

Opportunities for formal methods in the analysis of pervasive adaptation

Vladimiro Sassone

ECS, University of Southampton

Brussels, 26 January 2007

Conclusion

- Without formal models, there is no dealing with non-trivial notions.
 - ▶ True in all realms of human activity: complex artifacts require blueprints of all sorts;
 - ▶ Yet, mysteriously some believe one could design, build, maintain, service, upgrade, evolve, ... systems of the complexity of ecologies just by implementing the right support.
But to build a house is not sufficient to design good bricks ...
- Without practice, there is no useful formal method.
 - ▶ models conceived in abstract are not abstract models, just cathedrals in the desert.
- Without new tools, there is no realistic formal model of adaptation.
 - ▶ this is a hard concept, that includes research areas big per se that we cannot handle (eg complex systems, emergent behaviour, ...)

Conclusion

- Without formal models, there is no dealing with non-trivial notions.
 - ▶ True in all realms of human activity: complex artifacts require blueprints of all sorts;
 - ▶ Yet, mysteriously some believe one could design, build, maintain, service, upgrade, evolve, ... systems of the complexity of ecologies just by implementing the right support.
But to build a house is not sufficient to design good bricks ...
- Without practice, there is no useful formal method.
 - ▶ models conceived in abstract are not abstract models, just cathedrals in the desert.
- Without new tools, there is no realistic formal model of adaptation.
 - ▶ this is a hard concept, that includes research areas big per se that we cannot handle (eg complex systems, emergent behaviour, ...)

Conclusion

- Without formal models, there is no dealing with non-trivial notions.
 - ▶ True in all realms of human activity: complex artifacts require blueprints of all sorts;
 - ▶ Yet, mysteriously some believe one could design, build, maintain, service, upgrade, evolve, ... systems of the complexity of ecologies just by implementing the right support.
But to build a house is not sufficient to design good bricks ...
- Without practice, there is no useful formal method.
 - ▶ models conceived in abstract are not abstract models, just cathedrals in the desert.
- Without new tools, there is no realistic formal model of adaptation.
 - ▶ this is a hard concept, that includes research areas big per se that we cannot handle (eg complex systems, emergent behaviour, ...)

Conclusion

- Without formal models, there is no dealing with non-trivial notions.
 - ▶ True in all realms of human activity: complex artifacts require blueprints of all sorts;
 - ▶ Yet, mysteriously some believe one could design, build, maintain, service, upgrade, evolve, ... systems of the complexity of ecologies just by implementing the right support.
But to build a house is not sufficient to design good bricks ...
- Without practice, there is no useful formal method.
 - ▶ models conceived in abstract are not abstract models, just cathedrals in the desert.
- Without new tools, there is no realistic formal model of adaptation.
 - ▶ this is a hard concept, that includes research areas big per se that we cannot handle (eg complex systems, emergent behaviour, ...)

Conclusion

- Without formal models, there is no dealing with non-trivial notions.
 - ▶ True in all realms of human activity: complex artifacts require blueprints of all sorts;
 - ▶ Yet, mysteriously some believe one could design, build, maintain, service, upgrade, evolve, ... systems of the complexity of ecologies just by implementing the right support.
But to build a house is not sufficient to design good bricks ...
- Without practice, there is no useful formal method.
 - ▶ models conceived in abstract are not abstract models, just cathedrals in the desert.
- Without new tools, there is no realistic formal model of adaptation.
 - ▶ this is a hard concept, that includes research areas big per se that we cannot handle (eg complex systems, emergent behaviour, ...)

OK for models, but why formal?

- Formal models cover the entire spectrum of development:
 - ▶ specification, validation, implementation, verification, ...
- Emerging behaviour typical of adaptation needs statements of 'fitness for purpose':
 - ▶ need languages to specify those and techniques to verify them
- Critical applications need certification of key properties:
 - ▶ safety guarantees, performance standards, quality indicators, ...

OK for models, but why formal?

- Formal models cover the entire spectrum of development:
 - ▶ specification, validation, implementation, verification, ...
- Emerging behaviour typical of adaptation needs statements of 'fitness for purpose':
 - ▶ need languages to specify those and techniques to verify them
- Critical applications need certification of key properties:
 - ▶ safety guarantees, performance standards, quality indicators, ...

