

Structural Operational Semantics for Stochastic Systems

V. Sassone

(joint work with B. Klin, Cambridge)

What we do...

We deal in models....

What we do...

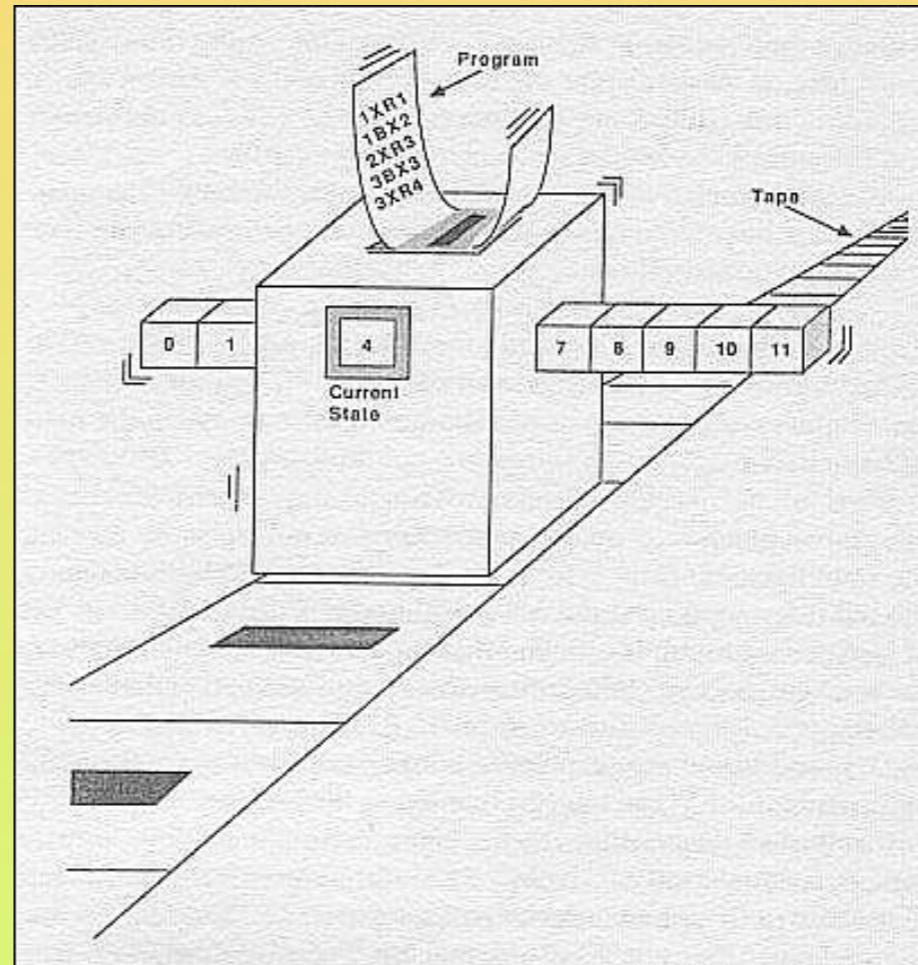
We deal in models....

Hmm, not this kind...

What we do...

We deal in models....

Hmm, not this kind...



Yeah, more like this kind...

Why we do it...

We want to engineer systems fit for purpose

Why we do it...

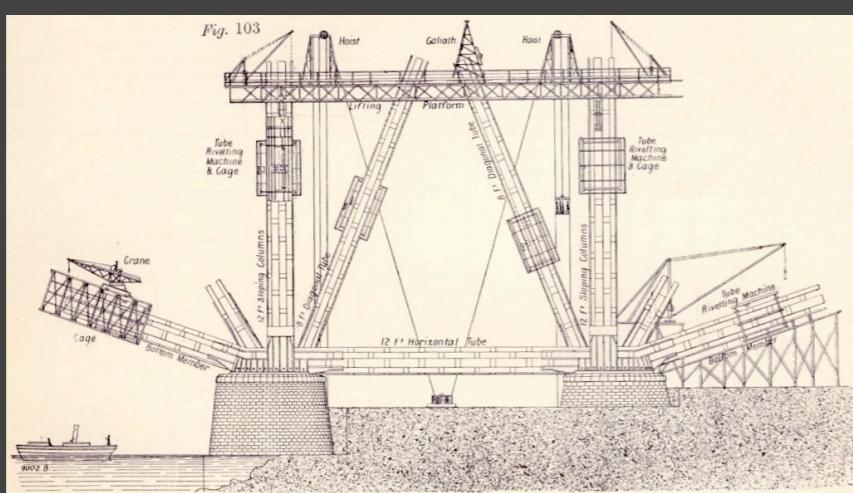
We want to engineer systems fit for purpose

Engineering

Why we do it...

We want to engineer systems fit for purpose

Engineering



Why we do it...

We want to engineer systems fit for purpose

Engineering

uptime: 45K+ days & running

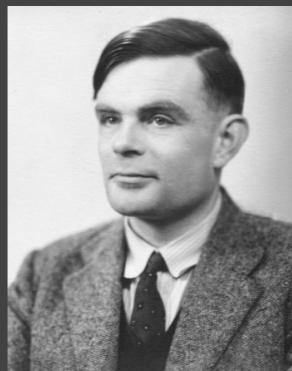
Why we do it...

We want to engineer systems fit for purpose

Engineering

uptime: 45K+ days & running

Computing



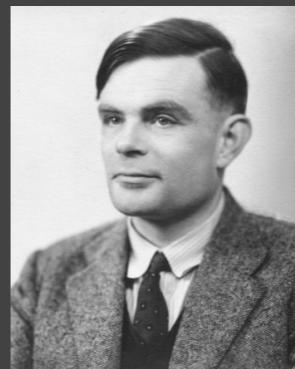
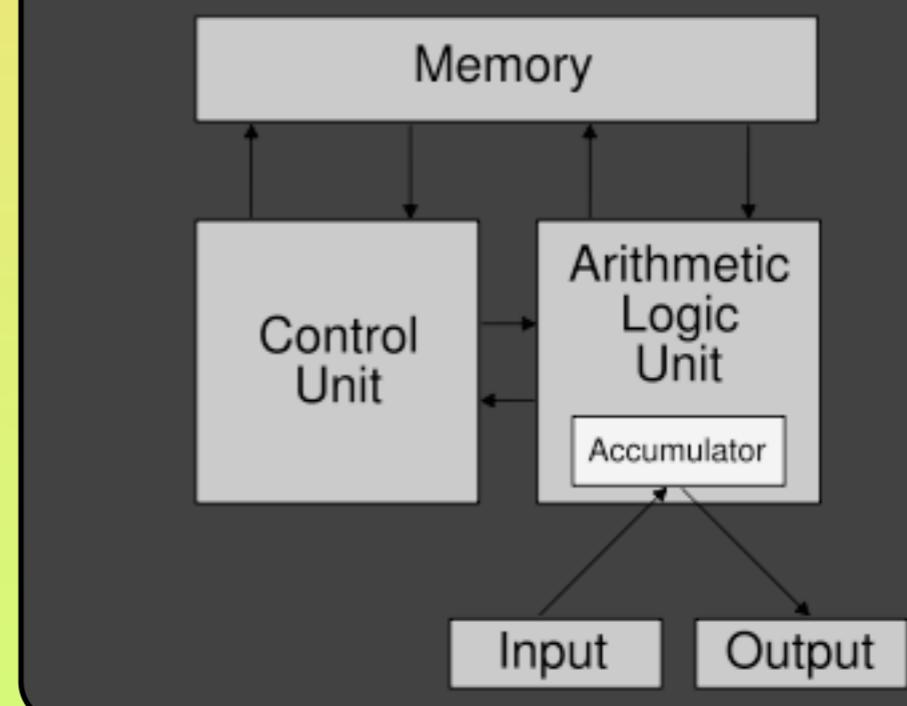
Why we do it...

We want to engineer systems fit for purpose

Engineering

uptime: 45K+ days & running

Computing



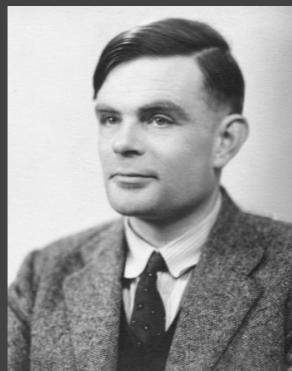
Why we do it...

We want to engineer systems fit for purpose

Engineering

uptime: 45K+ days & running

Computing



Windows

A fatal exception 0E has occurred at 0137:BFFA21C9. The current application will be terminated.

- * Press any key to terminate the current application.
- * Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue _

How we do it...

Don't just build model of specific systems:

we want laws, principles and methodologies;
in fact, engineering techniques and tools.

specify, design, program, transform, validate

we call these collectively Theory, or less ambitiously Software Science.

How we do it...

