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A fatal exception BE has occurred at 8137:BFFA21CY. The current
application will be terminated.

» Press any key to terminate the current application.
» Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue _

upti.ef 5K+ days & running
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Fact: Bisimilarity is a congruence.
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A GSOS rule is of the form:

{xi, > yihi<icm  {xi, A <r<
f(X1,...,%X,) —> t

s.t.all X;,y, distinct and T has no other variables.

Thm: Bisimilarity on the induced LTS is a congruence.

A rule triggered by Aq,..., A, C A ifa;j € A, by & A,

A GSOS spec: a set of rules where for each f and ¢,
finitely many rules are triggered by each A4,..., A,.
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-

\_

This yields a CTMC for each label

~

J




Rated transition systems

Rated transition system:

h=(X,A,p) P X xAxX - RE

We write p(z — y) for p(z, a,v)

x —y forp(z,a,y) =r




Rated transition systems

Rated transition system:

h=(X,A,p) P X xAxX - RE

We write p(z — y) for p(z, a,v)

x ——y for p(z,a,y) =7

A stochastic bisimulation on h is an equiv. rel.on R
such that xRy implies p(x — [z]r) = p(y — [2]R).




Rated transition systems

Rated transition system:

h=(X,A,p) P X xAxX - RE

We write p(z — y) for p(z, a,v)

x ——y for p(z,a,y) =7

A stochastic bisimulation on h is an equiv. rel.on R
such that xRy implies p(x — [z]r) = p(y — [2]R).

An RTS is image finite if Vz,a. #{y | p(z — y) > 0} < w




Rated transition systems

Rated transition system:

h=(X,A,p) P X xAxX - RE

We write p(z — y) for p(z, a,v)

x ——y for p(z,a,y) =7

A stochastic bisimulation on h is an equiv. rel.on R
such that xRy implies p(x — [z]r) = p(y — [2]R).

An RTS is image finite if Vz,a. #{y | p(z — y) > 0} < w
In an i.f.RTS, apparent rates exist: r,(z) = p(z — X)
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Compositionality issues

When is stoch. bisim. a congruence on the RTS!?

Proved semantics:

7,
X-|-1 >y

£ (<) f+10 > 17

Problem: too much
information in the labels

(a,3).P + (a,4).P
VS.
>y (a,7).P

a,r
X—>Yy

f(X) a,max(r,5)
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The abstract approach

Transition systems are coalgebras

Distributive laws are formats for SOS

LTS

{(xi, 2>y hi<jem (X 2o <r<

f(X1,...,Xp) —> t

Prob. TS

- byluy] }
i
1<j<m

RTS

al bj
} . {X’ij > Yj} .
acD;,1<1<n 1<5<k

Xn) cQR £

[TP97]

[Bar04]

[this08]
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SGSOS rules

[apparent rate of @ in xi |
: — by
Ta(Zi) = Ta, | Tij — > Y |
a;cD;, 1<i<n bj ED,,jj , 1<7<k

f(xl,...’xn) > €

e D, C Aand W,r,; € RT

* all x;,y, ,; distinct and t has no other variables
* ally,; appear in t exactly if

SGSOS spec: set of rules subject to a size condition.
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How SGSOS rules induce RTSs

P=£(P,...,P,)

|. Choose a rule instance so that r, ; = r,(F;)

2. Pick any processes (),

IO(PZ L Qa,i)

3. Let Pa,i = . (P)

4Add W Ha,i Pa,i to ,O(P é t[Pi/Xw Qa’i/Ya,i])
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Theorem

Stochastic bisimilarity on the RTS induced
by an SGSOS specification is a congruence.

Proof: SGSOS is to RTSs what GSOS is to LTSs.
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Catalysts / Inhibitors

- a@’r’{>y

a@2r > cat, (y)

caty(x)

- b@fr{>y

M@Tb>cata(y)

caty(x)

Other things

Q@ Q
XlCL?"1{>y X2ar2{>

aQr4

x1!1x5 > yllx,

(fOI" r1 > 7“2)
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Associativity of parallel composition

aQrq aQrq
X1 >y1 X2 > Yo

2R sy | ye

CCS-style (e.g. Stoch-Pi)

x1 || %2

Thm: || associative iff R = ¢-r; - r, for ¢ constant.

bQrq bQrs
X1 >V1 X9

bQR
X1 I>L<] X9 > V1

CSP-style (e.g. PEPA)

Thm: D§ associative iff R associative:

R(R(T’l, 7"‘2), 7"‘3) — R(Tl, R(’/‘Q, 7“3))
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Conclusions

* A rule format for RTS specifications

* Stochastic bisimilarity guaranteed compositional

* Essential fragments of PEPA, StochPi covered

* Missing: recursive definitions, name passing in Pi