OK for models, but why formal?

- Formal models cover the entire spectrum of development:
 - ▶ specification, validation, implementation, verification, ...
- Emerging behaviour typical of adaptation needs statements of 'fitness for purpose':
 - ▶ need languages to specify those and techniques to verify them
- Critical applications need certification of key properties:
 - ▶ safety guarantees, performance standards, quality indicators, ...

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, and what's so unique about adaptation?

- work with changing and unpredictable environments;
- work with lack of relevant information;
- work with tight resource constraints;
- work with internal hypothesis built from observations;
- work by making hypothesis and testing them against observations of the world;
- and, most importantly,
goal-orientation, autonomy, re- and pro-activeness.

OK that, but what tools for adaptation?

processes \mapsto **agents**??

goal-oriented
autonomous
reactive
proactive

Reject intelligence-based and bio-inspired approaches per se.
Accept when backed by solid mathematical tools, like eg:
data mining, learning, evolutionary and genetic algorithms, Bayesian learning, ...

Existing approaches: game theory and mechanism design; negotiation (because often the environment is just others like you); evolutionary, probabilistic.

NEXT: A typical example of adaptation of the simplest form

OK that, but what tools for adaptation?

processes \mapsto agents??

goal-oriented
autonomous
reactive
proactive

Reject intelligence-based and bio-inspired approaches per se.
Accept when backed by solid mathematical tools, like eg:
data mining, learning, evolutionary and genetic algorithms, Bayesian learning, ...

Existing approaches: game theory and mechanism design; negotiation (because often the environment is just others like you); evolutionary, probabilistic.

NEXT: A typical example of adaptation of the simplest form.

Simple Adaptation via Bayesian Learning

The model λ_θ :

- Each principal p behaves in each interaction according to a fixed and independent probability θ_p of ‘success’ (and therefore $1 - \theta_p$ of ‘failure’).

The framework:

- Interface (Trust computation algorithm, \mathcal{A}):
 - ▶ Input: A sequence $h = x_1 x_2 \cdots x_n$ for $n \geq 0$ and $x_i \in \{\mathbf{s}, \mathbf{f}\}$.
 - ▶ Output: A probability distribution $\pi : \{\mathbf{s}, \mathbf{f}\} \rightarrow [0, 1]$.
- Goal:
 - ▶ Output π approximates $(\theta_p, 1 - \theta_p)$ as well as possible, under the hypothesis that input h is the outcome of interactions with p .

Simple Adaptation via Bayesian Learning

The model λ_θ :

- Each principal p behaves in each interaction according to a fixed and independent probability θ_p of ‘success’ (and therefore $1 - \theta_p$ of ‘failure’).

The framework:

- Interface (Trust computation algorithm, \mathcal{A}):
 - ▶ Input: A sequence $h = x_1 x_2 \cdots x_n$ for $n \geq 0$ and $x_i \in \{\mathbf{s}, \mathbf{f}\}$.
 - ▶ Output: A probability distribution $\pi : \{\mathbf{s}, \mathbf{f}\} \rightarrow [0, 1]$.
- Goal:
 - ▶ Output π approximates $(\theta_p, 1 - \theta_p)$ as well as possible, under the hypothesis that input h is the outcome of interactions with p .

Trust computation \mathcal{A}_0

$$\mathcal{A}_0(\mathbf{s} \mid h) = \frac{N_{\mathbf{s}}(h)}{|h|}$$

$$\mathcal{A}_0(\mathbf{f} \mid h) = \frac{N_{\mathbf{f}}(h)}{|h|}$$

$N_x(h)$ = “number of x ’s in h ”

Bayesian analysis inspired by λ_{β} model: $f(\theta \mid \alpha \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Properties:

- Well defined semantics: $\mathcal{A}_0(\mathbf{s} \mid h)$ is interpreted as a *probability* of success in the next interaction.