Don't just build model of specific systems:

we want laws, principles and methodologies;
in fact, engineering techniques and tools.

specify, design, program, transform, validate

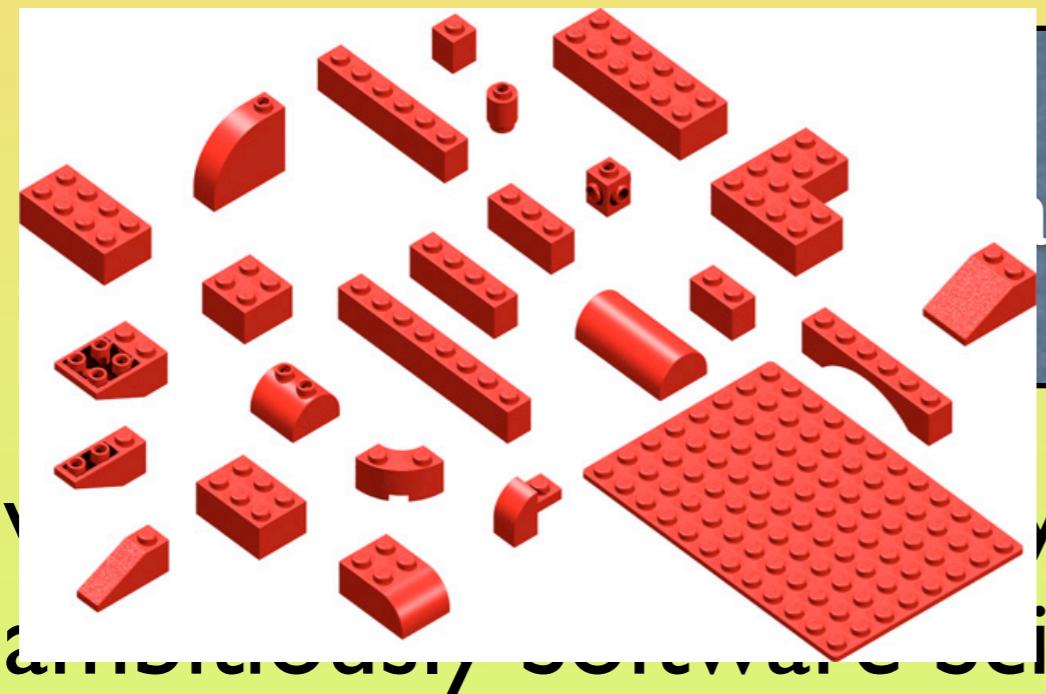
we call these collectively Theory, or less ambitiously Software Science.

overarching notion: compositionality

How we do it...

Don't just build model of specific systems:

we want laws, principles and methodologies;
in fact, engineering techniques and tools.



...sum, transform, validate

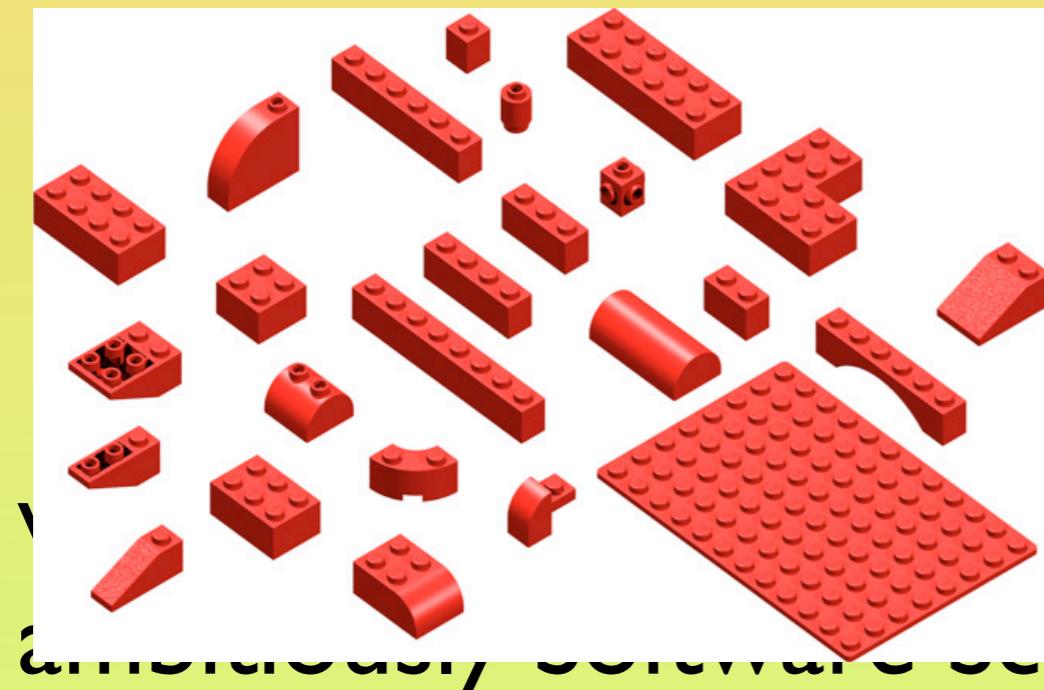
...Theory, or less
ambitiously, software science.

overarching notion: compositionality

How we do it...

Don't just build model of specific systems:

we want laws, principles and methodologies;
in fact, engineering techniques

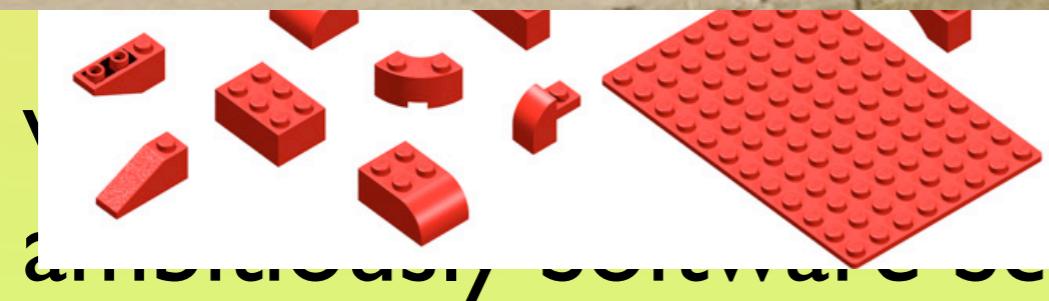


overarching notion: compositionality

How we do it...

tic systems:

ethodologies;



andreas, software sc

oswedespeed

Volvo XC90 made of LEGOs

© Swedespeed 2004

overarching notion: compositionality

Fixation with SOS rules & congruences

SOS = Structural Operational Semantics

Syntax-driven framework to specify the systems' behaviours in a “principled” way

For \approx a notion of systems' equivalence, \approx is a congruence if \approx -equivalent systems can be replaced for each other indistinguishably.

Fixation with SOS rules & congruences

SOS = Structural Operational Semantics

Syntax-driven framework to specify the systems' behaviours in a “principled” way

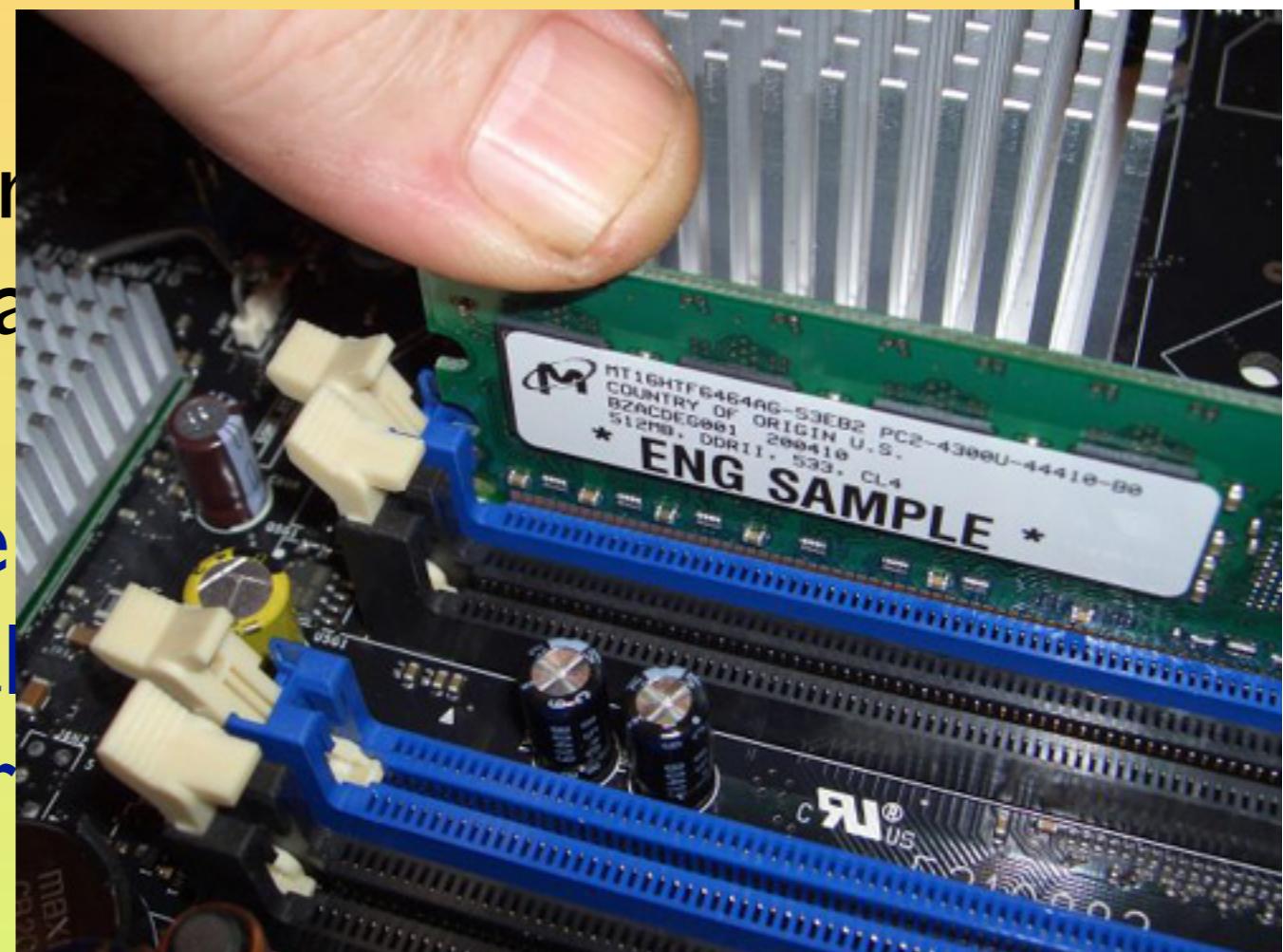
For \approx a notion of systems' equivalence, \approx is a congruence if \approx -equivalent systems can be replaced for each other indistinguishably.

