Typed Polyadic Pi-calculus in Bigraphs

Vladimiro Sassone

ECS, University of Southampton

joint work with M. Bundgaard (IT Copenhagen)

PPDP'06, Venice 10 July 2006

- Calculi for ubiquitous computing
- 2 Pure bigraphs
- Reactive systems
- Binding bigraphs
- Sorted bigraphs
- 6 Polyadic pi calculus
- Edge sorting and pi
- 8 Conclusion

Main operational models of mobile systems

NAME MOBILITY (typically, pi-calculus)

$$(\nu z)(\overline{x}\langle z\rangle.P\mid Q)\mid x(y).R\quad\longrightarrow\quad (\nu z)(P\mid Q\mid R[z/y])$$

PROCESS MOBILITY (typically, distributed pi-calculus)

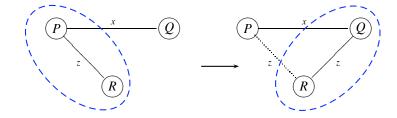
$$\ell_0[\operatorname{\mathsf{goto}}\ \ell_1.P \mid Q] \mid \ell_1[R] \longrightarrow \ell_0[Q] \mid \ell_1[P \mid R]$$

• Ambient mobility (typically, ambient calculus)

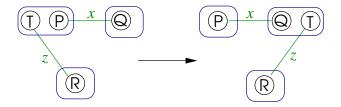
$$n[\operatorname{in} \operatorname{m}.P \mid Q] \mid m[R] \longrightarrow m[n[P \mid Q] \mid R]$$

 $m[n[\operatorname{out} \operatorname{m}.P \mid Q] \mid R] \longrightarrow n[P \mid Q] \mid m[R]$

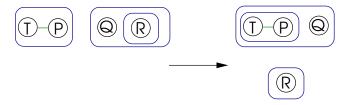
The essence of name mobility



The essence of process mobility

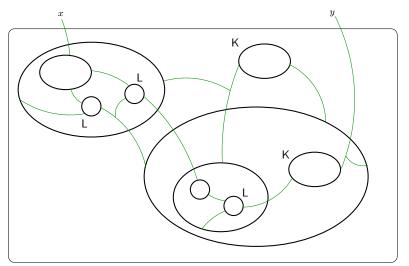


The essence of ambient mobility

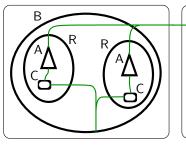


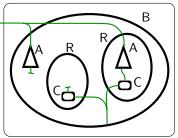
Bigraphs as a unifying model

Overlapping placing and linking structure



A slightly more suggestive example

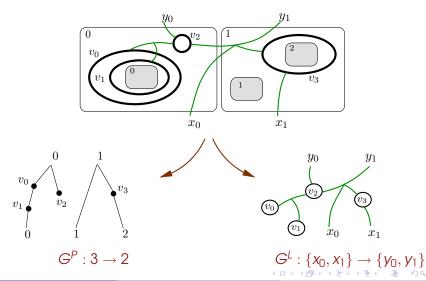




A - an agent C - a computer B - a building R - a room

Pure bigraphs

$$G: \langle 3, \{x_0, x_1\} \rangle \rightarrow \langle 2, \{y_0, y_1\} \rangle$$



Definition (SIGNATURE OF CONTROLS K)

 $K \in \mathcal{K}$ has an **arity** ar(K), its number of ports. A control can be **atomic**, and then not allowed to contain

further structure. Non-atomic controls can be **active** or **passive**.

Definition (PLACE GRAPH OVER K)

 $G^P = (V, ctrl, prnt): m \rightarrow n$ with inner width (sites) m and outer width (roots) n consisting of

- a **control map** *ctrl*: $V \to \mathcal{K}$; which assigns controls to nodes;
- an acyclic **parent map** *prnt*: $m \uplus V \to V \uplus n$; (atomic nodes may not be parents).

Definition (SIGNATURE OF CONTROLS K)

 $K \in \mathcal{K}$ has an **arity** ar(K), its number of ports.

A control can be **atomic**, and then not allowed to contain further structure. Non-atomic controls can be **active** or **passive**.

Definition (PLACE GRAPH OVER K)

 $G^P = (V, ctrl, prnt): m \rightarrow n$ with inner width (sites) m and outer width (roots) n consisting of

- a control map $ctrl: V \to \mathcal{K}$; which assigns controls to nodes;
- an acyclic parent map prnt: $m \uplus V \to V \uplus n$; (atomic nodes may not be parents).

Definition (LINK GRAPH OVER K)

 $G^{L} = (V, E, ctrl, link): X \rightarrow Y$ with inner names X and outer names Y consisting of

- a control map $ctrl: V \to \mathcal{K}$;
- a finite set of edges E;
- a link map link: $X \uplus P \to E \uplus Y$ mapping 'points' to 'links', where $P \stackrel{\text{def}}{=} \sum_{v \in V} ar(ctrl(v))$ are called the **ports** of G^L .

Terminology

A link is **idle** if it has no preimage under the link map; **open** if it is an (outer) name; **closed** if it is an edge.

A link graph is **lean** if it has no idle edges.

A point is **open** if its link is open, it is **closed** otherwise.

Definition (LINK GRAPH OVER K)

 $G^L = (V, E, ctrl, link): X \rightarrow Y$ with inner names X and outer names Y consisting of

- a control map $ctrl: V \to \mathcal{K}$;
- a finite set of edges E;
- a link map link: $X \uplus P \to E \uplus Y$ mapping 'points' to 'links', where $P \stackrel{\text{def}}{=} \sum_{v \in V} ar(ctrl(v))$ are called the **ports** of G^L .

Terminology

A link is **idle** if it has no preimage under the link map; **open** if it is an (outer) name; **closed** if it is an edge.

A link graph is **lean** if it has no idle edges.

A point is **open** if its link is open, it is **closed** otherwise.

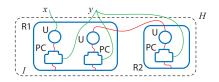
Definition (PURE BIGRAPHS)

The superimposition of a place and a link graph sharing nodes and control map. Namely,

$$G = (V, E, ctrl, prnt, link): \langle m, X \rangle \rightarrow \langle n, Y \rangle$$

where $G^P = (V, ctrl, prnt) : m \rightarrow n$ is a place graph, and $G^L = (V, E, ctrl, link) : X \rightarrow Y$ is a link graph.