Trust computation \mathcal{A}_0

$$\mathcal{A}_0(\mathbf{s} \mid h) = \frac{N_{\mathbf{s}}(h)}{|h|}$$

$$\mathcal{A}_0(\mathbf{f} \mid h) = \frac{N_{\mathbf{f}}(h)}{|h|}$$

$N_x(h)$ = “number of x ’s in h ”

Bayesian analysis inspired by λ_{β} model: $f(\theta \mid \alpha \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

Properties:

- Well defined semantics: $\mathcal{A}_0(\mathbf{s} \mid h)$ is interpreted as a *probability* of success in the next interaction.

Even more tightly inspired by Bayesian analysis and by λ_β

Trust computation \mathcal{A}_1

$$\mathcal{A}_1(\mathbf{s} \mid h) = \frac{N_{\mathbf{s}}(h) + 1}{|h| + 2} \quad \mathcal{A}_1(\mathbf{f} \mid h) = \frac{N_{\mathbf{f}}(h) + 1}{|h| + 2}$$

$N_x(h)$ = “number of x ’s in h ”

Properties:

- Well defined semantics: $\mathcal{A}_1(\mathbf{s} \mid h)$ is interpreted as a *probability* of success in the next interaction.

Even more tightly inspired by Bayesian analysis and by λ_β

Trust computation \mathcal{A}_1

$$\mathcal{A}_1(\mathbf{s} \mid h) = \frac{N_{\mathbf{s}}(h) + 1}{|h| + 2} \quad \mathcal{A}_1(\mathbf{f} \mid h) = \frac{N_{\mathbf{f}}(h) + 1}{|h| + 2}$$

$N_x(h)$ = “number of x ’s in h ”

Properties:

- Well defined semantics: $\mathcal{A}_1(\mathbf{s} \mid h)$ is interpreted as a *probability* of success in the next interaction.

Cross entropy

An information-theoretic “distance” on distributions

Cross entropy of distributions $\mathbf{p}, \mathbf{q} : \{o_1, \dots, o_m\} \rightarrow [0, 1]$.

$$D(\mathbf{p} \parallel \mathbf{q}) = \sum_{i=1}^m \mathbf{p}(o_i) \cdot \log(\mathbf{p}(o_i)/\mathbf{q}(o_i))$$

It holds $0 \leq D(\mathbf{p} \parallel \mathbf{q}) \leq \infty$, and $D(\mathbf{p} \parallel \mathbf{q}) = 0$ iff $\mathbf{p} = \mathbf{q}$.

- Established measure in statistics for comparing distributions.
- Information-theoretic: the average amount of information discriminating \mathbf{p} from \mathbf{q} .

Cross entropy

An information-theoretic “distance” on distributions

Cross entropy of distributions $\mathbf{p}, \mathbf{q} : \{o_1, \dots, o_m\} \rightarrow [0, 1]$.

$$D(\mathbf{p} \parallel \mathbf{q}) = \sum_{i=1}^m \mathbf{p}(o_i) \cdot \log(\mathbf{p}(o_i)/\mathbf{q}(o_i))$$

It holds $0 \leq D(\mathbf{p} \parallel \mathbf{q}) \leq \infty$, and $D(\mathbf{p} \parallel \mathbf{q}) = 0$ iff $\mathbf{p} = \mathbf{q}$.

- Established measure in statistics for comparing distributions.
- Information-theoretic: the average amount of information discriminating \mathbf{p} from \mathbf{q} .

Expected cross entropy

A measure on probabilistic trust algorithms

- Goal of a probabilistic trust algorithm \mathcal{A} : given a history \mathbf{X} , approximate a distribution on the outcomes $\mathcal{O} = \{o_1, \dots, o_m\}$.
- Different histories \mathbf{X} result in different output distributions $\mathcal{A}(\cdot | \mathbf{X})$.

Expected cross entropy from λ to \mathcal{A}

$$ED^n(\lambda || \mathcal{A}) = \sum_{\mathbf{X} \in \mathcal{O}^n} Prob(\mathbf{X} | \lambda) \cdot D(Prob(\cdot | \mathbf{X} \lambda) || \mathcal{A}(\cdot | \mathbf{X}))$$

Expected cross entropy

A measure on probabilistic trust algorithms

- Goal of a probabilistic trust algorithm \mathcal{A} : given a history \mathbf{X} , approximate a distribution on the outcomes $\mathcal{O} = \{o_1, \dots, o_m\}$.
- Different histories \mathbf{X} result in different output distributions $\mathcal{A}(\cdot | \mathbf{X})$.