a fundamental engineering & compositionality principle

Fixation with SOS rules & congruences



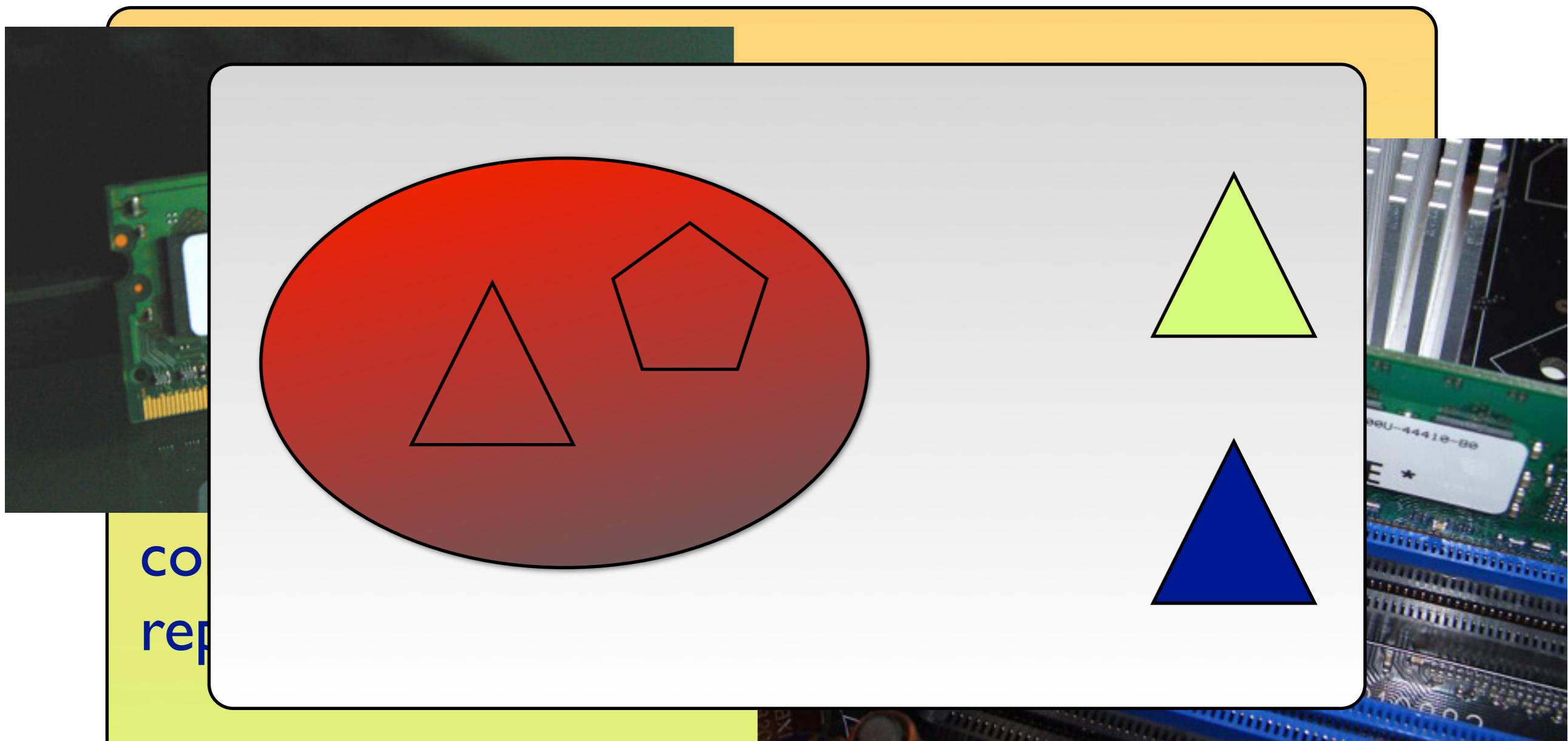
Operational Semantics



congruence if \approx -equivalents can be replaced for each other

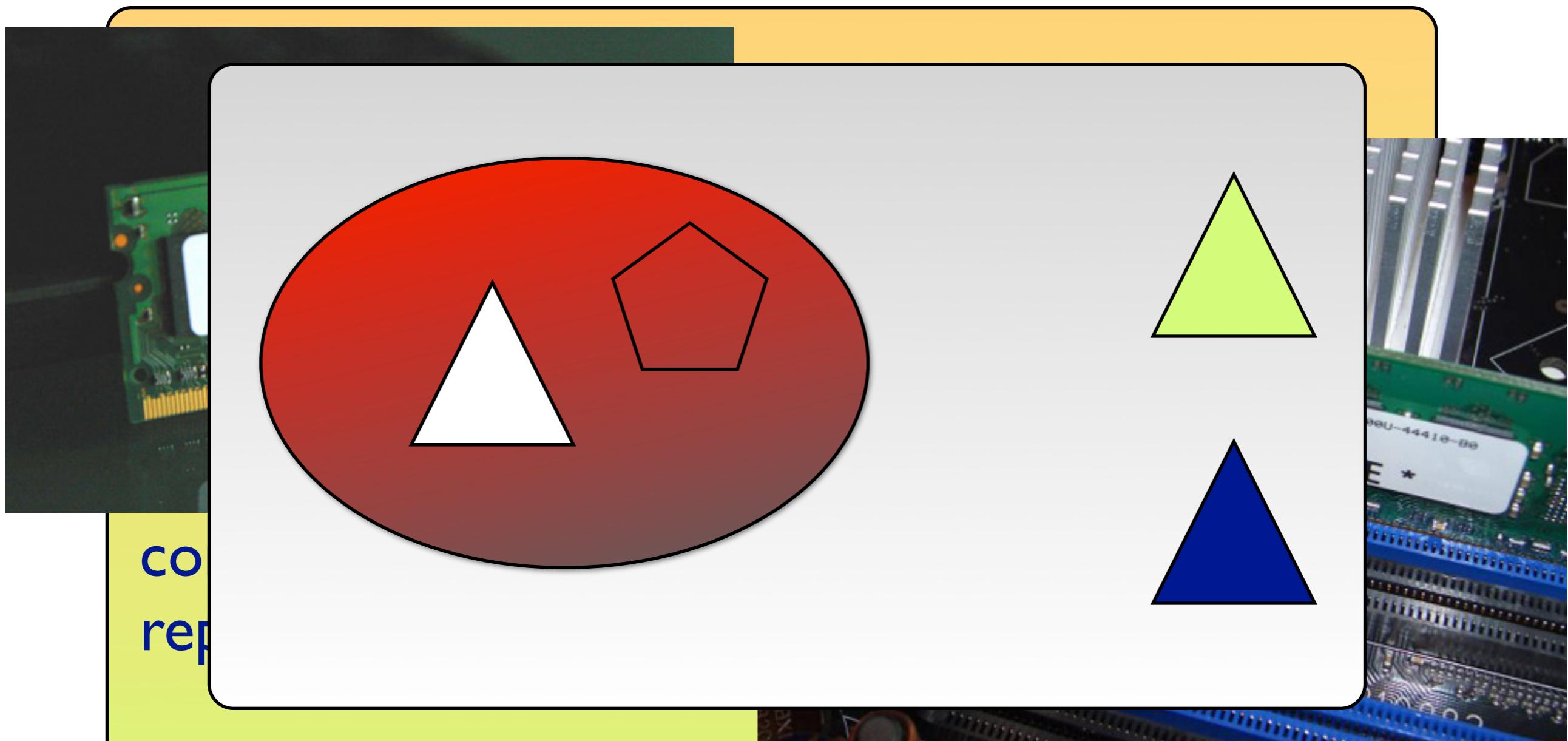
a fundamental engineering & compositionality principle

