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Conclusion

Without formal models, there is no dealing with non-trivial notions.
I True in all realms of human activity: complex artifacts require

blueprints of all sorts;

I Yet, mysteriously some believe one could design, build, maintain,
service, upgrade, evolve, . . . systems of the complexity of
ecologies just by implementing the right support.

But to build a house is not sufficient to design good bricks . . .

Without practice, there is no useful formal method.
I models conceived in abstract are not abstract models, just

cathedrals in the desert.

Without new tools, there is no realistic formal model of adaptation.
I this is a hard concept, that includes research areas big per se that

we cannot handle (eg complex systems, emergent behaviour, . . . )
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OK for models, but why formal?

Formal models cover the entire spectrum of development:
I specification, validation, implementation, verification, . . .

Emerging behaviour typical of adaptation needs statements of
‘fitness for purpose’:

I need languages to specify those and techniques to verify them

Critical applications need certification of key properties:
I safety guarantees, performance standards, quality indicators, . . .
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OK that, and what’s so unique about adaptation?

work with changing and unpredictable environments;

work with lack of relevant information;

work with tight resource constraints;

work with internal hypothesis built from observations;

work by making hypothesis and testing them against observations
of the world;

and, most importantly,

goal-orientation, autonomy, re- and pro-activeness.
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OK that, but what tools for adaptation?

processes 7→ agents ??

goal-oriented

autonomous

reactive

proactive

Reject intelligence-based and bio-inspired approaches per se.
Accept when backed by solid mathematical tools, like eg:
data mining, learning, evolutionary and genetic algorithms, Bayesian
learning, . . .

Existing approaches: game theory and mechanism design; negotiation
(because often the environment is just others like you); evolutionary,
probabilistic.

NEXT: A typical example of adaptation of the simplest form.
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Simple Adaptation via Bayesian Learning

The model λθ:

Each principal p behaves in each interaction according to a fixed
and independent probability θp of ‘success’ (and therefore 1− θp

of ‘failure’).

The framework:
Interface (Trust computation algorithm, A):

I Input: A sequence h = x1x2 · · · xn for n ≥ 0 and xi ∈ {s, f}.
I Output: A probability distribution π : {s, f} → [0, 1].

Goal:
I Output π approximates (θp, 1− θp) as well as possible, under the

hypothesis that input h is the outcome of interactions with p.
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Maximum likelihood (Despotovic and Aberer)

Trust computation A0

A0(s | h) =
Ns(h)

|h|
A0(f | h) =

Nf(h)

|h|

Nx(h) = “number of x ’s in h”

Bayesian analysis inspired by λβ model: f (θ | α β) ∝ θα−1(1− θ)β−1

Properties:

Well defined semantics: A0(s | h) is interpreted as a probability of
success in the next interaction.
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Beta models (Mui et al)

Even more tightly inspired by Bayesian analysis and by λβ

Trust computation A1

A1(s | h) =
Ns(h) + 1
|h|+ 2

A1(f | h) =
Nf(h) + 1
|h|+ 2

Nx(h) = “number of x ’s in h”

Properties:

Well defined semantics: A1(s | h) is interpreted as a probability of
success in the next interaction.
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Cross entropy
An information-theoretic “distance” on distributions

Cross entropy of distributions p, q : {o1, . . . , om} → [0, 1].

D(p || q) =
m∑

i=1

p(oi) · log
(
p(oi)/q(oi)

)

It holds 0 ≤ D(p || q) ≤ ∞, and D(p || q) = 0 iff p = q.

Established measure in statistics for comparing distributions.

Information-theoretic: the average amount of information
discriminating p from q.
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Expected cross entropy
A measure on probabilistic trust algorithms

Goal of a probabilistic trust algorithm A: given a history X,
approximate a distribution on the outcomes O = {o1, . . . , om}.

Different histories X result in different output distributions A(· | X).