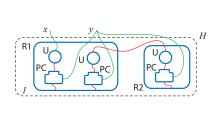
$$H = G \circ (F_1 \otimes F_2) : \epsilon \to \langle 1, \{x, y\} \rangle$$

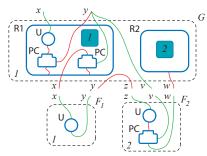


$$F_{1}: \epsilon \to \langle 1, \{x, y\} \rangle \qquad F_{2}: \epsilon \to \langle 1, \{z, v, w\} \rangle$$

$$\epsilon \xrightarrow{F_{1} \otimes F_{2}} \triangleright \langle 2, \{x, y, z, v, w\} \rangle \xrightarrow{G} \triangleright \langle 1, \{x, y\} \rangle$$

$$H = G \circ (F_1 \otimes F_2) : \epsilon \to \langle 1, \{x, y\} \rangle$$

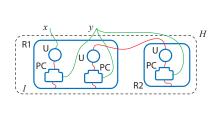


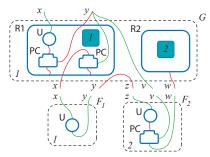


$$F_{1}: \epsilon \to \langle 1, \{x, y\} \rangle \qquad F_{2}: \epsilon \to \langle 1, \{z, v, w\} \rangle$$

$$\epsilon \xrightarrow{F_{1} \otimes F_{2}} \langle 2, \{x, y, z, v, w\} \rangle \xrightarrow{G} \langle 1, \{x, y\} \rangle$$

$$H = G \circ (F_1 \otimes F_2) : \epsilon \to \langle 1, \{x, y\} \rangle$$

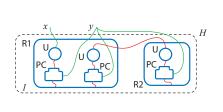


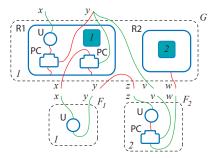


$$F_{1}: \epsilon \to \langle 1, \{x, y\} \rangle \qquad F_{2}: \epsilon \to \langle 1, \{z, v, w\} \rangle$$

$$\epsilon \xrightarrow{F_{1} \otimes F_{2}} \langle 2, \{x, y, z, v, w\} \rangle \xrightarrow{G} \langle 1, \{x, y\} \rangle$$

$$H = G \circ (F_1 \otimes F_2) : \epsilon \to \langle 1, \{x, y\} \rangle$$

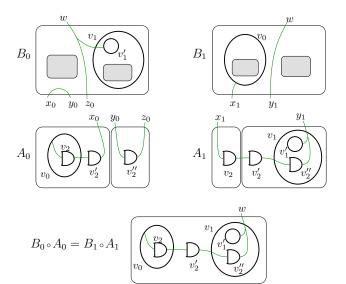




$$F_{1}: \epsilon \to \langle 1, \{x, y\} \rangle \qquad F_{2}: \epsilon \to \langle 1, \{z, v, w\} \rangle$$

$$\epsilon \xrightarrow{F_{1} \otimes F_{2}} \langle 2, \{x, y, z, v, w\} \rangle \xrightarrow{G} \langle 1, \{x, y\} \rangle$$

A second example of (\otimes, \circ) -composition



Pure bigraphs are the arrows of a **s-category** $^{\prime}$ BIG(\mathcal{K}).

They fail to be a category as both ∘ and ⊗ are partial. Oh my!

- is partial because of the underlying concrete sets of nodes; s-categories make provisions in that respect.
- ⊗ is partial because of the sets of names; as names cannot be taken up to iso, this is an intrinsic feature. It is not so bad.

Abstract bigraphs are the quotient classes of 'lean-support' equivalence \Leftrightarrow , where $G \Leftrightarrow H$ if they are isomorphic after discarding all idle edges.

Pure bigraphs are the arrows of a **s-category** 'BIG(K).

They fail to be a category as both ∘ and ⊗ are partial. Oh my!

- o is partial because of the underlying concrete sets of nodes; s-categories make provisions in that respect.
- ⊗ is partial because of the sets of names; as names cannot be taken up to iso, this is an intrinsic feature. It is not so bad.

Abstract bigraphs are the quotient classes of 'lean-support' equivalence \Leftrightarrow , where $G \Leftrightarrow H$ if they are isomorphic after discarding all idle edges.

Pure bigraphs are the arrows of a **s-category** 'BIG(K).

They fail to be a category as both ∘ and ⊗ are partial. Oh my!

- is partial because of the underlying concrete sets of nodes; s-categories make provisions in that respect.
- ⊗ is partial because of the sets of names; as names cannot be taken up to iso, this is an intrinsic feature. It is not so bad.

Abstract bigraphs are the quotient classes of 'lean-support' equivalence \Rightarrow , where $G \Rightarrow H$ if they are isomorphic after discarding all idle edges.

Pure bigraphs are the arrows of a **s-category** 'BIG(K).

They fail to be a category as both \circ and \otimes are partial. Oh my!

- o is partial because of the underlying concrete sets of nodes; s-categories make provisions in that respect.
- \ointeger is partial because of the sets of names; as names cannot be taken up to iso, this is an intrinsic feature. It is not so bad.

Abstract bigraphs are the quotient classes of 'lean-support' equivalence \Leftrightarrow , where $G \Leftrightarrow H$ if they are isomorphic after discarding all idle edges.

Pure bigraphs are the arrows of a **s-category** 'BIG(K).

They fail to be a category as both ∘ and ⊗ are partial. Oh my!

- o is partial because of the underlying concrete sets of nodes; s-categories make provisions in that respect.
- \ointeger is partial because of the sets of names; as names cannot be taken up to iso, this is an intrinsic feature. It is not so bad.

Abstract bigraphs are the quotient classes of 'lean-support' equivalence \Rightarrow , where $G \Rightarrow H$ if they are isomorphic after discarding all idle edges.

Merging roots and outer names in products

Two derived operators allow to merge outer names and roots

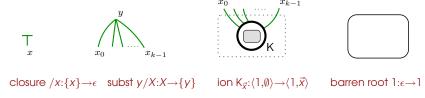
- PARALLEL PRODUCT: G₀ || G₁: like ⊗ with merge of outer names;
 - It works by first making all the outer names disjoint, then composing with \otimes , and finally renaming names as originally in the resulting bigraph.
- PRIME PRODUCT: $G_0 \mid G_1$: like \parallel with merge of roots in the resulting bigraph.

