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A syntactic format for SOS
of stochastic systems

1. Rated transition systems (RTSs)

2. Some approaches to their structural description

3. SGSOS: a new approach
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A GSOS spec: a set of rules where for each    and   ,
finitely many rules are triggered by each                 .

f c
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h = �X, A, ρ� ρ : X ×A×X → R+
0

We write                forρ(x a−→ y) ρ(x, a, y)

ρ(x, a, y) = rx
a,r−→ y for

An RTS is image finite if ∀x, a. �{y | ρ(x a−→ y) > 0} < ω

In an i.f.RTS, apparent rates exist: ra(x) = ρ(x a−→ X)

A stochastic bisimulation on    is an equiv. rel. on    
such that        implies                                        .xRy ρ(x a−→ [z]R) = ρ(y a−→ [z]R)

h R
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(a, r).x a,r � x

x1
a,r � y

x1+x2
a,r � y

x2
a,r � y

x1+x2
a,r � y

1) A naive approach:

LTS labeled by pairs        .(a, r)

2) Multitransition semantics (PEPA)

3) Proved semantics (Stochastic Pi)

Problem:                           vs. (a, 2).P + (a, 2).P (a, 2).P
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(a, r).x a,r � x
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a,r � y
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a,r � y

x1+x2
a,r � y

(a, r).x (a,r)
� x

x1
θ � y

x1+x2
+1θ � y

x2
θ � y

x1+x2
+2θ � y

Proved semantics:

(a, 2).P + (a, 2).P a,4→ P

(a, 2).P + (a, 2).P a,4→ P

Pepa

StocPi

A two-step procedure: first a rich LTS,
then drop information to get a RTS.
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When is stoch. bisim. a congruence on the RTS?

Proved semantics:

x +1θ � y

f(x) f+1θ � y

Multitransition semantics:

x a,r � y

f(x) a,max(r,5)
� y

(a, 2).P

(a, 2).P + nil
vs.

vs.
(a, 3).P + (a, 4).P

(a, 7).P

Problem: too much 
information in the labels
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LTS

Prob. TS
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{xij
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xij
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1≤j≤m

f(x1, . . . , xn)
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�
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a@rai �
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[this08]



ecs /23

SGSOS rules

15

• all    ,      distinct and   has no other variablesxi t
•            and       Di ⊆ A

• all      appear in    exactly ift
ya,i

ya,i

W, ra,i ∈ R+



ecs /23

SGSOS rules

15

• all    ,      distinct and   has no other variablesxi t
•            and       Di ⊆ A

• all      appear in    exactly ift
ya,i

ya,i

W, ra,i ∈ R+

apparent rate of a in xi



ecs /23

SGSOS rules

15

• all    ,      distinct and   has no other variablesxi t
•            and       Di ⊆ A

• all      appear in    exactly ift

SGSOS spec: set of rules subject to a size condition.

ya,i

ya,i

W, ra,i ∈ R+

apparent rate of a in xi
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2. Pick any processes Qa,i

P = f(P1, . . . , Pn)

3. Let pa,i =
ρ(Pi

a−→ Qa,i)
ra(Pi)

Conditional probability
of                 .Pi

a−→ Qa,i
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�
xi

a@ra,i � ya,i

�

a∈Di,1≤i≤n

f(x1, . . . , xn) c@W � t

1. Choose a rule instance so that  ra,i = ra(Pi)

2. Pick any processes Qa,i

P = f(P1, . . . , Pn)

3. Let pa,i =
ρ(Pi

a−→ Qa,i)
ra(Pi)

4. Add                   toW ·
�

a,i pa,i ρ(P c−→ t[Pi/xi ,
Qa,i/ya,i ])
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Stochastic bisimilarity on the RTS induced
by an SGSOS specification is a congruence.

Proof: SGSOS is to RTSs what GSOS is to LTSs.
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Atomic actions P ::= nil | (a, r).P

(a, r).x a@r � x

Choice P ::= · · · | P + P

x1
a@r � y

x1+x2
a@r � y

x2
a@r � y

x1+x2
a@r � y
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Synchronisation P ::= . . . | P ��
L

P

x1
a@r � y

x1 ��
L

x2
a@r � y ��

L
x2

x2
a@r � y

x1 ��
L

x2
a@r � x1 ��

L
y

x1
b@r1 � y1 x2

b@r2 � y2

x1 ��
L

x2
b@R � y1 ��

L
y2
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Synchronisation P ::= . . . | P ��
L

P

x1
a@r � y

x1 ��
L

x2
a@r � y ��

L
x2

x2
a@r � y

x1 ��
L

x2
a@r � x1 ��

L
y

x1
b@r1 � y1 x2

b@r2 � y2

x1 ��
L

x2
b@R � y1 ��

L
y2

R = min(r1, r2)
R = r1 · r2

minimal rate law:
mass action law:
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Communication P ::= . . . | P � P

x1
a@r � y

x1 � x2
a@r � y � x2

x2
a@r � y

x1 � x2
a@r � x1 � y

x1
a@r1 � y1 x2

ā@r2 � y2

x1 � x2
τ@R � y1 � y2
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Communication

R = min(r1, r2)
R = r1 · r2

minimal rate law:
mass action law:

P ::= . . . | P � P

x1
a@r � y

x1 � x2
a@r � y � x2

x2
a@r � y

x1 � x2
a@r � x1 � y

x1
a@r1 � y1 x2

ā@r2 � y2

x1 � x2
τ@R � y1 � y2
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Catalysts / Inhibitors

x a@r � y

cata(x) a@2r � cata(y)

x a@r � y

inha(x) a@r/2
� inha(y)

x b@r � y

cata(x) b@r � cata(y)

x b@r � y

inha(x) b@r � inha(y)
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Catalysts / Inhibitors

x a@r � y

cata(x) a@2r � cata(y)

x a@r � y

inha(x) a@r/2
� inha(y)

x b@r � y

cata(x) b@r � cata(y)

x b@r � y

inha(x) b@r � inha(y)

Other things

x1
a@r1 � y x2

a@r2 �

x1!!x2
a@r1 � y!!x2

x1
a@r2 � x2

a@r1 � y

x1!!x2
a@r1 � x1!!y

(for           )r1 > r2
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x1
a@r1 � y1 x2

ā@r2 � y2

x1 � x2
τ@R � y1 � y2

CCS-style (e.g. Stoch-Pi)

Thm:    associative iff                    for   constant.|| R = c · r1 · r2 c

CSP-style (e.g. PEPA)
x1

b@r1 � y1 x2
b@r2 � y2

x1 ��
L

x2
b@R � y1 ��

L
y2
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Associativity of parallel composition
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x1
a@r1 � y1 x2

ā@r2 � y2

x1 � x2
τ@R � y1 � y2

CCS-style (e.g. Stoch-Pi)

Thm:    associative iff                    for   constant.|| R = c · r1 · r2 c

CSP-style (e.g. PEPA)
x1

b@r1 � y1 x2
b@r2 � y2

x1 ��
L

x2
b@R � y1 ��

L
y2

Thm:      associative iff    associative:��
L

R

R(R(r1, r2), r3) = R(r1, R(r2, r3))
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Conclusions
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• A rule format for RTS specifications

• Stochastic bisimilarity guaranteed compositional

• Essential fragments of PEPA, StochPi covered

• Missing: recursive definitions, name passing in Pi


