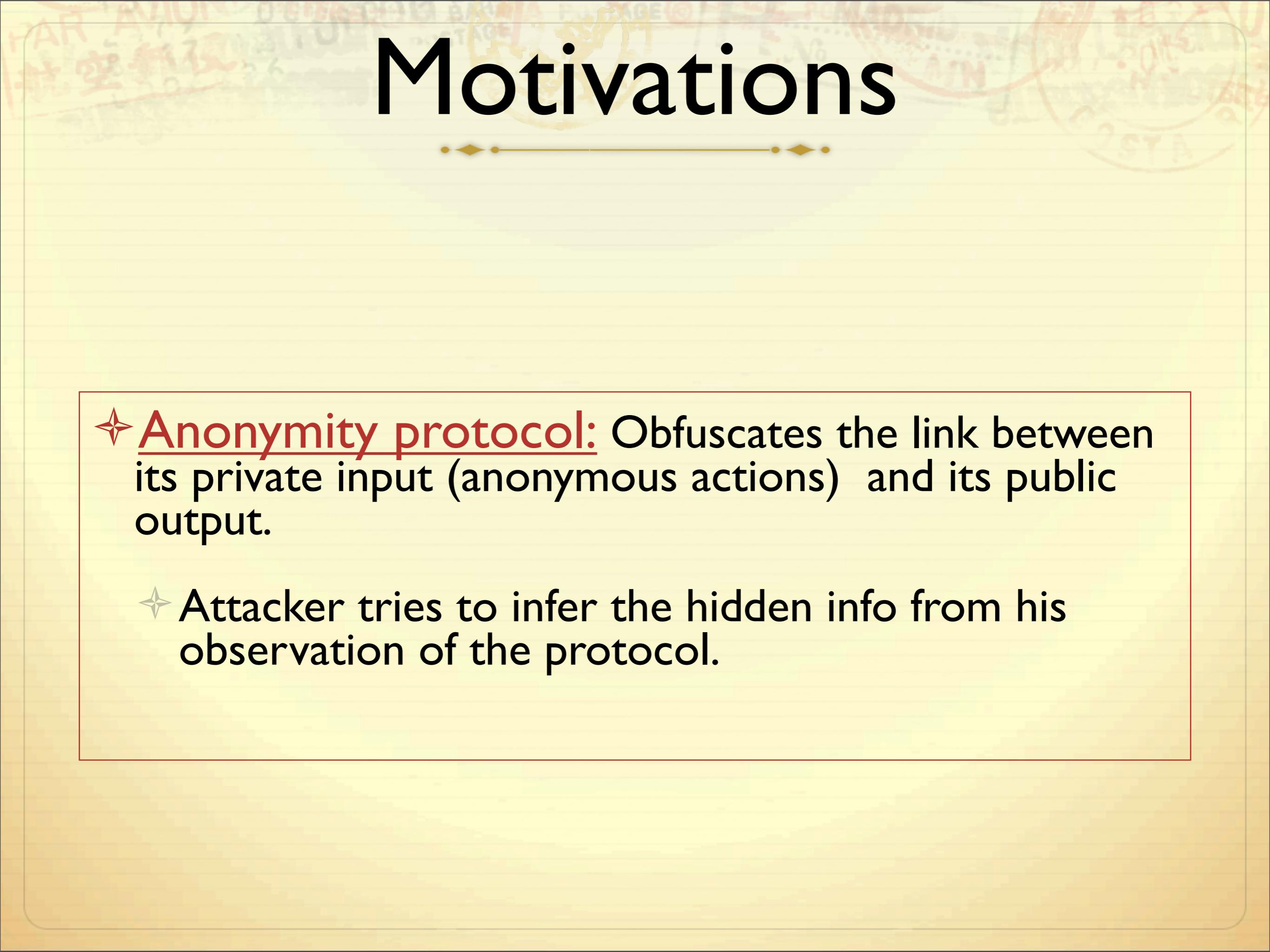

On the anonymity in the Crowds protocol

V. Sassone
14/12/2009


Joint work with C. Palamidessi, S. Hamadou and E. ElSalamouny

Outline

- ❖ Introduction
- ❖ Crowds protocol
- ❖ Anonymity
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Anonymity in presence of extra knowledge
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Recent results
- ❖ Conclusion

Motivations

- ★ Anonymity protocol: Obfuscates the link between its private input (anonymous actions) and its public output.
- ★ Attacker tries to infer the hidden info from his observation of the protocol.

Motivations

•♦•
Extra knowledge
•♦•

Motivations

Extra knowledge

- ❖ **Real world:** attackers usually gather **additional information** correlated to the anonymous agents before attacking the protocol.