Merging roots and outer names in products

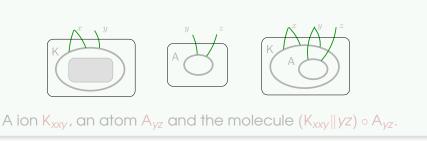
Two derived operators allow to merge outer names and roots

- PARALLEL PRODUCT: G₀ || G₁: like ⊗ with merge of outer names;
 - It works by first making all the outer names disjoint, then composing with \otimes , and finally renaming names as originally in the resulting bigraph.
- PRIME PRODUCT: $G_0 \mid G_1$: like \parallel with merge of roots in the resulting bigraph.

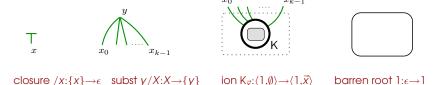
Bigraphical term language



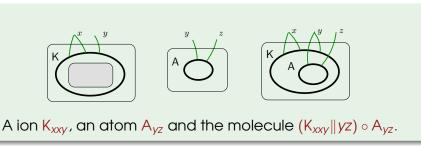
These together with **merge** of roots and **permutations** of sites/roots provide a complete set constructors.



Bigraphical term language

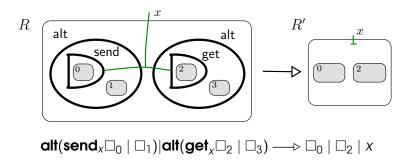


These together with **merge** of roots and **permutations** of sites/roots provide a complete set constructors.

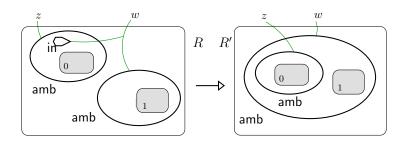


Bigraphical reactive systems, CCS

The **dynamics** of bigraphs is not hardwired in the model, but specified each time in terms of (affine) parametric rewrite rules. Similarly to graph rewriting.

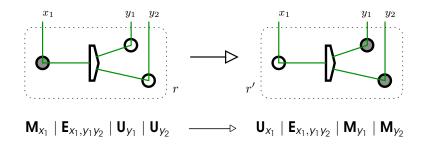


Bigraphical reactive systems, Ambients



 $\mathsf{amb}_z(\mathsf{in}_w \mid \square_0) \mid \mathsf{amb}_w \square_1 \longrightarrow \mathsf{amb}_w(\mathsf{amb}_z \square_0 \mid \square_1)$

Bigraphical reactive systems, Petri nets



Bigraphical reactive systems, formally

A parametric reaction rule has a redex R and a reactum R', and takes the following form

$$(R: I \rightarrow J, R': I' \rightarrow J, \varrho)$$
,

where ϱ maps sites of R' back to R injectively.

For *d* a tuple of parameters, this results in a ground reaction rule

$$((id_X \otimes R) \circ d, (id_X \otimes R') \circ \varrho(d))$$

Disclaimer (BASIC BIGRAPHICAL REACTIVE SYSTEMS)

They enforce important simplifying properties of redexes: flatness (no nesting of nodes), guardedness (no inner name is open, no site has a root as parent), simpleness (no inner names are peer, no sites are siblings), and definiteness (no redex involve only a subset of the controls involved in another).

Bigraphical reactive systems, formally

A parametric reaction rule has a redex R and a reactum R', and takes the following form

$$(R: I \rightarrow J, R': I' \rightarrow J, \varrho)$$
,

where ϱ maps sites of R' back to R injectively.

For *d* a tuple of parameters, this results in a ground reaction rule

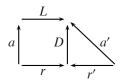
$$((id_X \otimes R) \circ d, (id_X \otimes R') \circ \varrho(d))$$

Disclaimer (BASIC BIGRAPHICAL REACTIVE SYSTEMS)

They enforce important simplifying properties of redexes: flatness (no nesting of nodes), guardedness (no inner name is open, no site has a root as parent), simpleness (no inner names are peer, no sites are siblings), and definiteness (no redex involve only a subset of the controls involved in another).

The essence of bigraphical reactive systems

For a ground prime term a and a ground reaction rule (r, r'), we derive a standard transition $a \xrightarrow{L} a'$ as below, where L and D are an idem pushout of a and a and a and a is an active context.



We write \sim_{ST} for the bisimilarity of the standard transition system.

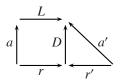
We then focus on engaged transitions, where the agent shares at least one node with the parametric redex R underlying r. Let \sim_{FPF} be the associated bisimilarity.

Theorem

In any basic BRSs \sim_{FPE} coincides with \sim_{ST} and is a congruence.

The essence of bigraphical reactive systems

For a ground prime term a and a ground reaction rule (r, r'), we derive a standard transition $a \xrightarrow{L} a'$ as below, where L and D are an idem pushout of a and a and a and a is an active context.



We write \sim_{ST} for the bisimilarity of the standard transition system.

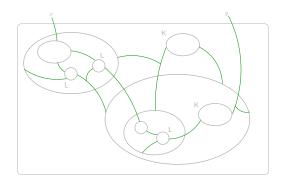
We then focus on engaged transitions, where the agent shares at least one node with the parametric redex R underlying r. Let \sim_{FPE} be the associated bisimilarity.

Theorem

In any basic BRSs \sim_{FPE} coincides with \sim_{ST} and is a congruence.

Binding bigraphs

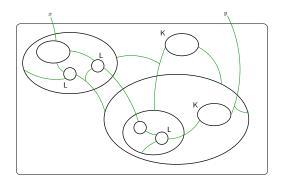
An important element is still missing in the model: the possibility of making a name **local**.



Observe the difference between closure /x, where an edge 'solidifies' once and for all, and the concept that an edge is available only within certain confines. Reminiscent of communication in ambient calculus.

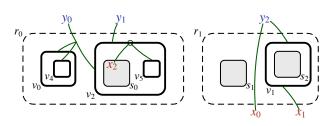
Binding bigraphs

An important element is still missing in the model: the possibility of making a name **local**.



Observe the difference between closure /x, where an edge 'solidifies' once and for all, and the concept that an edge is available only within certain confines. Reminiscent of communication in ambient calculus.