Fixation with SOS rules & congruences



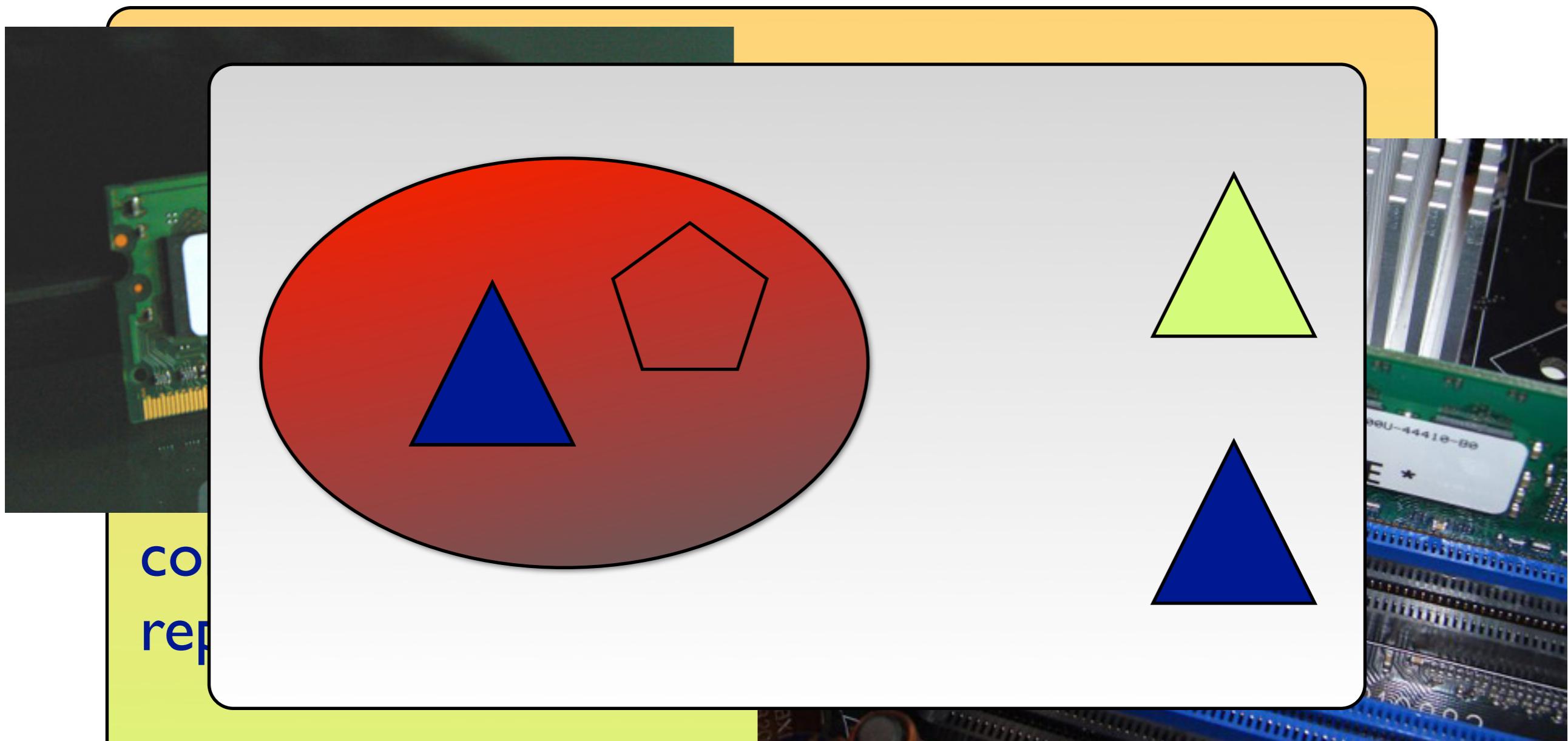
a fundamental engineering &
compositionality principle

Fixation with SOS rules & congruences



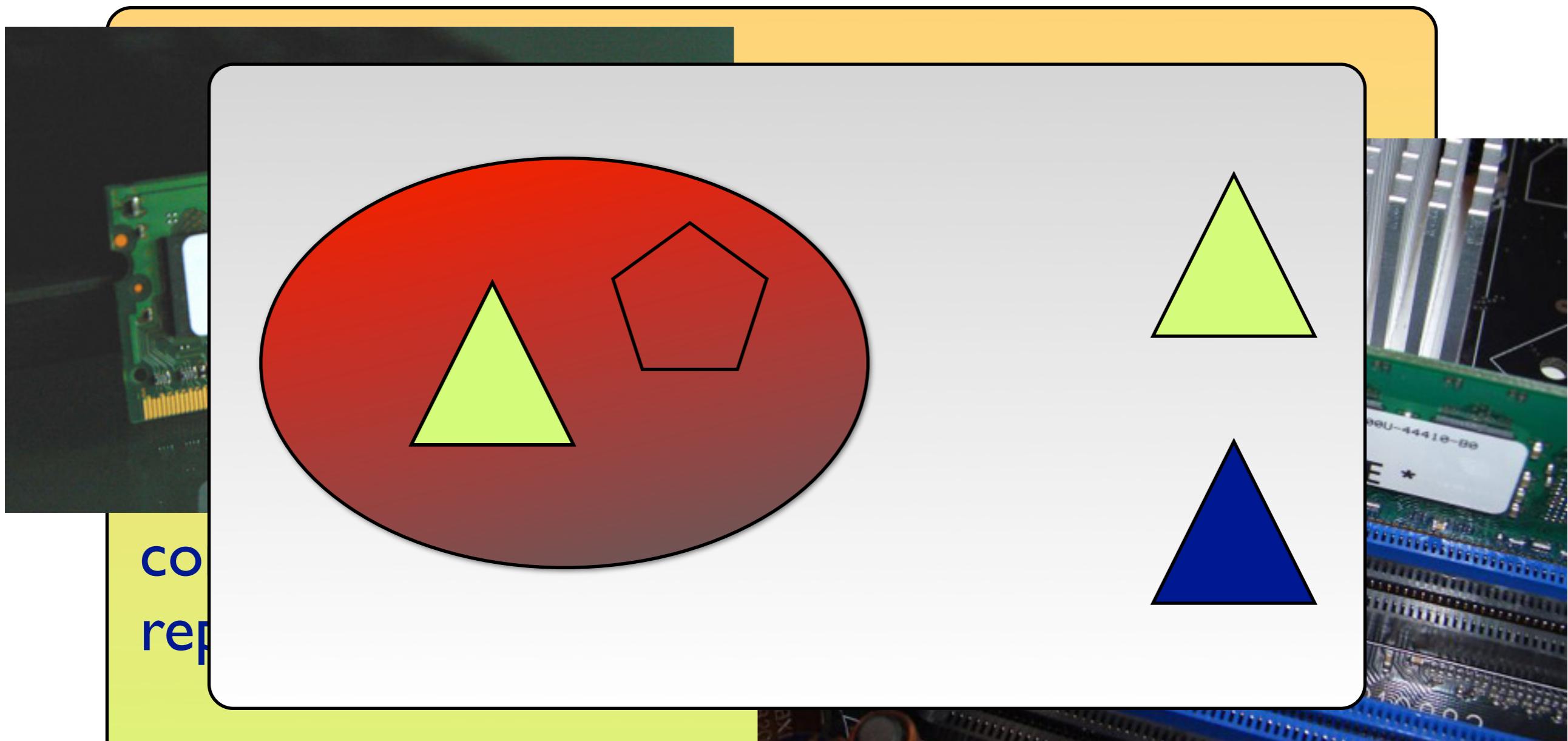
a fundamental engineering &
compositionality principle