Expected cross entropy from λ to \mathcal{A}

$$ED^n(\lambda || \mathcal{A}) = \sum_{\mathbf{X} \in \mathcal{O}^n} Prob(\mathbf{X} | \lambda) \cdot D(Prob(\cdot | \mathbf{X} \lambda) || \mathcal{A}(\cdot | \mathbf{X}))$$

Consider the beta model λ_β and the algorithms \mathcal{A}_0 of maximum likelihood (Despotovic et al.) and \mathcal{A}_1 beta (Mui et al.).

Theorem

If $\theta = 0$ or $\theta = 1$ then \mathcal{A}_0 computes the exact distribution, whereas \mathcal{A}_1 does not. That is, for all $n > 0$ we have:

$$\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_0) = 0 < \text{ED}^n(\lambda_\beta \parallel \mathcal{A}_1)$$

If $0 < \theta < 1$, then $\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_0) = \infty$, and \mathcal{A}_1 is always better.

Consider the beta model λ_β and the algorithms \mathcal{A}_0 of maximum likelihood (Despotovic et al.) and \mathcal{A}_1 beta (Mui et al.).

Theorem

If $\theta = 0$ or $\theta = 1$ then \mathcal{A}_0 computes the exact distribution, whereas \mathcal{A}_1 does not. That is, for all $n > 0$ we have:

$$ED^n(\lambda_\beta \parallel \mathcal{A}_0) = 0 < ED^n(\lambda_\beta \parallel \mathcal{A}_1)$$

If $0 < \theta < 1$, then $ED^n(\lambda_\beta \parallel \mathcal{A}_0) = \infty$, and \mathcal{A}_1 is always better.

A parametric algorithm \mathcal{A}_ϵ

$$\mathcal{A}_\epsilon(\mathbf{s} \mid h) = \frac{\mathbf{N}_{\mathbf{s}}(h) + \epsilon}{|h| + 2\epsilon}, \quad \mathcal{A}_\epsilon(\mathbf{f} \mid h) = \frac{\mathbf{N}_{\mathbf{f}}(h) + \epsilon}{|h| + 2\epsilon}$$

Theorem

For any $\theta \in [0, 1]$, $\theta \neq 1/2$ there exists $\bar{\epsilon} \in [0, \infty)$ that minimises $\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_\epsilon)$, simultaneously for all n .

A parametric algorithm \mathcal{A}_ϵ

$$\mathcal{A}_\epsilon(\mathbf{s} \mid h) = \frac{\mathbf{N}_{\mathbf{s}}(h) + \epsilon}{|h| + 2\epsilon}, \quad \mathcal{A}_\epsilon(\mathbf{f} \mid h) = \frac{\mathbf{N}_{\mathbf{f}}(h) + \epsilon}{|h| + 2\epsilon}$$

Theorem

For any $\theta \in [0, 1]$, $\theta \neq 1/2$ there exists $\bar{\epsilon} \in [0, \infty)$ that minimises $\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_\epsilon)$, simultaneously for all n .

A parametric algorithm \mathcal{A}_ϵ

$$\mathcal{A}_\epsilon(\mathbf{s} \mid h) = \frac{\mathbf{N}_{\mathbf{s}}(h) + \epsilon}{|h| + 2\epsilon}, \quad \mathcal{A}_\epsilon(\mathbf{f} \mid h) = \frac{\mathbf{N}_{\mathbf{f}}(h) + \epsilon}{|h| + 2\epsilon}$$

Theorem

For any $\theta \in [0, 1]$, $\theta \neq 1/2$ there exists $\bar{\epsilon} \in [0, \infty)$ that minimises $\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_\epsilon)$, simultaneously for all n .

That is, unless behaviour is completely unbiased, there exists a unique best \mathcal{A}_ϵ algorithm that for all n outperforms all the others.
If $\theta = 1/2$, the larger the ϵ , the better.