A binding bigraph



Controls have binding ports, roots/sites have local names

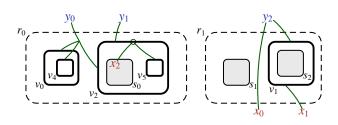
Clearly, the trick is to preserve confinement under composition.

SCOPE RULE: If p is a binder located at a node or at root w, then every peer in the same link of p must be contained in w.

New interfaces complete the picture:

$$\langle 3, (\{x_2\}, \emptyset, \emptyset), \{x_0, x_1, x_2\} \rangle \rightarrow \langle 2, (\emptyset, \emptyset), \{y_0, y_1, y_2\} \rangle$$

A binding bigraph

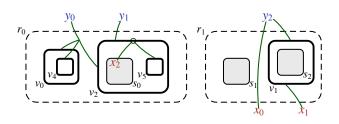


Controls have binding ports, roots/sites have local names Clearly, the trick is to preserve confinement under composition. **Scope Rule:** If p is a binder located at a node or at root w, then every peer in the same link of p must be contained in w.

New interfaces complete the picture:

$$\langle 3, (\{x_2\}, \emptyset, \emptyset), \{x_0, x_1, x_2\} \rangle \rightarrow \langle 2, (\emptyset, \emptyset), \{y_0, y_1, y_2\} \rangle$$

A binding bigraph



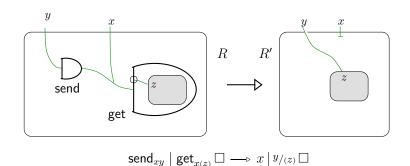
Controls have binding ports, roots/sites have local names Clearly, the trick is to preserve confinement under composition.

Scope Rule: If p is a binder located at a node or at root w, then every peer in the same link of p must be contained in w.

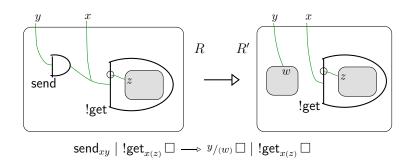
New interfaces complete the picture:

$$\langle 3, (\{x_2\}, \emptyset, \emptyset), \{x_0, x_1, x_2\} \rangle \rightarrow \langle 2, (\emptyset, \emptyset), \{y_0, y_1, y_2\} \rangle$$

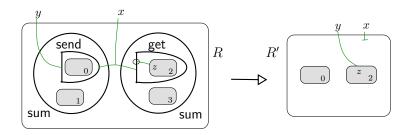
Bigraphical reactive systems, π_A



Bigraphical reactive systems, $!\pi_A$

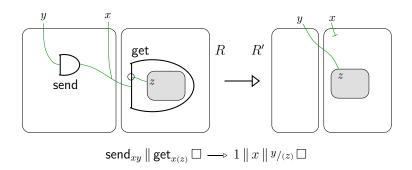


Bigraphical reactive systems, π



 $\mathsf{sum}(\mathsf{send}_{xy}\,\square_0\,|\,\square_1)\,|\,\mathsf{sum}(\mathsf{get}_{x(z)}\,\square_2\,|\,\square_3)\,\longrightarrow\,x\,|\,\square_0\,|\,^{y/(z)}\,\square_2$

Bigraphical reactive systems, Dpi



Binding bigraphs, formally

Definition (SIGNATURE OF BINDING CONTROLS 1C)

 $K \in \mathcal{K}$ has binding arity h and a free arity k, K: $h \to k$, its number of binding and non-binding ports. If K is atomic, then h = 0.

 $I = \langle m, loc, X \rangle$, where $I^{u} = \langle m, X \rangle$ is a pure interface and loc: $X \rightarrow m$ is a partial locality map which associates names in X with roots. If $loc(x) = \bot$ then x is global.

 $G: I \to J$ consists of an underlying pure bigraph $G^{u}: I^{u} \to J^{u}$ which satisfies the scope rule, where the binders of G are the binding ports of its nodes and the local names of its outer face J.

Binding bigraphs, formally

Definition (SIGNATURE OF BINDING CONTROLS K)

 $K \in \mathcal{K}$ has binding arity h and a free arity k, $K : h \to k$, its number of binding and non-binding ports. If K is atomic, then h = 0.

Definition (BINDING INTERFACE)

 $I = \langle m, loc, X \rangle$, where $I^{u} = \langle m, X \rangle$ is a pure interface and $loc: X \rightharpoonup m$ is a partial **locality map** which associates names in X with roots. If $loc(x) = \bot$ then x is **global**.

Definition (BINDING BIGRAPHS)

 $G: I \to J$ consists of an underlying pure bigraph $G^u: I^u \to J^u$ which satisfies the **scope rule**, where the **binders** of G are the binding ports of its nodes and the local names of its outer face J.

Binding bigraphs, formally

Definition (SIGNATURE OF BINDING CONTROLS 1C)

 $K \in \mathcal{K}$ has binding arity h and a free arity k, K: $h \to k$, its number of binding and non-binding ports. If K is atomic, then h = 0.

Definition (BINDING INTERFACE)

 $I = \langle m, loc, X \rangle$, where $I^{u} = \langle m, X \rangle$ is a pure interface and loc: $X \rightarrow m$ is a partial locality map which associates names in X with roots. If $loc(x) = \bot$ then x is global.

Definition (BINDING BIGRAPHS)

 $G: I \to J$ consists of an underlying pure bigraph $G^{u}: I^{u} \to J^{u}$ which satisfies the **scope rule**, where the **binders** of G are the binding ports of its nodes and the local names of its outer face J.

PPDP 06.07.10

Categorically speaking

Binding bigraphs are the arrows of a **s-category** $^{\prime}$ BBG(\mathcal{K}), with exactly the same issues discussed for pure bigraphs.

 $\mathsf{BBG}(\mathcal{K})$ is the category of **abstract binding bigraphs**, that is symmetric partial monoidal and admit a well-behaved quotient functor $[\![\cdot]\!]: \mathsf{BBG}(\mathcal{K}) \to \mathsf{BBG}(\mathcal{K})$.

The semantic framework provided by **basic bigraphical reactive systems**, and related results, carry over to binding bigraphs, mutatis mutandis.

Categorically speaking

Binding bigraphs are the arrows of a **s-category** 'BBG(\mathcal{K}), with exactly the same issues discussed for pure bigraphs.