Expected cross entropy from λ to A

EDn(λ || A) =
∑

X∈On

Prob(X | λ) · D(Prob(· | X λ) || A(· | X))
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An application of cross entropy (1/2)

Consider the beta model λβ and the algorithms A0 of maximum
likelihood (Despotovic et al.) and A1 beta (Mui et al.).

Theorem
If θ = 0 or θ = 1 then A0 computes the exact distribution, whereas A1

does not. That is, for all n > 0 we have:

EDn(λβ || A0) = 0 < EDn(λβ || A1)

If 0 < θ < 1, then EDn(λβ || A0) = ∞, and A1 is always better.
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An application of cross entropy (2/2)

A parametric algorithm Aε

Aε(s | h) =
Ns(h) + ε

|h|+ 2ε
, Aε(f | h) =

Nf(h) + ε

|h|+ 2ε

Theorem
For any θ ∈ [0, 1], θ 6= 1/2 there exists ε̄ ∈ [0,∞) that minimises
EDn(λβ || Aε), simultaneously for all n.
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|h|+ 2ε

Theorem
For any θ ∈ [0, 1], θ 6= 1/2 there exists ε̄ ∈ [0,∞) that minimises
EDn(λβ || Aε), simultaneously for all n.

That is, unless behaviour is completely unbiased, there exists a unique
best Aε algorithm that for all n outperforms all the others.
If θ = 1/2, the larger the ε, the better.
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Aε(s | h) =
Ns(h) + ε

|h|+ 2ε
, Aε(f | h) =

Nf(h) + ε

|h|+ 2ε

Theorem
For any θ ∈ [0, 1], θ 6= 1/2 there exists ε̄ ∈ [0,∞) that minimises
EDn(λβ || Aε), simultaneously for all n.

Algorithm A0 is optimal for θ = 0 and for θ = 1.

Algorithm A1 is optimal for θ = 1
2 ±

1√
12

.
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A trust model based on event structures
Move from O = {s, f} to complex outcomes

Interactions and protocols
At an abstract level, entities in a distributed system interact
according to protocols;

Information about an external entity is just information about (the
outcome of) a number of (past) protocol runs with that entity.

Events as model of information
A protocol can be specified as a concurrent process, at different
levels of abstractions.

Event structures were invented to give formal semantics to truely
concurrent processes, expressing “causation” and “conflict.”
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A model for behavioural information
ES = (E ,≤,#), with E a set of events, ≤ and # relations on E .

Information about a session is a finite set of events x ⊆ E , called a
configuration (which is ‘conflict-free’ and ‘causally-closed’).

Information about several interactions is a sequence of outcomes
h = x1x2 · · · xn ∈ C∗ES, called a history.

eBay (simplified) example:

confirm /o/o/o time-out

pay /o/o/o/o/o/o/o/o/o

``AAAAAAAA

>>}}}}}}}}
ignore

positive
6v 5u 5u 4t 4t 3s 2r 2r 1q 1q 0p 0p /o .n .n -m -m ,l ,l +k *j *j )i )i (h

/o/o/o neutral /o negative

e.g., h = {pay , confirm , pos } {pay , confirm , neu} {pay }
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A bit of magic: the Dirichlet probability distribution

The Dirichlet family D(Θ | α) ∝
∏

Θα1−1
1 · · ·ΘαK−1

K

Theorem
The Dirichlet family is a conjugate prior for multinomial trials. That is, if

Prob[Θ | λ] is D(Θ | α1, ..., αK ) and

Prob[X | Θλ] follows the law of multinomial trials Θn1
1 · · ·ΘnK

K ,

then Prob[Θ | X λ] is D(Θ | α1 + n1, ..., αK + nK ) according to Bayes.
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Interpretation of results
As a result, we can lift the trust computational algorithms based on λβ

to our event-base models by replacing

Binomials (Bernoulli) trials 7→ multinomial trials;

β-distribution 7→ Dirichlet distribution.
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