Fixation with SOS rules & congruences



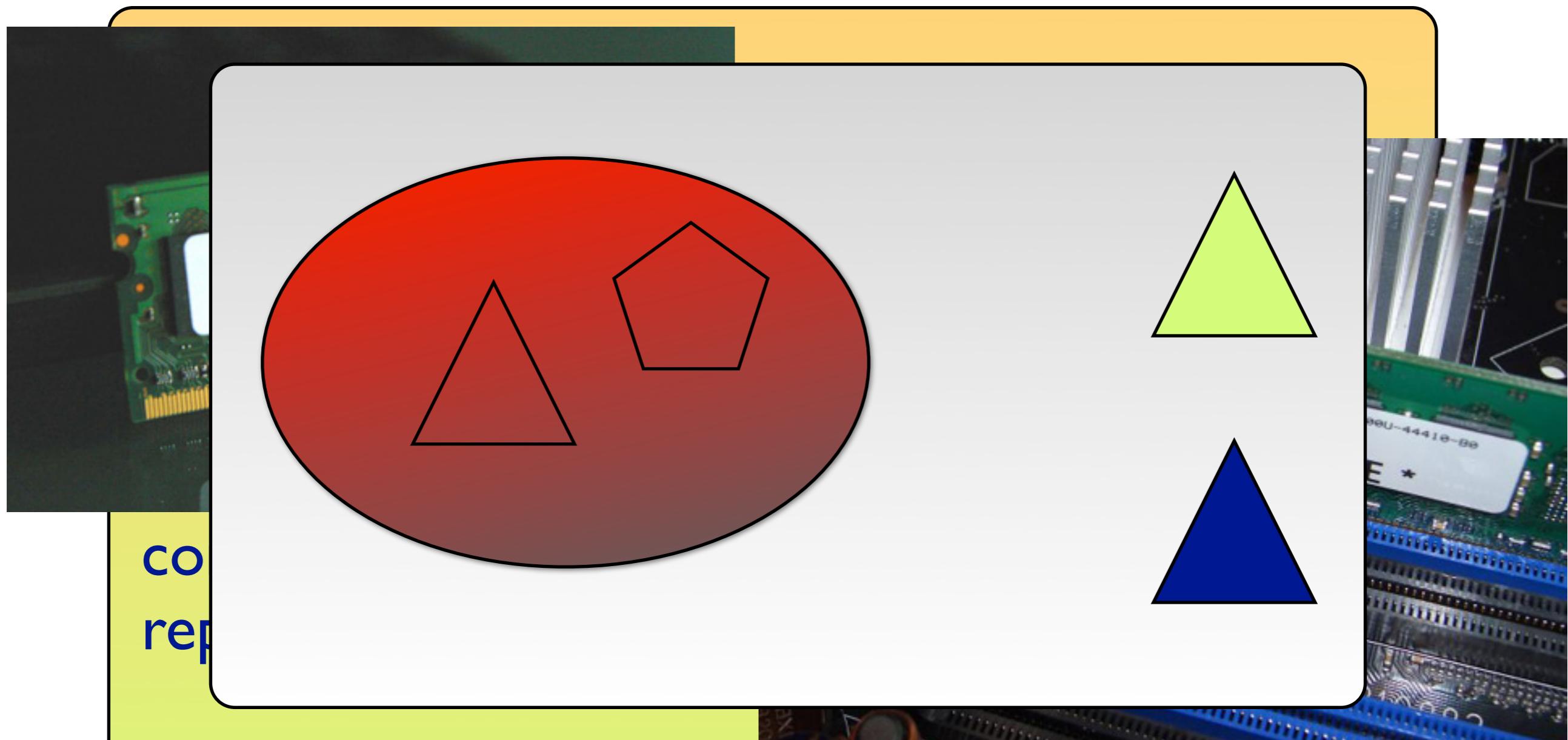
a fundamental engineering &
compositionality principle

Fixation with SOS rules & congruences



a fundamental engineering &
compositionality principle

Fixation with SOS rules & congruences



a fundamental engineering &
compositionality principle

Executive summary

A syntactic format for SOS
of stochastic systems

Executive summary

A syntactic format for SOS
of stochastic systems

I. Rated transition systems (RTSs)

Executive summary

A syntactic format for SOS
of stochastic systems

1. Rated transition systems (RTSs)
2. Some approaches to their structural description

Executive summary

A syntactic format for SOS
of stochastic systems

1. Rated transition systems (RTSs)
2. Some approaches to their structural description
3. **SGSOS**: a new approach

Abstract

Abstract

Two worlds of SOS:

Abstract

Two worlds of SOS:

Nondeterministic systems

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Stochastic systems

$$\frac{x_1 \xrightarrow{a, r_1} y_1 \quad x_2 \xrightarrow{a, r_2} y_2}{x_1 \bowtie_L x_2 \xrightarrow{a, R} y_1 \bowtie_L y_2}$$

Abstract

Two worlds of SOS:

Nondeterministic systems

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Rich SOS theory

- GSOS: a rule format
- ...

Stochastic systems

$$\frac{x_1 \xrightarrow{a, r_1} y_1 \quad x_2 \xrightarrow{a, r_2} y_2}{x_1 \bowtie_L x_2 \xrightarrow{a, R} y_1 \bowtie_L y_2}$$

Abstract

Two worlds of SOS:

Nondeterministic systems

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Rich SOS theory

- GSOS: a rule format
- ...

Stochastic systems

$$\frac{x_1 \xrightarrow{a, r_1} y_1 \quad x_2 \xrightarrow{a, r_2} y_2}{x_1 \bowtie_L x_2 \xrightarrow{a, R} y_1 \bowtie_L y_2}$$

No SOS theory

Abstract

Two worlds of SOS:

Nondeterministic systems

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Rich SOS theory

- GSOS: a rule format
- ...

Stochastic systems

$$\frac{x_1 \xrightarrow{a, r_1} y_1 \quad x_2 \xrightarrow{a, r_2} y_2}{x_1 \bowtie_L x_2 \xrightarrow{a, R} y_1 \bowtie_L y_2}$$

Some SOS theory

- SGSSOS: a rule format

LTSSs and inference rules

Labelled transition system:

$$h = \langle X, A, \longrightarrow \rangle \quad \longrightarrow \subseteq X \times A \times X$$

LTSSs and inference rules

Labelled transition system:

$$h = \langle X, A, \longrightarrow \rangle \quad \longrightarrow \subseteq X \times A \times X$$

Typically induced by inference rules, e.g.:

$$\frac{}{a.x \xrightarrow{a} x}$$

$$\frac{x_1 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_1 \xrightarrow{a} y}{x_1 \| x_2 \xrightarrow{a} y \| x_2}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 \| x_2 \xrightarrow{a} x_1 \| y}$$

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

LTSs and inference rules

Labelled transition system:

$$h = \langle X, A, \rightarrow \rangle \quad \rightarrow \subseteq X \times A \times X$$

Typically induced by inference rules, e.g.:

if this is in this,
then this is too

$$\frac{x_1 \xrightarrow{a} y}{x_1 \parallel x_2 \xrightarrow{a} y \parallel x_2}$$

$$\frac{x_1 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 \parallel x_2 \xrightarrow{a} x_1 \parallel y}$$

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \parallel x_2 \xrightarrow{\tau} y_1 \parallel y_2}$$

LTSSs and inference rules

Labelled transition system:

$$h = \langle X, A, \rightarrow \rangle \quad \rightarrow \subseteq X \times A \times X$$

Typically induced by inference rules, e.g.:

$$\frac{}{a.x \xrightarrow{a} x}$$

$$\frac{x_1 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 + x_2 \xrightarrow{a} y}$$

$$\frac{x_1 \xrightarrow{a} y}{x_1 \| x_2 \xrightarrow{a} y \| x_2}$$

$$\frac{x_2 \xrightarrow{a} y}{x_1 \| x_2 \xrightarrow{a} x_1 \| y}$$

$$\frac{x_1 \xrightarrow{a} y_1 \quad x_2 \xrightarrow{\bar{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Fact: Bisimilarity is a congruence.

GSOS

GSOS

A **GSOS rule** is of the form:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \xrightarrow{b_k} \} \}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$$

s.t. all x_i, y_j distinct and t has no other variables.

GSOS

A **GSOS rule** is of the form:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \xrightarrow{b_k} \} \}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$$

s.t. all x_i, y_j distinct and t has no other variables.

Thm: Bisimilarity on the **induced LTS** is a congruence.

GSOS

A **GSOS rule** is of the form:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \xrightarrow{b_k} \} \}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$$

s.t. all x_i, y_j distinct and t has no other variables.

Thm: Bisimilarity on the **induced LTS** is a congruence.

A rule **triggered** by $A_1, \dots, A_n \subseteq A$ if $a_j \in A_{i_j}$, $b_k \notin A_{i_k}$.

GSOS

A **GSOS rule** is of the form:

$$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \xrightarrow{b_k} \} \}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$$

s.t. all x_i, y_j distinct and t has no other variables.

Thm: Bisimilarity on the **induced LTS** is a congruence.

A rule **triggered** by $A_1, \dots, A_n \subseteq A$ if $a_j \in A_{i_j}$, $b_k \notin A_{i_k}$.

A **GSOS spec**: a set of rules where for each f and c , finitely many rules are triggered by each A_1, \dots, A_n .

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

This yields a CTMC for each label

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

We write $\rho(x \xrightarrow{a} y)$ for $\rho(x, a, y)$

$x \xrightarrow{a,r} y$ for $\rho(x, a, y) = r$

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

We write $\rho(x \xrightarrow{a} y)$ for $\rho(x, a, y)$

$x \xrightarrow{a,r} y$ for $\rho(x, a, y) = r$

A **stochastic bisimulation** on h is an equiv. rel. on R such that xRy implies $\rho(x \xrightarrow{a} [z]_R) = \rho(y \xrightarrow{a} [z]_R)$.

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

We write $\rho(x \xrightarrow{a} y)$ for $\rho(x, a, y)$

$x \xrightarrow{a,r} y$ for $\rho(x, a, y) = r$

A **stochastic bisimulation** on h is an equiv. rel. on R such that xRy implies $\rho(x \xrightarrow{a} [z]_R) = \rho(y \xrightarrow{a} [z]_R)$.

An RTS is **image finite** if $\forall x, a. \ \#\{y \mid \rho(x \xrightarrow{a} y) > 0\} < \omega$

Rated transition systems

Rated transition system:

$$h = \langle X, A, \rho \rangle \quad \rho : X \times A \times X \rightarrow \mathbb{R}_0^+$$

We write $\rho(x \xrightarrow{a} y)$ for $\rho(x, a, y)$

$$x \xrightarrow{a,r} y \text{ for } \rho(x, a, y) = r$$

A **stochastic bisimulation** on h is an equiv. rel. on R such that xRy implies $\rho(x \xrightarrow{a} [z]_R) = \rho(y \xrightarrow{a} [z]_R)$.

