copies of v : κv,
the system will evolve to a state where v : κv is completely
forgotten.

4 Related Work

Provenance has been studied in a variety of settings, most
prominently in databases and scientific computing. A
major theme of provenance research in the database com-
munity has been that of identifying parts of the input of a
query relevant to parts of its output. The definition of the

provenance notion (i.e., what “relevant” means) as well
as the granularity at which data is considered (i.e., what
“parts” of the input or output constitute) varies depend-
ing on the intended application.

One of the earliest works that studied provenance for
database management systems was by Wang and Mad-
nick in their Polygen model [24], which aimed to re-
solve provenance issues for data composed from multiple
sources. Woodruff and Stonebraker [25] studied a notion
of provenance called lineage. Their aim was to provide
fine-grained lineage information, which they argued was
prohibitively expensive to achieve using metadata. Their
approach instead relied on a small amount of information
about the database operations performed and the analy-
sis of base data. Buneman et al. [5] studied provenance
in the setting of a data model that generalises both re-
lational as well hierarchical databases. They proposed
two different notions of provenance, which they termed
“why” and “where” provenance, and gave algorithms to
compute the two types of provenance information.

Motivated by the need for formal foundations of
provenance, Cheney et al. [7] proposed a semantic char-
acterisation of provenance based on dependency analy-
sis. They showed that minimal dependency provenance
is not computable and provided dynamic and static tech-
niques to approximate it. Green et al. [11] introduced a
model based on semiring valued annotations and showed
that this model generalises several models of annotated
relations including why provenance.

There is a big incentive to support provenance in scien-
tific computing settings. This stems from the need to al-
low scientists to understand, analyse and replicate results
of experiments. Some of the projects aimed at develop-
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ing middleware to support provenance in this setting in-
clude Chimera [9] (physics and astronomy), myGrid [23]
(biology), CMCS [21] (chemical sciences), and ESSW
[10] (earth sciences). Bose and Frew [2] and Simmhan
et al. [22] give surveys of the most important research
efforts in this area.

5 Conclusion and Future Work

We presented a calculus for provenance in distributed
systems. The semantics of the calculus tracks the prove-
nance of values dynamically and allows principals to per-
form tests against it. These tests let principals decide
what data to consume and what to do with it based on its
provenance. We also discussed the semantics of prove-
nance and studied some of its properties.

We proposed a characterisation of provenance correct-
ness and completeness based on the notions of monitored
systems and global logs. We showed that based on this
characterisation, our provenance is correct but incom-
plete. However, as we have mentioned, completeness is
too strong since we are requiring the provenance of ev-
ery value to be a complete record of everything that has
taken place within the system. Instead of asking for the
provenance to be complete, what is needed is for prove-
nance to be adequate. What we mean by this is that the
provenance information recorded has to be enough for its
intended application. In developing such an idea, we are
interested in using information about the role each prin-
cipal played in getting a piece of data to its current form
(and the implied trust relations between principals), as a
measure of how trustworthy a piece of data is likely to
be. Hence, we only need to know about actions that are
relevant to the value at hand, and we only need to know
about the principals involved in the action. We are work-
ing on formalising adequacy at the moment. We also
plan to investigate other ways of characterising prove-
nance properties, for example, based on logic.

Provenance tracking is performed dynamically at the
moment as part of the reduction relation. Although this
yields accurate provenance information, it results in run-
time overhead as provenance is computed, updated and
tests are performed against it. We are working on a static
analysis that would alleviate the need for dynamic prove-
nance tracking. The idea behind it is to analyse the flow
of data between principals and make sure that principals
would only receive data with provenance that matches
their expectations.

To keep the calculus simple, we only allowed statically
defined patterns with no binding variables. This means
that principals cannot use dynamic information for their
provenance tests nor can they extract part (or all) of the
provenance sequence and use it as data. This is one of the
first extensions we aim to make to the calculus. In addi-

tion to this, provenance is currently tracked by the run-
time environment, and principals are only given “read-
only” access to it. Moreover, every principal is able to
see the entire provenance sequence, regardless of the pri-
vacy and security policies of other principals. However,
in many applications, principals may wish to control the
disclosure of provenance information about them. We
are working on extending the calculus with such features
at the moment. We are also investigating how to extend
the calculus to allow the communication of data struc-
tures. With this, we aim to provide support for scenar-
ios where data is not only copied and communicated, but
also broken down into pieces, combined with other data,
and generally transformed to produce new data. In these
scenarios, the ways in which we may manipulate data
usually depend on its provenance and vice versa. This
means that a transformation f of values v1 and v2 needs
to take into account their provenances κ1 and κ2 as well.
That is, the result of the transformation should be of the
form f (v1, κ1, v2, κ2) as opposed to f (v1, v2). The same
holds for transformations f̄ that manipulate the prove-
nance. To be able to express this, we aim to extend the
calculus, along similar lines as the applied π-calculus [1],
with data structures and operations on them.
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