 $BBG(\mathcal{K})$ is the category of **abstract binding bigraphs**, that is symmetric partial monoidal and admit a well-behaved quotient functor $[\cdot]: `BBG(\mathcal{K}) \to BBG(\mathcal{K})$.

The semantic framework provided by **basic bigraphical reactive systems**, and related results, carry over to binding bigraphs, mutatis mutandis.

Categorically speaking

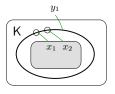
Binding bigraphs are the arrows of a **s-category** 'BBG(\mathcal{K}), with exactly the same issues discussed for pure bigraphs.

 $BBG(\mathcal{K})$ is the category of **abstract binding bigraphs**, that is symmetric partial monoidal and admit a well-behaved quotient functor $[\cdot]: `BBG(\mathcal{K}) \to BBG(\mathcal{K})$.

The semantic framework provided by **basic bigraphical reactive systems**, and related results, carry over to binding bigraphs, mutatis mutandis.

(1)

We only need to refine the notion of **ion**, and define new **wirings** to handle local names.



The ion $K_{y_1(x_1x_2)}$ generated from a control $K:2\to 1$

Similarly, for each suitable choice of distinct names \vec{x} and \vec{y} , each non-atomic control $K: h \to k$ defines a free discrete ion

$$K_{\vec{y}(\vec{x})} : \langle 1, (X), X \rangle \to \langle 1, (\emptyset), Y \rangle.$$

(2)

A **prime** bigraph has no inner global names and only one root.

Definition (CONCRETION)

 $\lceil X \rceil$: $\langle 1, (X \uplus Y), X \uplus Y \rangle \rightarrow \langle 1, (Y), X \uplus Y \rangle$, a prime bigraph that globalises a subset if its local inner names.

Definition (ABSTRACTION)

 $(X)P: I \to \langle 1, (X \uplus Y), Z \rangle$ localises a subset of names $X \subseteq Z$ for $P: I \to \langle 1, (Y), Z \rangle$ a prime.

$$/(X) = ((/X \otimes id) \circ \lceil X \rceil)$$

$$\vec{y}/(\vec{x}) = (\vec{y}/\vec{x} \otimes id) \circ \lceil \vec{x} \rceil$$

$$\vec{y})/(\vec{x}) = (\vec{y})\vec{y}/(\vec{x})$$

closure substitution local substitution

(2)

A **prime** bigraph has no inner global names and only one root.

Definition (CONCRETION)

 $\lceil X \rceil$: $\langle 1, (X \uplus Y), X \uplus Y \rangle \rightarrow \langle 1, (Y), X \uplus Y \rangle$, a prime bigraph that globalises a subset if its local inner names.

Definition (ABSTRACTION)

 $(X)P: I \to \langle 1, (X \uplus Y), Z \rangle$ localises a subset of names $X \subseteq Z$ for $P: I \to \langle 1, (Y), Z \rangle$ a prime.

$$/(X) = ((/X \otimes id) \circ \lceil X \rceil)$$

$$\vec{y}/(\vec{x}) = (\vec{y}/\vec{x} \otimes id) \circ \lceil \vec{x} \rceil$$

$$\vec{y})/(\vec{x}) = (\vec{y})\vec{y}/(\vec{x})$$

closure substitution local substitution

(2)

A **prime** bigraph has no inner global names and only one root.

Definition (CONCRETION)

 $\lceil X \rceil$: $\langle 1, (X \uplus Y), X \uplus Y \rangle \rightarrow \langle 1, (Y), X \uplus Y \rangle$, a prime bigraph that globalises a subset if its local inner names.

Definition (ABSTRACTION)

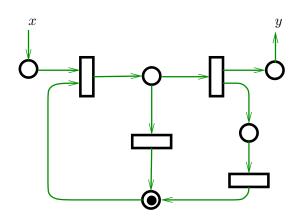
 $(X)P: I \to \langle 1, (X \uplus Y), Z \rangle$ localises a subset of names $X \subseteq Z$ for $P: I \to \langle 1, (Y), Z \rangle$ a prime.

$$/(X) = ((/X \otimes id) \circ \lceil X \rceil$$
$$\vec{y}/(\vec{x}) = (\vec{y}/\vec{x} \otimes id) \circ \lceil \vec{x} \rceil$$
$$(\vec{y})/(\vec{x}) = (\vec{y})\vec{y}/(\vec{x})$$

closure substitution local substitution

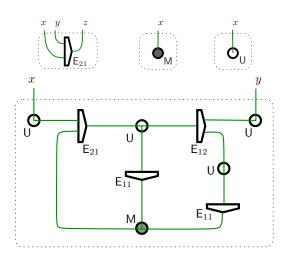
The need for sorting

Petri nets provide an obvious illustration:



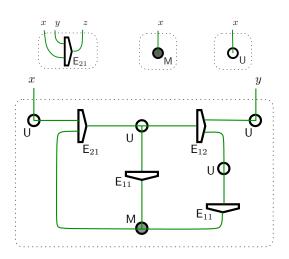
They are bipartite graphs, ports cannot be linked arbitrarily!

Controls for Petri nets



We need to distinguish ports of different sorts and constrain the way the can be connected. We will call this a **sorting discipline**.

Controls for Petri nets



We need to distinguish ports of different sorts and constrain the way the can be connected. We will call this a **sorting discipline**.

Polyadic pi calculus

When modelling calculi like π , where links carry datatypes, it is equally fundamental to deploy sorting disciplines; in general, the development of a theory of link-types for bigraphs could prove rewarding.

Polyadic pi – The idea:

$$x(y_1,\ldots,y_n).P \mid \bar{x}\langle z_1,\ldots,z_n \rangle.Q \rightarrow \{\vec{z}/\vec{y}\}P \mid Q$$

It opened the research on typing for process calculi:

$$\overline{a}\langle b, c \rangle.P \mid a(x).Q$$

 $\overline{a}\langle \text{true} \rangle.P \mid a(x).x(y).Q$

Both terms are ill-formed, make no sense, and must therefore be ruled out. This is one of the role of types.

Polyadic pi calculus

When modelling calculi like π , where links carry datatypes, it is equally fundamental to deploy sorting disciplines; in general, the development of a theory of link-types for bigraphs could prove rewarding.

