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Inference of Probability Distributions for trust and security

Motivations

• Inferring the probability distribution of a random 
variable 

• Examples of applications in trust & security

• How much we can trust an individual or a set of individuals

• Input distribution in a noisy channel to compute the Bayes risk

• Application of the Bayesian approach to hypothesis testing (anonymity, 
information flow)

• ...
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Inference of Probability Distributions for trust and security

Setting and assumptions
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• For simplicity we consider only 
binary random variables  

• honest/dishonest,  secure/insecure,  ... 

• Goal: infer (an approximation of) 
the probability of success 

• Means:  Sequence of n trials. 
Observation (Evidence) :  s , f

X = {succ, fail}

f = #fail = n− s
s = #succ

Pr(succ) = θ
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Using the evidence to infer θ

• The Frequentist method: 
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• The Bayesian method: 

Assume an a priori probability distribution for  θ (representing your partial 
knowledge about θ, whatever the source may be) and combine it with the 
evidence, using Bayes’ theorem, to obtain the a posteriori distribution

F (n, s) =
s

n
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Bayesian vs Frequentist
The surprising thing is that the Frequentist approach can be worse than the 
Bayesian approach even when the trials give a “good” result, or when we 
consider the average difference (from the “true” θ) wrt all possible results
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Example: “true θ” = 1/2, n = 1

1/2
θ

s10

1/2

1

Pr(s)

The difference from the true distribution is 1/2

F (n, s) =
s

n
=

�
0 s = 0
1 s = 1



Inference of Probability Distributions for trust and security

Bayesian vs Frequentist
The surprising thing is that the Frequentist approach can be worse than the 
Bayesian approach even when the trials give a “good” result, or when we 
consider the average difference (from the “true” θ) wrt all possible results
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Example: “true θ” = 1/2, n = 1

1/2
θ

s10

1/2

1

Pr(s)

The difference from the true distribution is 1/2

F (n, s) =
s

n
=

�
0 s = 0
1 s = 1

1/3 2/3

A better function would be

The difference from the true distribution is 1/6

Fc(n, s) =
s + 1
n + 2

=






1
3 s = 0

2
3 s = 1
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Bayesian vs Frequentist
The surprising thing is that the Frequentist approach can be worse than the 
Bayesian approach even when the trials give a “good” result, or when we 
consider the average difference (from the “true” θ) wrt all possible results
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Example: “true θ” = 1/2, n = 2

1/2
θ

s10

1/4

1

Pr(s)

1/2

The average difference from the true distribution is 1/4

F (n, s) =
s

n
=






0 s = 0
1
2 s = 1
1 s = 2
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Bayesian vs Frequentist
The surprising thing is that the Frequentist approach can be worse than the 
Bayesian approach even when the trials give a “good” result, or when we 
consider the average difference (from the “true” θ) w.r.t. all possible results
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Example: “true θ” = 1/2, n = 2

1/2
θ

s10

1/4

1

Pr(s)

1/2

The average distance from the true distribution is 1/4

F (n, s) =
s

n
=






0 s = 0
1
2 s = 1
1 s = 2

1/4 3/4

Again, a better function would be

The average distance from the true distribution is 1/8

Fc(n, s) =
s + 1
n + 2

=






1
4 s = 0

1
2 s = 1

3
4 s = 2
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A Bayesian approach

• Assumption:  θ is the generic value of a continuous random variable Θ 
whose probability density is a Beta distribution with (unknown) parameters 
σ, φ

• Note that the uniform distribution is a particular case of Beta distribution, 
with σ=	
 1, φ=	
 1

• B(σ, φ)	
 can be seen as the a posteriori probability density of Θ	 given by a 
uniform a priori (principle of maximum entropy) and a trial sequence 
resulting inσ-1  successes andφ-1 failures.
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B(σ,ϕ)(θ) = Γ(σ+ϕ)
Γ(σ)Γ(ϕ) θσ−1(1− θ)ϕ−1

where Γ is the extension of the factorial function
i.e. Γ(n) = (n− 1)! for n natural number
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The Bayesian Approach

• Following the approach, we have three probability density functions for Θ:

• B(σ,φ)   :  the “real” distribution of Θ

• B(α,β)   :  the a priori (the distribution of Θ	
 at the best of our knowledge)

• B(s +α, f +β)   :  the a posteriori (the distribution of Θ	
 after the trials

• The result of the mean-based algorithm is : 
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Aα,β(n, s) = EB(s+α,f+β)(Θ) =
s + α

s + f + α + β
=

s + α

n + α + β
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Measuring the precision of Bayesian algorithms

• Define a “difference’’ D(A(n,s),θ) (not necessarily a distance)

• non-negative

• zero iff  A(n,s) =θ

• what else?

• Consider the expected value DE(A,n,θ) of D(A(n,s),θ) with respect to the 
likelihood (the conditional probability of s given θ)

• Risk of A : the expected value R(A,n) of DE(A,n,θ) with respect to the “true” 
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DE(A,n, θ) =
n�

s=0

Pr(s | θ) D(A(n, s), θ)

R(A,n) =
� 1

0
Pd(θ) DE(A,n, θ) dθ
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Measuring the precision of Bayesian Algorithms

We have considered the following candidates for D(x,y) (all of which can be 
extended to the n-ary case): 

• The norms:  

• |x - y|

• |x - y|2

• ...

• |x - y|k

• ...

• The Kullback-Leibler divergence
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DKL((y, 1− y) � (x, 1− x)) = y log2
y

x
+ (1− y) log2

1− y

1− x
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Measuring the precision of Bayesian algorithms

• Theorem. For the mean-based Bayesian algorithms, with a priori B(α,β), we 
have that the condition is satisfied (i.e. the Risk is minimum when α,β 
coincide with the parameters σ, φ	
 of the “true” distribution), by the 
following functions: 

• The 2nd norm (x - y)2  

• The Kullback-Leibler divergence 

• We find it very surprising that the condition is satisfied by these two very 
different functions, and not by any of the other norms  |x - y|k  for k≠2
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Possible applications (work in progress)

• We can use DE to compare two different estimation algorithms; develop a 
measure of quality for “decision-making” algorithms

• Mean-based vs other ways of selecting a θ

• Bayesian vs non-Bayesian

• In more complicated scenarios there may be different Bayesian mean-
based algorithms. Example:  noisy channel.

• DE induces a metric on distributions.  Bayes’ equations define 
transformations on this metric space from the a priori to the a posteriori. 
We intend to study the properties of such transformations in the hope that 
they will reveal interesting properties of the corresponding Bayesian 
methods,  independent of the a priori. 
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Possible applications (work in progress)

• Hypothesis testing (Privacy,  Anonimity, Confidentiality, Information Flow 
Analysis, Input Distribution Analysis, ...) : 

• determine (probabilistic) bounds as to what probability-distribution 
inference algorithm may determine about you, your online activity, your 
software
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