An RTS is **image finite** if $\forall x, a. \ \#\{y \mid \rho(x \xrightarrow{a} y) > 0\} < \omega$

In an i.f.RTS, **apparent rates** exist: $r_a(x) = \rho(x \xrightarrow{a} X)$

How to induce RTSs?

How to induce RTSs?

I) A naive approach:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

LTS labeled by pairs (a, r) .

How to induce RTSs?

I) A naive approach:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

LTS labeled by pairs (a, r) .

Problem: $(a, 2).P + (a, 2).P$ **vs.** $(a, 2).P$

How to induce RTSs?

I) A naive approach:

$$\frac{}{(a, r).x \xrightarrow{a, r} x} \quad \frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y} \quad \frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

LTS labeled by pairs (a, r) .

Problem: $(a, 2).P + (a, 2).P$ vs. $(a, 2).P$

2) Multitransition semantics (PEPA)

3) Proved semantics (Stochastic Pi)

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow[x2]{a, 2} P$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Pepa

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Pepa

Proved semantics:

$$\frac{}{(a, r).x \xrightarrow{(a, r)} x}$$

$$\frac{x_1 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_1 \theta} y}$$

$$\frac{x_2 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_2 \theta} y}$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Pepa

Proved semantics:

$$\frac{}{(a, r).x \xrightarrow{(a, r)} x}$$

$$\frac{x_1 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_1 \theta} y}$$

$$\frac{x_2 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_2 \theta} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{+1(a, 2)} P$$

$$\xrightarrow{+2(a, 2)} P$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a, r).x \xrightarrow{a, r} x}$$

$$\frac{x_1 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$\frac{x_2 \xrightarrow{a, r} y}{x_1 + x_2 \xrightarrow{a, r} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Pepa

Proved semantics:

$$\frac{}{(a, r).x \xrightarrow{(a, r)} x}$$

$$\frac{x_1 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+1\theta} y}$$

$$\frac{x_2 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+2\theta} y}$$

$$(a, 2).P + (a, 2).P \xrightarrow{a, 4} P$$

Serious approaches

Multitransition semantics:

$$\frac{}{(a,r).x \xrightarrow{a,r} x}$$

$$\frac{x_1 \xrightarrow{a,r} y}{x_1 + x_2 \xrightarrow{a,r} y}$$

$$\frac{x_2 \xrightarrow{a,r} y}{x_1 + x_2 \xrightarrow{a,r} y}$$

$$(a,2).P + (a,2).P \xrightarrow{a,4} P$$

Pepa

Proved semantics:

$$\frac{}{(a,r).x \xrightarrow{(a,r)} x}$$

$$\frac{x_1 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_1 \theta} y}$$

$$\frac{x_2 \xrightarrow{\theta} y}{x_1 + x_2 \xrightarrow{+_2 \theta} y}$$

$$(a,2).P + (a,2).P \xrightarrow{a,4} P$$

StocPi

Serious approaches

Multitransition semantics:

$$\frac{}{(a,r).x \xrightarrow{a,r} x}$$

$$\frac{x_1 \xrightarrow{a,r} y}{x_1 + x_2 \xrightarrow{a,r} y}$$

$$\frac{x_2 \xrightarrow{a,r} y}{x_1 + x_2 \xrightarrow{a,r} y}$$

$$(a,2).P + (a,2).P \xrightarrow{a,4} P$$

Pepa

Proved semantics:

A two-step procedure: first a rich LTS,
then drop information to get a RTS.

$$(a,r).x \xrightarrow{(a,r)} x$$

$$x_1 \xrightarrow{x_1 \xrightarrow{\theta} y} y$$

$$x_2 \xrightarrow{x_2 \xrightarrow{\theta} y} y$$

$$(a,2).P + (a,2).P \xrightarrow{a,4} P$$

StocPi

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Proved semantics:

$$\frac{x \xrightarrow{+_1 \theta} y}{f(x) \xrightarrow{f+_1 \theta} y}$$

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Proved semantics:

$$\frac{x \xrightarrow{+_1 \theta} y}{f(x) \xrightarrow{f+_1 \theta} y}$$

$(a, 2).P$
vs.
 $(a, 2).P + \text{nil}$

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Proved semantics:

$$\frac{x \xrightarrow{+_1 \theta} y}{f(x) \xrightarrow{f+_1 \theta} y}$$

(a, 2).P
vs.
(a, 2).P + nil

Multitransition semantics:

$$\frac{x \xrightarrow{a, r} y}{f(x) \xrightarrow{a, \max(r, 5)} y}$$

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Proved semantics:

$$\frac{x \xrightarrow{+_1 \theta} y}{f(x) \xrightarrow{f+_1 \theta} y}$$

$(a, 2).P$
vs.
 $(a, 2).P + \text{nil}$

Multitransition semantics:

$$\frac{x \xrightarrow{a, r} y}{f(x) \xrightarrow{a, \max(r, 5)} y}$$

$(a, 3).P + (a, 4).P$
vs.
 $(a, 7).P$

Compositionality issues

When is stoch. bisim. a congruence on the RTS?

Proved semantics:

$$\frac{x \xrightarrow{+_1 \theta} y}{f(x) \xrightarrow{f+_1 \theta} v}$$

$(a, 2).P$

vs.

$(a, 2).P + \text{nil}$

Mu

Problem: too much
information in the labels

$$\frac{x \xrightarrow{a, r} y}{f(x) \xrightarrow{a, \max(r, 5)} y}$$

$(a, 3).P + (a, 4).P$

vs.

$(a, 7).P$

The abstract approach

Transition systems are **coalgebras**

Distributive laws are formats for SOS

The abstract approach

Transition systems are **coalgebras**

Distributive laws are formats for SOS

LTS	
Prob.TS	
RTS	

The abstract approach

Transition systems are **coalgebras**

Distributive laws are formats for SOS

LTS	$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \not\xrightarrow{b_k}\}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$	[TP97]
Prob.TS		
RTS		

The abstract approach

Transition systems are **coalgebras**

Distributive laws are formats for SOS

LTS	$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \not\xrightarrow{b_k}\}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$	[TP97]
Prob.TS	$\frac{\left\{x_i \xrightarrow{a}\right\}_{a \in R_i, 1 \leq i \leq n} \quad \left\{x_i \not\xrightarrow{a}\right\}_{a \in P_i, 1 \leq i \leq n} \quad \left\{x_{i_j} \xrightarrow{b_j[u_j]} y_j\right\}_{1 \leq j \leq m}}{f(x_1, \dots, x_n) \xrightarrow{c[w \cdot u_1 \dots u_m]} t}$	[Bar04]
RTS		

The abstract approach

Transition systems are **coalgebras**

Distributive laws are formats for SOS

LTS	$\frac{\{x_{i_j} \xrightarrow{a_j} y_j\}_{1 \leq j \leq m} \quad \{x_{i_k} \not\xrightarrow{b_k}\}_{1 \leq k \leq l}}{f(x_1, \dots, x_n) \xrightarrow{c} t}$	[TP97]
Prob.TS	$\frac{\left\{x_i \xrightarrow{a} \right\}_{a \in R_i, 1 \leq i \leq n} \quad \left\{x_i \not\xrightarrow{a} \right\}_{a \in P_i, 1 \leq i \leq n} \quad \left\{x_{i_j} \xrightarrow{b_j[u_j]} y_j\right\}_{1 \leq j \leq m}}{f(x_1, \dots, x_n) \xrightarrow{c[w \cdot u_1 \dots u_m]} t}$	[Bar04]
RTS	$\frac{\left\{x_i \xrightarrow{a @ r_{ai}} \right\}_{a \in D_i, 1 \leq i \leq n} \quad \left\{x_{i_j} \xrightarrow{b_j} y_j\right\}_{1 \leq j \leq k}}{f(x_1, \dots, x_n) \xrightarrow{c @ R} t}$	[this08]

SGSOS rules

$$\frac{\left\{ r_a(x_i) = r_{a,i} \right\}_{a_i \in D_i, 1 \leq i \leq n} \quad \left\{ x_{i_j} \xrightarrow{bj} y_j \right\}_{b_j \in D_{i_j}, 1 \leq j \leq k}}{f(x_1, \dots, x_n) \xrightarrow{c@W} t}$$

- $D_i \subseteq A$ and $W, r_{a,i} \in \mathbb{R}^+$
- all $x_i, y_{a,i}$ distinct and t has no other variables
- all $y_{a,i}$ appear in t exactly if

SGSOS rules

$$\frac{\left\{ r_a(x_i) = r_{a,i} \right\}_{a_i \in D_i, 1 \leq i \leq n} \quad \left\{ x_{i_j} \xrightarrow{b_j} y_j \right\}_{b_j \in D_{i_j}, 1 \leq j \leq k}}{f(x_1, \dots, x_n) \xrightarrow{c@W} t}$$

apparent rate of a in x_i

- $D_i \subseteq A$ and $W, r_{a,i} \in \mathbb{R}^+$
- all $x_i, y_{a,i}$ distinct and t has no other variables
- all $y_{a,i}$ appear in t exactly if

SGSOS rules

$$\frac{\left\{ r_a(x_i) = r_{a,i} \right\}_{a_i \in D_i, 1 \leq i \leq n} \quad \left\{ x_{i_j} \xrightarrow{b_j} y_j \right\}_{b_j \in D_{i_j}, 1 \leq j \leq k}}{f(x_1, \dots, x_n) \xrightarrow{c@W} t}$$

apparent rate of a in x_i

- $D_i \subseteq A$ and $W, r_{a,i} \in \mathbb{R}^+$
- all $x_i, y_{a,i}$ distinct and t has no other variables
- all $y_{a,i}$ appear in t exactly if

SGSOS spec: set of rules subject to a size condition.