Polyadic pi – The idea:

$$\textit{x}(\textit{y}_1,\ldots,\textit{y}_n).P\mid \bar{\textit{x}}\langle\textit{z}_1,\ldots,\textit{z}_n\rangle.Q \rightarrow \{\vec{z}/\vec{y}\}P\mid Q$$

It opened the research on typing for process calculi:

$$\overline{a}\langle b,c\rangle.P \mid a(x).Q$$

 $\overline{a}\langle \text{true}\rangle.P \mid a(x).x(y).Q$

Both terms are ill-formed, make no sense, and must therefore be ruled out. This is one of the role of types.

Milner's sorting system

A sorting system

- A function $\Sigma : \mathbb{S} \longrightarrow \mathbb{S}^*$ describes the tuples allowed on channels of each sort. $\Sigma(\gamma)$ is the object sort of γ .
- Object sort of $\gamma \in S$ must follow the sorting discipline $\Sigma(\gamma)$.
- P respects Σ if in each subterm $\overline{x}\langle\vec{y}\rangle.P'$ or $x(\vec{y}).P'$, if $x:\gamma$, then $\vec{y}:\Sigma(\gamma)$

Subject Reduction:

If P respects Σ and $P \longrightarrow Q$, then Q respects Σ .

It follows that $P \stackrel{\overline{x}\overline{y}}{\longrightarrow}$ implies that $\vec{y} : \Sigma(\gamma)$, for $x : \gamma$.

Therefore, these cannot happen:

$$\overline{a}\langle b, c \rangle.P \mid a(x).Q$$

 $\overline{a}\langle \text{true} \rangle.P \mid a(x).x(y).Q$

Milner's sorting system

A sorting system

- A function $\Sigma : \mathbb{S} \longrightarrow \mathbb{S}^*$ describes the tuples allowed on channels of each sort. $\Sigma(\gamma)$ is the object sort of γ .
- Object sort of $\gamma \in S$ must follow the sorting discipline $\Sigma(\gamma)$.
- P respects Σ if in each subterm $\overline{x}\langle\vec{y}\rangle.P'$ or $x(\vec{y}).P'$, if $x:\gamma$, then $\vec{y}:\Sigma(\gamma)$

Subject Reduction:

If P respects Σ and $P \longrightarrow Q$, then Q respects Σ .

It follows that $P \xrightarrow{\overline{x}\overline{y}}$ implies that $\overline{y} : \Sigma(\gamma)$, for $x : \gamma$.

Therefore, these cannot happen:

$$\overline{a}\langle b,c\rangle.P \mid a(x).Q$$

 $\overline{a}\langle \text{true}\rangle.P \mid a(x).x(y).Q$

Simply typed pi calculus

Channel types

inform on the type of the value they carry

Examples

- #(int): channel carrying values of type int.
- #(unit): channel carrying *, the only value of type unit.
- #(#int): channel carrying channels carrying integers.

10 types and subtypes

```
S,T ::= ...

| rT input capability on a channel of T values

| wT output capability on a channel of T values

| \#T link type (channel)
```

Channel types:

- inform on the type of the value they carry
- offer capabilities to their users

Examples:

- r(int): input-only channel carrying values of type int.
- #r(int): channel carrying input-only integer channels.

Subtyping kicks in: any channel can be used in only one of its capabilities...

$$\sharp T \leq rT, wT$$

Subsumption: if $x : \sharp T$, then x : rT and x : wT too

10 types and subtypes

```
S,T ::= ... | rT input capability on a channel of T values | wT output capability on a channel of T values | \#T link type (channel)
```

Channel types:

- inform on the type of the value they carry
- offer capabilities to their users

Examples:

- r(int): input-only channel carrying values of type int.
- #r(int): channel carrying input-only integer channels.

Subtyping kicks in: any channel can be used in only one of its capabilities...

$$\sharp T \leq rT, wT$$

Subsumption: if $x : \sharp T$, then x : rT and x : wT too

IO types for polyadic pi

We now develop those ideas (in a slightly different syntax, in particular no basic types).

$$\frac{T_1...T_n :: Type}{()^I :: Type} \qquad \frac{T_1...T_n :: Type}{(T_1,...,T_n)^r :: Type} \qquad \frac{T_1...T_n :: Type}{(T_1,...,T_n)^w :: Type}$$

$$\frac{T_1...T_n :: Type \qquad S_1...S_n :: Type \qquad S_i \le T_i}{(T_1,...,T_n; S_1,...,S_n)^b :: Type}$$

We will refer to these types as the set of sorts S.

The subtyping relation

$$\begin{split} \frac{T_{i} \leq T'_{i}, \quad i = 1, ..., n}{(T_{1}, ..., T_{n})^{r} \leq (T'_{1}, ..., T'_{n})^{r}} & \frac{T_{i} \leq T'_{i}, \quad i = 1, ..., n}{(T'_{1}, ..., T'_{n})^{w} \leq (T_{1}, ..., T_{n})^{w}} \\ & \frac{T_{i} \leq T'_{i} \quad \text{and} \quad S_{i} \leq S'_{i}, \quad i = 1, ..., n}{(T_{1}, ..., T_{n}; S'_{1}, ..., S'_{n})^{b} \leq (T'_{1}, ..., T'_{n}; S_{1}, ..., S_{n})^{b}} \\ & \frac{T_{i} \leq T'_{i}, \quad i = 1, ..., n}{(T_{1}, ..., T_{n}; S_{1}, ..., S_{n})^{b} \leq (T'_{1}, ..., T'_{n})^{r}} \\ & \frac{T_{i} \leq T'_{i}, \quad i = 1, ..., n}{(S_{1}, ..., S_{n}; T'_{1}, ..., T'_{n})^{b} \leq (T_{1}, ..., T_{n})^{w}} \end{split}$$

The typing judgement

$$\frac{\Gamma \vdash P : \circ \quad \Gamma \vdash Q : \circ}{\Gamma \vdash P \mid Q : \circ} \qquad \frac{\Gamma, n : S \vdash P : \circ}{\Gamma \vdash (\nu n : S)P : \circ}$$

$$\frac{\Gamma(n) \leq (S_1, ..., S_n)^r \qquad \Gamma, m_1 : S_1, ..., m_n : S_n \vdash P : \circ}{\Gamma \vdash n(m_1 : S_1, ..., m_n : S_n) . P : \circ}$$

$$\frac{\Gamma(n) \leq (\Gamma(m_1), ..., \Gamma(m_n))^w \qquad \Gamma \vdash P : \circ}{\Gamma \vdash \overline{n} \langle m_1, ..., m_n \rangle . P : \circ}$$

Lemma (SUBJECT REDUCTION FOR POLYADIC PI)

If $\Gamma \vdash P : \circ$, then $\Gamma \vdash P' : \circ$ for each $P \rightarrow_{\pi} P'$.

