

Inference of Probability Distributions for Trust and Security applications

Vladimiro Sassone
Based on joint work with
Mogens Nielsen & Catuscia Palamidessi

Motivations

- Motivations
- Bayesian vs Frequentist approach

- Motivations
- Bayesian vs Frequentist approach
- A class of functions to estimate the distribution

- Motivations
- Bayesian vs Frequentist approach
- A class of functions to estimate the distribution
- Measuring the precision of an estimation function

Motivations

- Inferring the probability distribution of a random variable
- Examples of applications in Trust & Security
 - How much we can trust an individual or a set of individuals
 - Input distribution in a noisy channel to compute the Bayes risk
 - Application of the Bayesian approach to hypothesis testing (anonymity, information flow)
 - ...

Setting and assumptions

- For simplicity we consider only binary random variables
 - honest/dishonest, secure/insecure, ...
- Goal: infer (an approximation of) the probability of success
- Means: Sequence of n trials.
 Observation (Evidence): s, f

$$X = \{succ, fail\}$$

$$Pr(succ) = \theta$$

$$s = \#succ$$

$$f = \#fail = n - s$$

Using the evidence to infer θ

• The Frequentist method:

$$F(n,s) = \frac{s}{n}$$

The Bayesian method:

Assume an *a priori* probability distribution for θ (representing your partial knowledge about θ , whatever the source may be) and combine it with the *evidence*, using Bayes' theorem, to obtain the *a posteriori* distribution

- Criticisms to the frequentist approach
 - <u>Limited applicability:</u> sometimes it is not possible to measure the frequencies (in this talk we consider the case in which this is possible)
 - Eg: what is the probability that my submitted paper will be accepted?
 - <u>Misleading evidence:</u> For small samples (small n) we can be unlucky, i.e. get unlikely results
 - This is less dramatic for the Bayesian approach because the a priori distribution reduces the effect of a misleading evidence, provided it is close enough to the real distribution

- Criticisms to the Bayesian approach
 - We need to assume an a priori probability distribution; as we usually do
 not know the real distribution, the assumption can be somehow
 arbitrary and differ significantly from reality
- Observe that the two approaches give the same result as *n* tends to infinity: the "true" distribution
 - Frequentist approach: because of the law of large numbers
 - Bayes approach: because the a priori "washes out" for large values of n.

The surprising thing is that the Frequentist approach can be worse than the Bayesian approach even when the trials give a "good" result, or when we consider the average difference (from the "true" θ) wrt all possible results

The surprising thing is that the Frequentist approach can be worse than the Bayesian approach even when the trials give a "good" result, or when we consider the average difference (from the "true" θ) wrt all possible results

$$F(n,s) = \frac{s}{n} = \begin{cases} 0 & s = 0\\ 1 & s = 1 \end{cases}$$

The difference from the true distribution is 1/2

A better function would be

$$F_c(n,s) = \frac{s+1}{n+2} = \begin{cases} \frac{1}{3} & s=0\\ \frac{2}{3} & s=1 \end{cases}$$

The difference from the true distribution is 1/6

The surprising thing is that the Frequentist approach can be worse than the Bayesian approach even when the trials give a "good" result, or when we consider the average difference (from the "true" θ) wrt all possible results

The surprising thing is that the Frequentist approach can be worse than the Bayesian approach even when the trials give a "good" result, or when we consider the average difference (from the "true" θ) w.r.t. all possible results

$$F(n,s) = \frac{s}{n} = \begin{cases} 0 & s = 0\\ \frac{1}{2} & s = 1\\ 1 & s = 2 \end{cases}$$

The average distance from the true distribution is 1/4

Again, a better function would be

r function would be
$$F_c(n,s) = \frac{s+1}{n+2} = \begin{cases} \frac{1}{4} & s=0\\ \frac{1}{2} & s=1\\ \frac{3}{4} & s=2 \end{cases}$$

The average distance from the true distribution is 1/8

• We will see that $F_c(s,n) = (s+1)/(n+2)$ corresponds to one of the possible Bayesian approaches.