A parametric algorithm \mathcal{A}_ϵ

$$\mathcal{A}_\epsilon(\mathbf{s} \mid h) = \frac{\mathbf{N}_{\mathbf{s}}(h) + \epsilon}{|\mathbf{h}| + 2\epsilon}, \quad \mathcal{A}_\epsilon(\mathbf{f} \mid h) = \frac{\mathbf{N}_{\mathbf{f}}(h) + \epsilon}{|\mathbf{h}| + 2\epsilon}$$

Theorem

For any $\theta \in [0, 1]$, $\theta \neq 1/2$ there exists $\bar{\epsilon} \in [0, \infty)$ that minimises $\text{ED}^n(\lambda_\beta \parallel \mathcal{A}_\epsilon)$, simultaneously for all n .

- Algorithm \mathcal{A}_0 is optimal for $\theta = 0$ and for $\theta = 1$.
- Algorithm \mathcal{A}_1 is optimal for $\theta = \frac{1}{2} \pm \frac{1}{\sqrt{12}}$.

A trust model based on event structures

Move from $O = \{s, f\}$ to complex outcomes

Interactions and protocols

- At an abstract level, entities in a distributed system interact according to protocols;
- Information about an external entity is just information about (the outcome of) a number of (past) protocol runs with that entity.

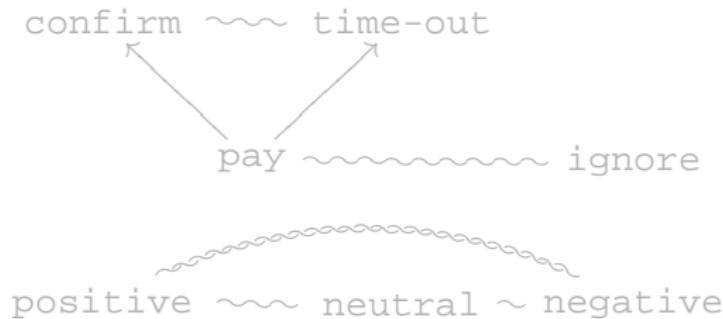
Events as model of information

- A protocol can be specified as a **concurrent process**, at different levels of abstractions.
- Event structures were invented to give formal semantics to truly concurrent processes, expressing "**causation**" and "**conflict**".

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence of outcomes $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

eBay (simplified) example:

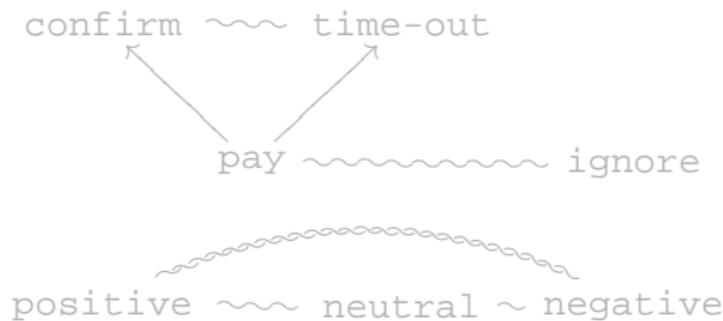


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence of outcomes $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

eBay (simplified) example:

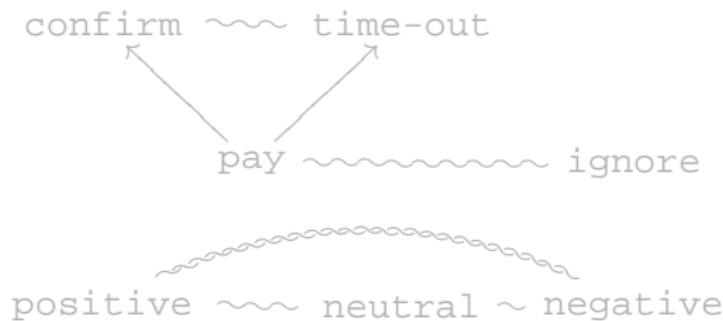


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence of outcomes $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

eBay (simplified) example:

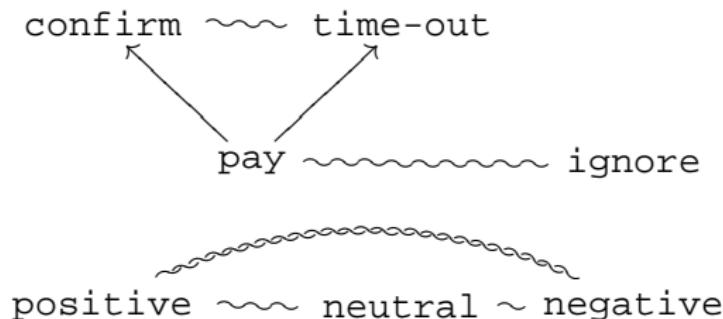


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence of outcomes $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

eBay (simplified) example:

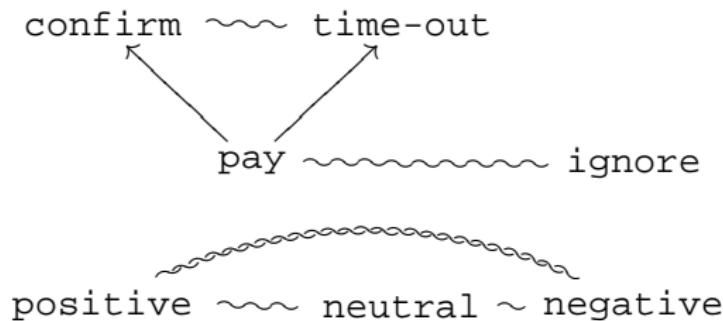


e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A model for behavioural information

- $ES = (E, \leq, \#)$, with E a set of events, \leq and $\#$ relations on E .
- Information about a session is a finite set of events $x \subseteq E$, called a **configuration** (which is ‘conflict-free’ and ‘causally-closed’).
- Information about several interactions is a sequence of outcomes $h = x_1 x_2 \cdots x_n \in \mathcal{C}_{ES}^*$, called a **history**.

eBay (simplified) example:



e.g., $h = \{\text{pay, confirm, pos}\} \{\text{pay, confirm, neu}\} \{\text{pay}\}$

A bit of magic: the Dirichlet probability distribution

The Dirichlet family $\mathcal{D}(\Theta | \alpha) \propto \prod \Theta_1^{\alpha_1-1} \dots \Theta_K^{\alpha_K-1}$

Theorem

The Dirichlet family is a *conjugate prior* for multinomial trials. That is, if

- $\text{Prob}[\Theta | \lambda]$ is $\mathcal{D}(\Theta | \alpha_1, \dots, \alpha_K)$ and
- $\text{Prob}[X | \Theta \lambda]$ follows the law of multinomial trials $\Theta_1^{n_1} \dots \Theta_K^{n_K}$,

then $\text{Prob}[\Theta | X \lambda]$ is $\mathcal{D}(\Theta | \alpha_1 + n_1, \dots, \alpha_K + n_K)$ according to Bayes.

A bit of magic: the Dirichlet probability distribution

The Dirichlet family $\mathcal{D}(\Theta | \alpha) \propto \prod \Theta_1^{\alpha_1-1} \dots \Theta_K^{\alpha_K-1}$

Theorem

The Dirichlet family is a *conjugate prior* for *multinomial trials*. That is, if

- $\text{Prob}[\Theta | \lambda]$ is $\mathcal{D}(\Theta | \alpha_1, \dots, \alpha_K)$ and
- $\text{Prob}[X | \Theta \lambda]$ follows the law of multinomial trials $\Theta_1^{n_1} \dots \Theta_K^{n_K}$,

then $\text{Prob}[\Theta | X \lambda]$ is $\mathcal{D}(\Theta | \alpha_1 + n_1, \dots, \alpha_K + n_K)$ according to Bayes.

Interpretation of results

As a result, we can lift the trust computational algorithms based on λ_β to our event-base models by replacing

Binomials (Bernoulli) trials
 β -distribution

↔

multinomial trials;
Dirichlet distribution.

