Inference of Probability
Distributions for Trust and
Security applications




~ Inference of Probability Distributions for trust and security

Motivations

® |nferring the probability distribution of a random
variable

® Examples of applications in trust & security

® How much we can trust an individual or a set of individuals
Input distribution in a noisy channel to compute the Bayes risk

Application of the Bayesian approach to hypothesis testing (anonymity,
information flow)




Inference of Probability Distributions for trust and security _ ';'7

Setting and assumptions

® For simplicity we consider only
binary random variables

® honest/dishonest, secure/insecure, ...

® Goal:infer (an approximation of)
the probability of success

® Means: Sequence of n trials.
Observation (Evidence) : s, f

-

X = {succ, fail}

Pr(succ) =6

S = #£succ
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Using the evidence to infer 6

The Frequentist method:

-

F(n,s) =

S
mn

® The Bayesian method:

-

N\

Assume an a priori probability distribution for 6 (representing your partial
knowledge about 6, whatever the source may be) and combine it with the
evidence, using Bayes’ theorem, to obtain the a posteriori distribution
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Bayesian vs Frequentist

The surprising thing is that the Frequentist approach can be worse than the
Bayesian approach even when the trials give a “good” result, or when we
consider the average difference (from the “true” 6) wrt all possible results

Example:“true 6” =1/2, n = 1

-

\_

s=20
s =1

ﬂm@:f:{?

n

The difference from the true distribution is 1/2
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Bayesian vs Frequentist

The surprising thing is that the Frequentist approach can be worse than the
Bayesian approach even when the trials give a “good” result, or when we
consider the average difference (from the “true” 6) wrt all possible results
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Example:“true 6” =1/2, n = 1
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S 0 s=40
F(”’S)_ﬁ_{ 1 s=1

The difference from the true distribution is 1/2

-

A better function would be
1
s+ 1 B 3

F.(n,s) = o

2
3

The difference from the true distribution is 1/6

\_
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Bayesian vs Frequentist

The surprising thing is that the Frequentist approach can be worse than the
Bayesian approach even when the trials give a “good” result, or when we
consider the average difference (from the “true” 6) wrt all possible results

Example: “true 6” = 1/2, n = 2
4

s =0

S

— = 4 s=1
" L § =2
The average difference from the true distribution is 1/4

%

F(n,s) =

\_




Inference of Probability Distributions for trust and security

R R RN RERRERDEDRDRDD—SS—————

Bayesian vs Frequentist

The surprising thing is that the Frequentist approach can be worse than the
Bayesian approach even when the trials give a “good” result, or when we
consider the average difference (from the “true” 6) w.r.t. all possible results

Example: “true 6” = 1/2, n = 2

F(n,s):£:< s=1

n 1 s=2

\
The average distance from the true distribution is 1/4

4 0 s=0
1
2

\_

-

Again, a better function would be i

| 2

3
\ 4

s+ 1 B

Fe(n, ) n + 2
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A Bayesian approach

Assumption: 0 is the generic value of a continuous random variable ©
whose probability density is a Beta distribution with (unknown) parameters
g, ¢

4 )

B(o,9)(0) = migrisy 67 (1 - 6)¢!

where I' is the extension of the factorial function

i,e. I'(n)=(n-—1)! for n natural number
N y

Note that the uniform distribution is a particular case of Beta distribution,
with 0=1, ¢=1

B(0, ¢) can be seen as the a posteriori probability density of © given by a
uniform a priori (principle of maximum entropy) and a trial sequence
resulting in 0 -1 successes and ¢ -1 failures.



; ~ Inference of Probability Distributions for trust and security

The Bayesian Approach

® Following the approach, we have three probability density functions for ©:
® B(o,9) : the“real” distribution of ©®
e PB(a,B) : thea priori (the distribution of ® at the best of our knowledge)

® PB(s+a,f+5) : the aposteriori (the distribution of ® after the trials

® The result of the mean-based algorithm is :

S+ « S &= (€Y
s+f+a+B8 n+a+g

Aa,ﬁ(na S) == EB(S-I-Oé,f-I—ﬁ)(@) —
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Measuring the precision of Bayesian algorithms
® Define a “difference” D(A(n,s), @) (not necessarily a distance)

® non-negative

® zeroiff A(ns) =0

® what else?

® Consider the expected value D:(A,n, @) of D(A(n,s), @ ) with respect to the
likelihood (the conditional probability of s given 0)

ZPrsw D(A(n,s),0)

® Risk of A : the expected value R(A,n) of D:(A,n, 0') with respect to the “true”

/ " Pd(6) Dp(A,n.6) do
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Measuring the precision of Bayesian Algorithms

We have considered the following candidates for D(x,y) (all of which can be
extended to the n-ary case):

® The norms:
® |x-y

Ix - yl?

Ix -yl

® The Kullback-Leibler divergence

Dict((y,1 =) || (2,1 —)) =y logy Z +(
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Measuring the precision of Bayesian algorithms

Theorem. For the mean-based Bayesian algorithms, with a priori B( &, 3), we
have that the condition is satisfied (i.e. the Risk is minimum when &, 5
coincide with the parameters 0, ¢ of the “true” distribution), by the
following functions:

® The 2nd norm (x - y)?
® The Kullback-Leibler divergence

® We find it very surprising that the condition is satisfied by these two very
different functions, and not by any of the other norms |x - y|* for k+# 2




Possible applications (work in progress)

® We can use De to compare two different estimation algorithms; develop a
measure of quality for “decision-making” algorithms

® Mean-based vs other ways of selectinga 0

Bayesian vs non-Bayesian

In more complicated scenarios there may be different Bayesian mean-
based algorithms. Example: noisy channel.

De induces a metric on distributions. Bayes’ equations define
transformations on this metric space from the a priori to the a posteriori.
We intend to study the properties of such transformations in the hope that
they will reveal interesting properties of the corresponding Bayesian
methods, independent of the a priori.




Possible applications (work in progress)

® Hypothesis testing (Privacy, Anonimity, Confidentiality, Information Flow
Analysis, Input Distribution Analysis, ...) :

® determine (probabilistic) bounds as to what probability-distribution
inference algorithm may determine about you, your online activity, your
software