- We will see that $F_c(s,n) = (s+1)/(n+2)$ corresponds to one of the possible Bayesian approaches.
- Of course, if the "true" θ is different from 1/2 then F_c can be worse than F

- We will see that $F_c(s,n) = (s+1)/(n+2)$ corresponds to one of the possible Bayesian approaches.
- Of course, if the "true" θ is different from 1/2 then F_c can be worse than F
- And, of course, the problem is that we don't know what θ is (the value θ is exactly what we are trying to find out!).

- We will see that $F_c(s,n) = (s+1)/(n+2)$ corresponds to one of the possible Bayesian approaches.
- Of course, if the "true" θ is different from 1/2 then F_c can be worse than F
- And, of course, the problem is that we don't know what θ is (the value θ is exactly what we are trying to find out!).
- However, F_c is still better than F if we consider the average distance wrt all possible $\theta \in [0,1]$, assuming that they are all equally likely (i.e. that θ has a uniform distribution)

- We will see that $F_c(s,n) = (s+1)/(n+2)$ corresponds to one of the possible Bayesian approaches.
- Of course, if the "true" θ is different from 1/2 then F_c can be worse than F
- And, of course, the problem is that we don't know what θ is (the value θ is exactly what we are trying to find out!).
- However, F_c is still better than F if we consider the average distance wrt all possible $\theta \in [0,1]$, assuming that they are all equally likely (i.e. that θ has a uniform distribution)
- In fact we can prove that, under a suitable notion of "difference", and for θ uniformly distributed, F_c is the best function of the kind G(s,n) = (s+t)/(n+m)

A Bayesian approach

• **Assumption**: θ is the generic value of a continuous random variable Θ whose probability density is a <u>Beta distribution</u> with (unknown) parameters σ , φ

$$B(\sigma, \varphi)(\theta) = \frac{\Gamma(\sigma + \varphi)}{\Gamma(\sigma)\Gamma(\varphi)} \ \theta^{\sigma - 1} (1 - \theta)^{\varphi - 1}$$

where Γ is the extension of the factorial function i.e. $\Gamma(n) = (n-1)!$ for n natural number

- Note that the uniform distribution is a particular case of Beta distribution, with $\sigma=1,\ \varphi=1$
- B(σ , φ) can be seen as the a posteriori probability density of Θ given by a uniform a priori (principle of maximum entropy) and a trial sequence resulting in σ -1 successes and φ -1 failures.

Examples of Beta Distribution

Examples of Beta Distribution

$$\sigma = \varphi = 1 ... 6$$

Examples of Beta Distribution

$$\sigma = \varphi = 1 ... 6$$

$$\sigma = 1 ... 6 \quad \varphi = 2 \sigma$$

Other examples of Beta Distribution

Assume an *a priori* probability distribution for Θ (representing our partial knowledge about Θ, whatever the source may be) and combine it with the evidence, using Bayes' theorem, to obtain the a posteriori probability distribution

$$Pd(\theta \,|\, s) = \frac{Pr(s \,|\, \theta) \,\, Pd(\theta)}{Pr(s)}$$
 a posteriori evidence

One possible definition for the estimation function (algorithm) is the mean of the a posteriori distribution

$$A(n,s) = E_{Pd(\theta|s)}(\Theta) = \int_0^1 \theta \ Pd(\theta|s) \ d\theta$$

- Since the distribution of Θ is assumed to be a beta distribution $B(\sigma, \varphi)$, it is natural to take as a priori a function of the same class, i.e. $B(\alpha, \beta)$.
 - In general we don't know the "real parameters" σ , φ , hence α , β may be different from σ , φ
- The likelihood $Pr(s \mid \theta)$ is a binomial, i.e.

$$Pr(s \mid \theta) = \begin{pmatrix} s+f \\ s \end{pmatrix} \theta^s (1-\theta)^f$$

• The Beta distribution is a conjugate of the binomial, which means that the application of Bayes theorem gives as a posteriori a function of the same class, and more precisely

$$Pd(\theta \mid s) = B(\alpha + s, \beta + f)$$

- Summarizing, we are considering three probability density functions for Θ :
 - $B(\sigma, \varphi)$: the "real" distribution of Θ
 - $B(\alpha, \beta)$: the *a priori* (the distribution of Θ up to our best knowledge)
 - $B(s + \alpha, f + \beta)$: the a posteriori