Sorting edges

Extend bigraphs with a sorting structure suitable to represent the polyadic pi calculus; then describe such a representation.

(FIRST STEP: EDGE SIGNATURES)

An edge signature \mathcal{E} is a set of so-called **edge controls**. Edges are now assigned controls the same way nodes are.

All previous development carries over to the s-category ${\sf BBG}(\mathcal{K},\mathcal{E})$ and the category ${\sf BBG}(\mathcal{K},\mathcal{E})$.

(SECOND STEP: SORTED SIGNATURES)

Let Θ denote a non-empty set of **sorts**; each $\mathsf{E} \in \mathcal{E}$ is ascribed a sort $\theta \in \Theta$; we say that \mathcal{E} is Θ -sorted.

Sorting edges

Extend bigraphs with a sorting structure suitable to represent the polyadic pi calculus; then describe such a representation.

(FIRST STEP: EDGE SIGNATURES)

An edge signature \mathcal{E} is a set of so-called **edge controls**. Edges are now assigned controls the same way nodes are.

(SECOND STEP: SORTED SIGNATURES)

Let Θ denote a non-empty set of **sorts**; each $\mathsf{E} \in \mathcal{E}$ is ascribed a sort $\theta \in \Theta$; we say that \mathcal{E} is Θ -sorted.

Sorted binding bigraphs

Definition (Θ -sorted binding bigraphs)

A binding bigraph in ${}^{\prime}BBG(\mathcal{K},\mathcal{E})$ with both interfaces enriched by ascribing a Θ -sort to each name. Observe that ports inherit their sorting from the link they are connected to.

 $(SBBG(\Theta, \mathcal{K}, \mathcal{E}))$ is the s-category of sorted binding bigraphs.

Definition (SORTING DISCIPLINE)

 $\Sigma = (\Theta, \mathcal{K}, \mathcal{E}, \Phi)$, where Φ is a 'well-formedness' condition on Θ -sorted binding bigraphs that is satisfied by the identities and preserved by both composition and tensor product.

A binding bigraph is Σ -sorted if it satisfies Φ .

 Σ -sorted bigraphs form a sub-s-category of 'SBBG($\Theta, \mathcal{K}, \mathcal{E}$) denoted by 'SBBG(Σ). Importantly, the results on bisimulation must be extended to Σ -sorted BRSs to 'SBBG(Σ).

Sorted binding bigraphs

Definition (Θ -sorted binding bigraphs)

A binding bigraph in ${}^{\circ}BBG(\mathcal{K},\mathcal{E})$ with both interfaces enriched by ascribing a Θ -sort to each name. Observe that ports inherit their sorting from the link they are connected to.

 $(SBBG(\Theta, \mathcal{K}, \mathcal{E}))$ is the s-category of sorted binding bigraphs.

Definition (SORTING DISCIPLINE)

 $\Sigma = (\Theta, \mathcal{K}, \mathcal{E}, \Phi)$, where Φ is a 'well-formedness' condition on Θ -sorted binding bigraphs that is satisfied by the identities and preserved by both composition and tensor product.

A binding bigraph is Σ -sorted if it satisfies Φ .

 Σ -sorted bigraphs form a sub-s-category of 'SBBG($\Theta, \mathcal{K}, \mathcal{E}$) denoted by 'SBBG(Σ). Importantly, the results on bisimulation must be extended to Σ -sorted BRSs to 'SBBG(Σ).

Sorted binding bigraphs

Definition (Θ -sorted binding bigraphs)

A binding bigraph in ${}^{\prime}BBG(\mathcal{K},\mathcal{E})$ with both interfaces enriched by ascribing a Θ -sort to each name. Observe that ports inherit their sorting from the link they are connected to.

 $(SBBG(\Theta, \mathcal{K}, \mathcal{E}))$ is the s-category of sorted binding bigraphs.

Definition (SORTING DISCIPLINE)

 $\Sigma = (\Theta, \mathcal{K}, \mathcal{E}, \Phi)$, where Φ is a 'well-formedness' condition on Θ -sorted binding bigraphs that is satisfied by the identities and preserved by both composition and tensor product.

A binding bigraph is Σ -sorted if it satisfies Φ .

 Σ -sorted bigraphs form a sub-s-category of 'SBBG($\Theta, \mathcal{K}, \mathcal{E}$) denoted by 'SBBG(Σ). Importantly, the results on bisimulation must be extended to Σ -sorted BRSs to 'SBBG(Σ).

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let \mathcal{E} deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let $\mathcal E$ deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let $\mathcal E$ deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let \mathcal{E} deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let \mathcal{E} deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Definition (SUBSORTING $(\Theta, \mathcal{K}, \mathcal{E}, \Phi)$)

Let Θ be a preorder of sorts, and Q a set of type constructors.

Each K is associated with $q_K \in Q$ and a partition of its ports into two sets, C_K and V_K : of **communication** and **value** ports.

If q is covariant on i and K's ith port is a value port, then it must be a **binding** port.

Let \mathcal{E} deliver an arbitrary assignment of sorts to edge controls, and condition Φ be as follows:

- for each inner name x : S, if T is the sort of its link, then $T \le S$.
- for each K-node v and each $c \in \mathcal{C}_K$, let S be the sort of v's corresponding port; we require that $S \leq q_K(S_1, \ldots, S_{|\mathcal{V}_K|})$, where S_i is the sort of v's ith port in \mathcal{V}_K .

Bigraphical representation of polyadic pi

Definition ($\Sigma_{\pi_{<}}$: INSTANTIATING SUBSORTING)

Let our chosen set of sorts be S, with Q the set of tags $\{b, r, w\}$ and

$$q(S_0,\ldots,S_n)=(S_0,\ldots,S_n)^q.$$

The signature $\mathcal{E}_{\pi_{\leq}}$ provides controls in correspondence with the sorts in \mathcal{S} . The signature $\mathcal{K}_{\pi_{\leq}}$ has countably many controls:

send:
$$0 \rightarrow (i+1)$$
 get: $i \rightarrow 1$.