How SGSOS rules induce RTSs

$$\frac{P = \mathbf{f}(P_1, \dots, P_n) \quad \left\{ \mathbf{x}_i \xrightarrow{a @ r_{a,i}} \mathbf{y}_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{\mathbf{f}(\mathbf{x}_1, \dots, \mathbf{x}_n) \xrightarrow{c @ W} \mathbf{t}}$$

How SGSOS rules induce RTSs

$$\frac{P = f(P_1, \dots, P_n) \quad \left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

I. Choose a rule instance so that $r_{a,i} = r_a(P_i)$

How SGSOS rules induce RTSs

$$\frac{P = f(P_1, \dots, P_n) \quad \left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

1. Choose a rule instance so that $r_{a,i} = r_a(P_i)$
2. Pick any processes $Q_{a,i}$

How SGSOS rules induce RTSs

$$\frac{P = f(P_1, \dots, P_n) \quad \left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

1. Choose a rule instance so that $r_{a,i} = r_a(P_i)$
2. Pick any processes $Q_{a,i}$

$$3. \text{ Let } p_{a,i} = \frac{\rho(P_i \xrightarrow{a} Q_{a,i})}{r_a(P_i)}$$

How SGSOS rules induce RTSs

$$P = f(P_1, \dots, P_n)$$

$$\frac{\left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

1. Choose a rule instance so that $r_{a,i} = r_a(P_i)$
2. Pick any processes $Q_{a,i}$

$$3. \text{ Let } p_{a,i} = \frac{\rho(P_i \xrightarrow{a} Q_{a,i})}{r_a(P_i)}$$

Conditional probability
of $P_i \xrightarrow{a} Q_{a,i}$.

How SGSOS rules induce RTSs

$$\frac{P = f(P_1, \dots, P_n) \quad \left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

1. Choose a rule instance so that $r_{a,i} = r_a(P_i)$
2. Pick any processes $Q_{a,i}$

$$3. \text{ Let } p_{a,i} = \frac{\rho(P_i \xrightarrow{a} Q_{a,i})}{r_a(P_i)}$$

How SGSOS rules induce RTSs

$$\frac{P = f(P_1, \dots, P_n) \quad \left\{ x_i \xrightarrow{a @ r_{a,i}} y_{a,i} \right\}_{a \in D_i, 1 \leq i \leq n}}{f(x_1, \dots, x_n) \xrightarrow{c @ W} t}$$

1. Choose a rule instance so that $r_{a,i} = r_a(P_i)$
2. Pick any processes $Q_{a,i}$

$$3. \text{ Let } p_{a,i} = \frac{\rho(P_i \xrightarrow{a} Q_{a,i})}{r_a(P_i)}$$

$$4. \text{ Add } W \cdot \prod_{a,i} p_{a,i} \text{ to } \rho(P \xrightarrow{c} t[P_i/x_i, Q_{a,i}/y_{a,i}])$$

Theorem

Stochastic bisimilarity on the RTS induced
by an SGSOS specification is a congruence.

Theorem

Stochastic bisimilarity on the RTS induced by an SGSOS specification is a congruence.

Proof: SGSOS is to RTSs what GSOS is to LTSs.

Examples

Atomic actions

$$P ::= \text{nil} \mid (a, r).P$$

$$\overline{(a, r).x \xrightarrow{a @ r} x}$$

Examples

Atomic actions

$$P ::= \text{nil} \mid (a, r).P$$

$$\frac{}{(a, r).x \xrightarrow{a @ r} x}$$

Choice

$$P ::= \dots \mid P + P$$

$$\frac{x_1 \xrightarrow{a @ r} y}{x_1 + x_2 \xrightarrow{a @ r} y}$$

$$\frac{x_2 \xrightarrow{a @ r} y}{x_1 + x_2 \xrightarrow{a @ r} y}$$

Examples II

Synchronisation

$$P ::= \dots \mid P \underset{L}{\bowtie} P$$

$$\frac{x_1 \xrightarrow{a @ r} y}{x_1 \underset{L}{\bowtie} x_2 \xrightarrow{a @ r} y \underset{L}{\bowtie} x_2}$$

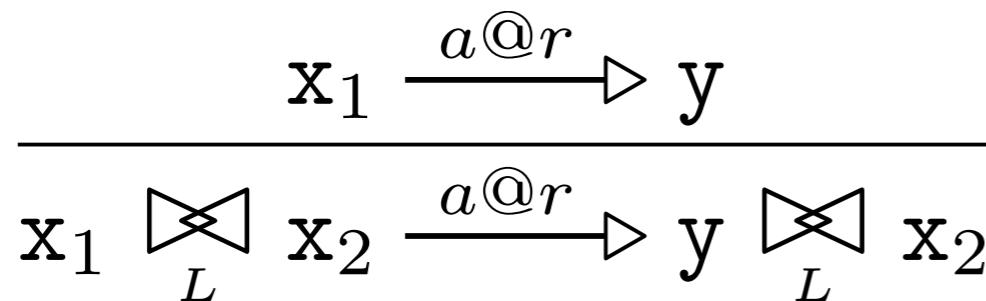
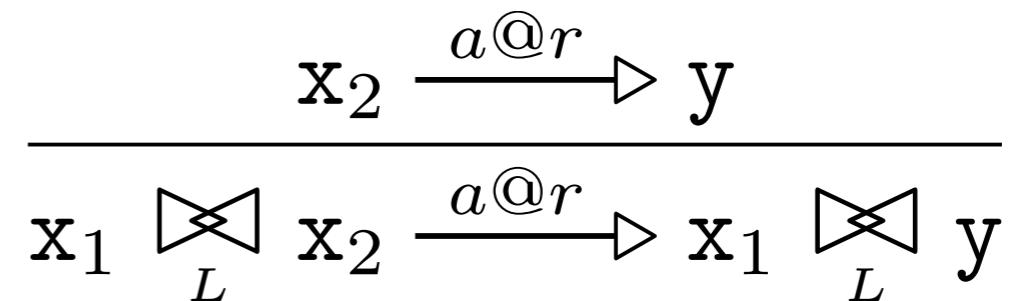
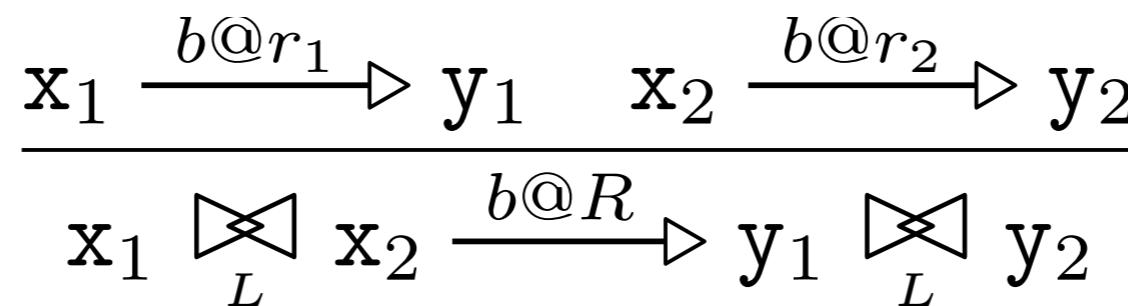
$$\frac{x_2 \xrightarrow{a @ r} y}{x_1 \underset{L}{\bowtie} x_2 \xrightarrow{a @ r} x_1 \underset{L}{\bowtie} y}$$

$$\frac{x_1 \xrightarrow{b @ r_1} y_1 \quad x_2 \xrightarrow{b @ r_2} y_2}{x_1 \underset{L}{\bowtie} x_2 \xrightarrow{b @ R} y_1 \underset{L}{\bowtie} y_2}$$

Examples II

Synchronisation

$$P ::= \dots \mid P \underset{L}{\bowtie} P$$



minimal rate law: $R = \min(r_1, r_2)$

mass action law: $R = r_1 \cdot r_2$

Examples III

Communication

$$P ::= \dots \mid P \parallel P$$

$$\frac{x_1 \xrightarrow{a @ r} y}{x_1 \parallel x_2 \xrightarrow{a @ r} y \parallel x_2}$$

$$\frac{x_2 \xrightarrow{a @ r} y}{x_1 \parallel x_2 \xrightarrow{a @ r} x_1 \parallel y}$$

$$\frac{x_1 \xrightarrow{a @ r_1} y_1 \quad x_2 \xrightarrow{\bar{a} @ r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau @ R} y_1 \parallel y_2}$$