• The result of the mean-based algorithm is:

$$A_{\alpha,\beta}(n,s) = E_{B(s+\alpha,f+\beta)}(\Theta) = \frac{s+\alpha}{s+f+\alpha+\beta} = \frac{s+\alpha}{n+\alpha+\beta}$$

- The frequentist method can be seen as the limit of the Bayesian mean-based algorithms, for α , $\beta \rightarrow 0$
- Intuitively, the Bayesian meanbased algorithms give the best result for $\alpha / (\alpha + \beta) = \theta$ and $\alpha, \beta \rightarrow \infty$
- How can we compare two Bayesian algorithms in general, i.e. independently of θ ?

Measuring the precision of Bayesian algorithms

- Define a "difference" $D(A(n,s), \theta)$ (possibly a distance, but not necessarily. It does not need to be symmetric)
 - non-negative
 - zero iff $A(n,s) = \theta$
 - what else?
- Consider the expected value $D_{E}(A,n,\theta)$ of $D(A(n,s),\theta)$ with respect to the likelihood (the conditional probability of s given θ)

$$D_E(A, n, \theta) = \sum_{s=0}^{n} Pr(s \mid \theta) D(A(n, s), \theta)$$

Risk of A: the expected value R(A,n) of $D_E(A,n,\theta)$ with respect to the "true" distribution of Θ

$$R(A,n) = \int_0^1 Pd(\theta) D_E(A,n,\theta) d\theta$$

Measuring the precision of Bayesian Algorithms

• Note that the definition of "Risk of A" is general, i.e. it is a natural definition for any estimation algorithm (not necessarily Bayesian or mean-based)

- What other conditions should D satisfy?
- It seems natural to require that D be such that R(A,n) has a minimum (for all n's) when the a priori distribution coincides with the "true" distribution
- It is not obvious that such D exists

Measuring the precision of Bayesian Algorithms

We have considered the following candidates for D(x,y) (all of which can be extended to the n-ary case):

- The norms:
 - |x y|
 - $|x y|^2$
 - •
 - $|x y|^k$
 - ...
- The Kullback-Leibler divergence

$$D_{KL}((y, 1-y) \parallel (x, 1-x)) = y \log_2 \frac{y}{x} + (1-y) \log_2 \frac{1-y}{1-x}$$

Measuring the precision of Bayesian algorithms

- **Theorem.** For the mean-based Bayesian algorithms, with a priori $B(\alpha, \beta)$, we have that the condition is satisfied (i.e. the Risk is minimum when α, β coincide with the parameters σ, φ of the "true" distribution), by the following functions:
 - The 2nd norm $(x y)^2$
 - The Kullback-Leibler divergence
- We find it very surprising that the condition is satisfied by these two very different functions, and not by any of the other norms $|x y|^k$ for $k \ne 2$

$$R(A_{\alpha,\beta}, 5)$$

$$n = 5$$

For the Kullback-Leibler divergence the plots are similar, but much more steep, and they diverge for $\alpha \to 0$ or $\beta \to 0$

Work in progress

- Note that for the 2nd norm $D(x,y) = (x-y)^2$ the average D_E is a distance. This contrasts with the case of $D(x,y) = D_{KL}(y||x)$ and makes the first more appealing.
- How robust is the theorem that "certifies" that the 2nd-norm-based D_E is a "good" distance? In particular:
 - Does it extend to the case of multi-valued random variables?
 - Note that in the multi-valued case the likelihood is a multinomial, the conjugate a priori is a Dirichelet and the D is the Euclidian distance (squared)
- What are the possible applications?

Possible applications (work in progress)

- We can use D_E to compare two different estimation algorithms.
 - ullet Mean-based vs other ways of selecting a heta
 - Bayesian vs non-Bayesian
 - In more complicated scenarios there may be different Bayesian meanbased algorithms. Example: noisy channel.
- D_E induces a metric on distributions. Bayes' equations define transformations on this metric space from the a priori to the a posteriori. We intend to study the properties of such transformations in the hope that they will reveal interesting properties of the corresponding Bayesian methods, independent of the a priori.