

Data provenance in a distributed calculus

Motivation

- ❖ (Meta)data is almost entirely neglected in the process calculi literature
- ❖ Track data provenance both for its important applications and as an challenging exercise in modelling (meta)data. We aim at simplicity:
 - ❖ data annotations representing provenance
 - ❖ structure, interpretation and management of provenance information
 - ❖ provenance tracking
- ❖ Provenance-based security (aspects: trust + data confidentiality and privacy)
 - ❖ Example: photography competition
- ❖ The overall ambition is to underpin practical development, like trust-policy languages and protocols, and provenance-middleware

Provenance model

Annotated data

$v : K$

Provenance model

Annotated data

Annotated value

Provenance model

Annotated data

Annotated value

$v : K$

Value

Actual data

Provenance model

Annotated data

Annotated value

Value

Actual data

Provenance

Meta information
describing the origin
of the value

Provenance model

Structure and interpretation of provenance

$$v : \varepsilon ; a!K_1 ; b?K_2 ; b!(\varepsilon ; c!K_3, b?K_4) ; \dots$$

Provenance model

Structure and interpretation of provenance

Value

Provenance

$$v : \varepsilon ; a!K_1 ; b?K_2 ; b!(\varepsilon ; c!K_3, b?K_4) ; \dots$$

Provenance model

Structure and interpretation of provenance

“Operations” that were performed on the value. They record the principals that “influenced” the value and how.

Provenance model

Structure and interpretation of provenance

ε (empty provenance)

denotes value v originated here

$v : \varepsilon$

Provenance model

Structure and interpretation of provenance

ε (empty provenance)

denotes value v originated here

$v : \varepsilon ; a!K_1$

It was sent by a on a
channel with
provenance K_1

Provenance model

Structure and interpretation of provenance

ε (empty provenance)

denotes value v originated here

$v : \varepsilon ; a!K_1 ; b?K_2$

It was sent by a on a
channel with
provenance κ_1

Was then received by b on a
channel with provenance κ_2

Provenance model

Structure and interpretation of provenance

ε (empty provenance)
denotes value v originated here

And then sent by b on a channel
that b received from c ...

$v : \varepsilon ; a!K_1 ; b?K_2 ; b!(\varepsilon ; c!K_3, b?K_4) ; \dots$

It was sent by a on a
channel with
provenance κ_1

Was then received by b on a
channel with provenance κ_2

Confidentiality in provenance systems

- ❖ Data may be public, yet its provenance confidential, or vice versa
- ❖ Principals who may access data are not necessarily the same as those who may access its provenance
- ❖ In general, fine grained access control over provenance “histories” is needed as different parts of it have different sensitivity

Security requirements of
data

\neq

Security requirements of its
provenance

Hiding provenance trees

Example: photography competition

c: Contestant
a: Administrator
j: Judge

Hiding provenance trees

Example: photography competition

c: Contestant
a: Administrator
j: Judge

Hiding provenance trees

Example: photography competition

c: Contestant
a: Administrator
j: Judge

Hiding provenance trees

Example: photography competition

Confidentiality in provenance systems

a promising approach

- ❖ One value, multiple **views**
- ❖ Different principals have different views of the same provenance list based on their privileges

$$entry : \varepsilon; c!K_s; a?K'_s; a!K'_r; j?K''_r; j!K''_n; a?K'_n; a!K'_m$$

Confidentiality in provenance systems

a promising approach

- ❖ One value, multiple **views**
- ❖ Different principals have different views of the same provenance list based on their privileges

entry : $\varepsilon; c!K_s; a?K'_s; a!K'_r; j?K''_r; j!K''_n; a?K'_n; a!K'_m$

a

Confidentiality in provenance systems

a promising approach

- ❖ One value, multiple **views**
- ❖ Different principals have different views of the same provenance list based on their privileges

$$entry : \varepsilon; c!K_s; a?K'_s; a!K'_r; j?K''_r; j!K''_n; a?K'_n; a!K'_m$$

Confidentiality in provenance systems

a promising approach

- ❖ One value, multiple **views**
- ❖ Different principals have different views of the same provenance list based on their privileges

entry : $\varepsilon; c!K_s; a?K'_s; a!K'_r; j?K''_r; j!K''_n; a?K'_n; a!K'_m$

j

Confidentiality in provenance systems

a promising approach

- ❖ One value, multiple **views**
- ❖ Different principals have different views of the same provenance list based on their privileges

entry : $\varepsilon; c!K_s; a?K'_s; a!K'_r; j?K''_r; j!K''_n; a?K'_n; a!K'_m$