Examples III

Communication

$$P ::= \dots \mid P \parallel P$$

$$\frac{x_1 \xrightarrow{a@r} y}{x_1 \parallel x_2 \xrightarrow{a@r} y \parallel x_2}$$

$$\frac{x_2 \xrightarrow{a@r} y}{x_1 \parallel x_2 \xrightarrow{a@r} x_1 \parallel y}$$

$$\frac{x_1 \xrightarrow{a@r_1} y_1 \quad x_2 \xrightarrow{\bar{a}@r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau@R} y_1 \parallel y_2}$$

minimal rate law: $R = \min(r_1, r_2)$

mass action law: $R = r_1 \cdot r_2$

Examples IV

Catalysts / Inhibitors

$$\frac{x \xrightarrow{a@r} y}{\text{cat}_a(x) \xrightarrow{a@2r} \text{cat}_a(y)}$$

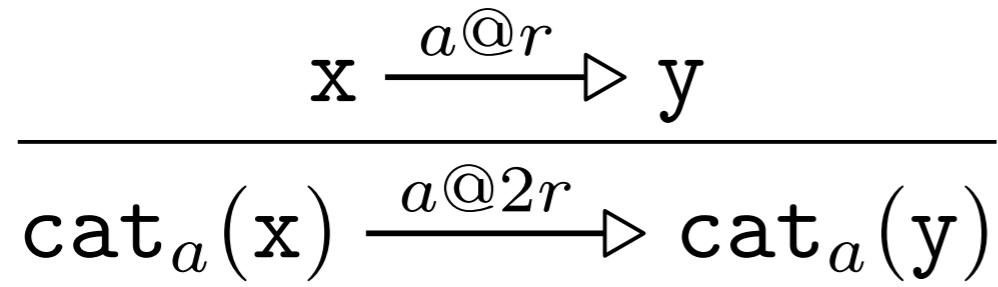
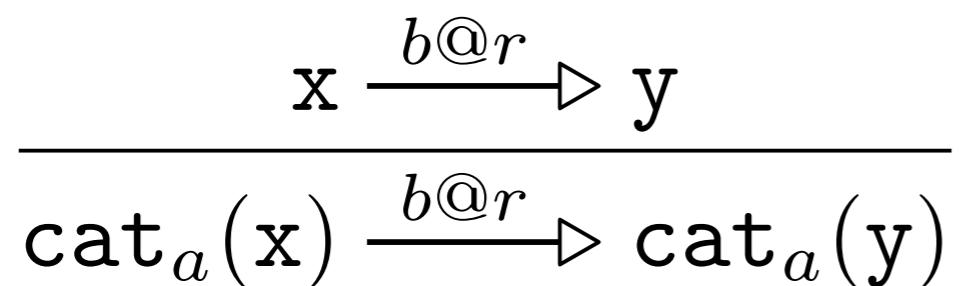
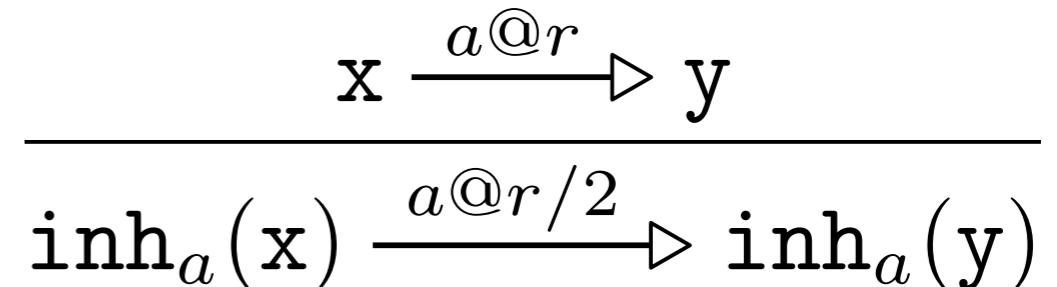
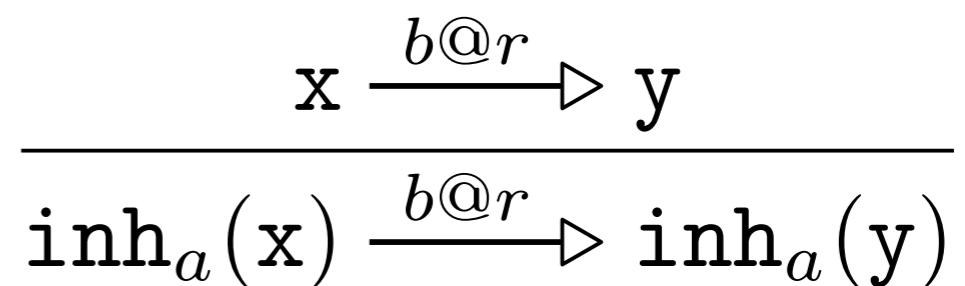
$$\frac{x \xrightarrow{b@r} y}{\text{cat}_a(x) \xrightarrow{b@r} \text{cat}_a(y)}$$

$$\frac{x \xrightarrow{a@r} y}{\text{inh}_a(x) \xrightarrow{a@r/2} \text{inh}_a(y)}$$

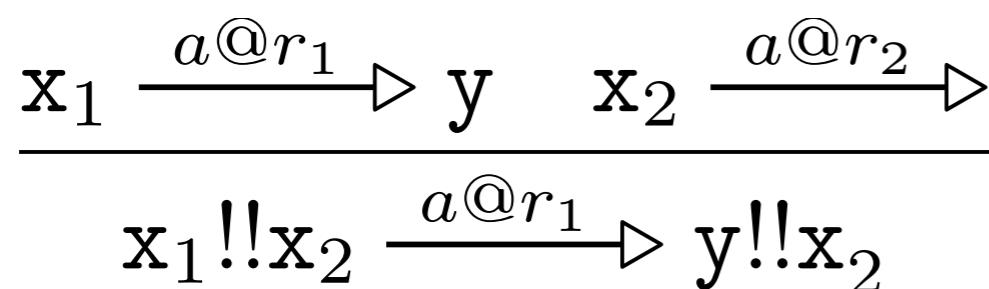
$$\frac{x \xrightarrow{b@r} y}{\text{inh}_a(x) \xrightarrow{b@r} \text{inh}_a(y)}$$

Examples IV

Catalysts / Inhibitors



Other things



(for $r_1 > r_2$)

Associativity of parallel composition

Associativity of parallel composition

CCS-style (e.g. Stoch-Pi)

$$\frac{x_1 \xrightarrow{a @ r_1} y_1 \quad x_2 \xrightarrow{\bar{a} @ r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau @ R} y_1 \parallel y_2}$$

Associativity of parallel composition

CCS-style (e.g. Stoch-Pi)

$$\frac{x_1 \xrightarrow{a @ r_1} y_1 \quad x_2 \xrightarrow{\bar{a} @ r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau @ R} y_1 \parallel y_2}$$

Thm: \parallel associative iff $R = c \cdot r_1 \cdot r_2$ for c constant.

Associativity of parallel composition

CCS-style (e.g. Stoch-Pi)

$$\frac{x_1 \xrightarrow{a @ r_1} y_1 \quad x_2 \xrightarrow{\bar{a} @ r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau @ R} y_1 \parallel y_2}$$

Thm: \parallel associative iff $R = c \cdot r_1 \cdot r_2$ for c constant.

CSP-style (e.g. PEPA)

$$\frac{x_1 \xrightarrow{b @ r_1} y_1 \quad x_2 \xrightarrow{b @ r_2} y_2}{x_1 \bowtie_L x_2 \xrightarrow{b @ R} y_1 \bowtie_L y_2}$$

Associativity of parallel composition

CCS-style (e.g. Stoch-Pi)

$$\frac{x_1 \xrightarrow{a @ r_1} y_1 \quad x_2 \xrightarrow{\bar{a} @ r_2} y_2}{x_1 \parallel x_2 \xrightarrow{\tau @ R} y_1 \parallel y_2}$$

Thm: \parallel associative iff $R = c \cdot r_1 \cdot r_2$ for c constant.

CSP-style (e.g. PEPA)

$$\frac{x_1 \xrightarrow{b @ r_1} y_1 \quad x_2 \xrightarrow{b @ r_2} y_2}{x_1 \mathbin{\bowtie}_L x_2 \xrightarrow{b @ R} y_1 \mathbin{\bowtie}_L y_2}$$

Thm: $\mathbin{\bowtie}_L$ associative iff R associative:

$$R(R(r_1, r_2), r_3) = R(r_1, R(r_2, r_3))$$

Conclusions

- A rule format for RTS specifications
- Stochastic bisimilarity guaranteed compositional

Conclusions

- A rule format for RTS specifications
- Stochastic bisimilarity guaranteed compositional
- Essential fragments of PEPA, StochPi **covered**

Conclusions

- A rule format for RTS specifications
- Stochastic bisimilarity guaranteed compositional
- Essential fragments of PEPA, StochPi **covered**
- **Missing**: recursive definitions, name passing in Pi