All ports but the first ones are value ports; **send** controls are associated with **w**, and their value ports are contravariant; **get** controls with **r**, and their value ports are covariant (and binding).

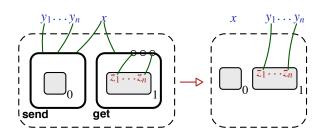
This defines 'SBBG($\Sigma_{\pi_{<}}$) (and SBBG($\Sigma_{\pi_{<}}$), of course).

Sorted bigraphical reactive system for pi

```
(SORTED BRS: 'SBBG_{\pi_{<}})
```

 $\mathcal{R}_{\pi_{<}}$ consists of a family of $\Sigma_{\pi_{<}}$ -sorted reaction rules below.

The outer names y_1, \ldots, y_n have sorts T_1, \ldots, T_n , the local names z_1, \ldots, z_n and the edges they are connected to have sort U_1, \ldots, U_n , and the name x has sort $(U_1, \ldots, U_n; T_1, \ldots, T_n)^b$.



The encoding

Proposition (STATIC CORRESPONDENCE)

$$\Gamma \vdash P : \circ \equiv_{\pi} \Gamma \vdash P' : \circ$$
 if and only if $[\Gamma \vdash P : \circ] = [\Gamma \vdash P' : \circ]$.

Theorem (DYNAMIC CORRESPONDENCE)

For each well-typed $\Gamma \vdash P : \circ$ and agent $a : \epsilon \to \langle \Gamma \rangle$, we have

$$\llbracket \Gamma \vdash P : \circ \rrbracket \rightarrow a$$
 if and only if $P \rightarrow_{\pi} a_{\pi}$

The encoding

Proposition (STATIC CORRESPONDENCE)

$$\Gamma \vdash P : \circ \equiv_{\pi} \Gamma \vdash P' : \circ$$
 if and only if $\llbracket \Gamma \vdash P : \circ \rrbracket = \llbracket \Gamma \vdash P' : \circ \rrbracket$.

Theorem (DYNAMIC CORRESPONDENCE)

For each well-typed $\Gamma \vdash P : \circ$ and agent $a : \epsilon \to \langle \Gamma \rangle$, we have

$$\llbracket \Gamma \vdash P : \circ \rrbracket \rightarrow a \quad \text{if and only if} \quad P \rightarrow_{\pi} a_{\pi}$$

The encoding

Proposition (STATIC CORRESPONDENCE)

$$\Gamma \vdash P : \circ \equiv_{\pi} \Gamma \vdash P' : \circ$$
 if and only if $\llbracket \Gamma \vdash P : \circ \rrbracket = \llbracket \Gamma \vdash P' : \circ \rrbracket$.

Theorem (DYNAMIC CORRESPONDENCE)

For each well-typed $\Gamma \vdash P : \circ$ and agent $\alpha : \epsilon \to \langle \Gamma \rangle$, we have

$$\llbracket \Gamma \vdash P : \circ \rrbracket \rightarrow a$$
 if and only if $P \rightarrow_{\pi} a_{\pi}$

Labels arising from engaged transitions

It follows from the general theory that \sim_{FPE} is a congruence. We characterise the labels of its transition system.

Lemma (Characterising transitions in $\mathsf{SBBG}_{\pi_<}$)

Let $a \stackrel{L}{\longrightarrow} a'$ be an engaged transitions. Then

$$a = (/Z: \tilde{S})(r_{\alpha} \mid b) \qquad L = \langle \sigma \rangle \mid r_{L}$$

$$\alpha' = \sigma(/Z: \tilde{S})(y_{1} \dots y_{n}/(z_{1} \dots z_{n})c_{2} \mid c_{1} \mid b)$$

where, up to renaming...

r _a	r_L	σ
$send_{xy_1y_n}C_1$	\(\Z\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	sub_X
$get_{X(Z_1Z_n)} c_2$	$send_{xy_1y_n}C_1$	sub_X
$ \operatorname{send}_{x_0y_1y_n}c_1 \operatorname{get}_{x_1(z_1z_n)}c_2$	1	$sub_{X \setminus \{x_{\overline{i}}\}} x_i/x_{\overline{i}} $
$\operatorname{send}_{xy_1y_n} c_1 \mid \operatorname{get}_{x(z_1z_n)} c_2$	1	sub_X

Conclusion and further work

- We have reviewed the main ideas of bigraphs, with the declared intention to lure people into working on them.
- We have introduced edge-sorting and described subsorting, a particular sorting discipline suitable for the representation of the polyadic pi calculus with subtyping.
- We have shown such a representation and studied its properties.
- ullet Compare \sim_{FPE} with standard **typed bisimulation**.
- Examine more advanced type systems for presentation as sortings in bigraphs; e.g., recursive and linear types.
- Consider behavioural types (hard).
- Identify more general sufficient conditions on type systems and their features that allow to present them as sortings in a bigraphical reactive system.

Conclusion and further work

- We have reviewed the main ideas of bigraphs, with the declared intention to lure people into working on them.
- We have introduced edge-sorting and described subsorting, a particular sorting discipline suitable for the representation of the polyadic pi calculus with subtyping.
- We have shown such a representation and studied its properties.
- Compare \sim_{FPE} with standard typed bisimulation.
- Examine more advanced type systems for presentation as sortings in bigraphs; e.g., recursive and linear types.
- Consider behavioural types (hard).
- Identify more general sufficient conditions on type systems and their features that allow to present them as sortings in a bigraphical reactive system.

V. Sassone (Soton)

Essential bibliography

Pure bigraphs: Structure and dynamics.

Information and Computation, 204(1):60-122, 2006.

V. Sassone and P. Sobociński.

Locating Reactions using 2-Categories.

Theoretical Computer Science 333(1-2), 297–327, 2005.

O. H. JENSEN AND R. MILNER.

Bigraphs and mobile processes (revised).

Tech Rep UCAM-CL-TR-580, University of Cambridge, Computer Lab 2004.

J. J. Leifer and R. Milner.

Transition systems, link graphs and Petri nets.

Tech Rep UCAM-CL-TR-598, University of Cambridge, Computer Lab 2004.

O. H. JENSEN.

Mobile Processes in Bigraphs.

PhD thesis, Dept of Computer Science, Aalborg University, 2006.