Motivations

Extra knowledge

- ❖ **Real world:** attackers usually gather **additional information** correlated to the anonymous agents before attacking the protocol.
- ❖ **Example:** two agents voting by “yes” or “no” and the result of the vote is {yes, no}

Motivations

Extra knowledge

- ❖ **Real world:** attackers usually gather **additional information** correlated to the anonymous agents before attacking the protocol.
- ❖ **Example:** two agents voting by “yes” or “no” and the result of the vote is {yes, no}
- ❖ Agents used different colours but the adversary does not know the correlation between the colors and the agents:

Motivations

Extra knowledge

- ❖ **Real world:** attackers usually gather **additional information** correlated to the anonymous agents before attacking the protocol.
- ❖ **Example:** two agents voting by “yes” or “no” and the result of the vote is {yes, no}
- ❖ Agents used different colours but the adversary does not know the correlation between the colors and the agents:

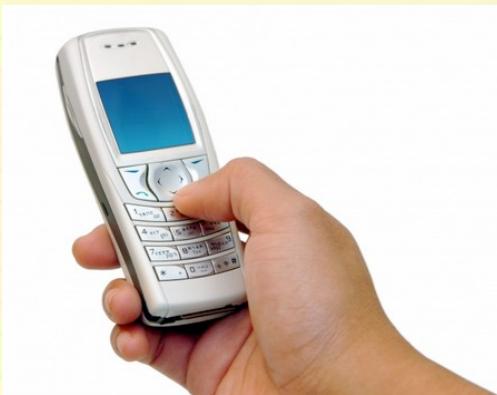
$$\{\text{yes, no}\} \equiv \{\text{yes, no}\}$$

Motivations

Extra knowledge

- ❖ **Real world:** attackers usually gather **additional information** correlated to the anonymous agents before attacking the protocol.
- ❖ **Example:** two agents voting by “yes” or “no” and the result of the vote is {yes, no}
 - ❖ Agents used different colours but the adversary does not know the correlation between the colors and the agents:
$$\{\text{yes, no}\} \equiv \{\text{yes, no}\}$$
 - ❖ The adversary knows the correlation: $\{\text{yes, no}\} \neq \{\text{yes, no}\}$

Motivations


NFC-Enabled Mobile Phones

Security system developed in IBM Zurich Research Laboratory to enhance authentication in eBanking with NFC-enabled mobile phones [Ortiz-Yepes 09]

Motivations

Attacking NFC-EMF

First two digits from the first line →

Last two digits from the last column

Motivations

Attacking NFC-EMF

From the movement of the finger...

First two digits from the first line →

Last two digits from the last column

Motivations

Attacking NFC-EMF

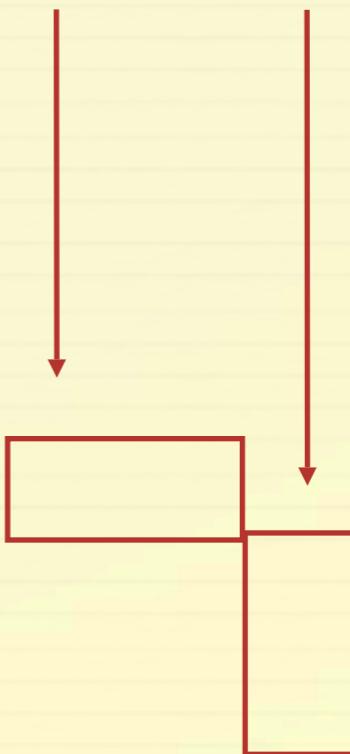
From the movement of the finger...

First two digits from the first line

Last two digits from the last column

Motivations

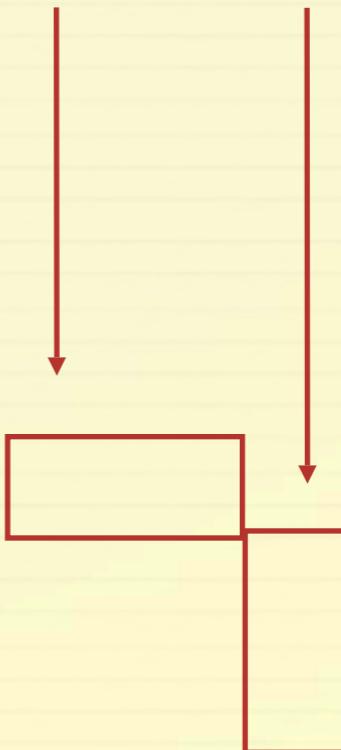
Attacking NFC-EMF



Social Networks: very easy to collect private and sensitive information about individuals.

Motivations

“Handless pick-pocket”



Motivations

“Handless pick-pocket”

User's mother born on **12/07/1969**

Motivations

“Handless pick-pocket”

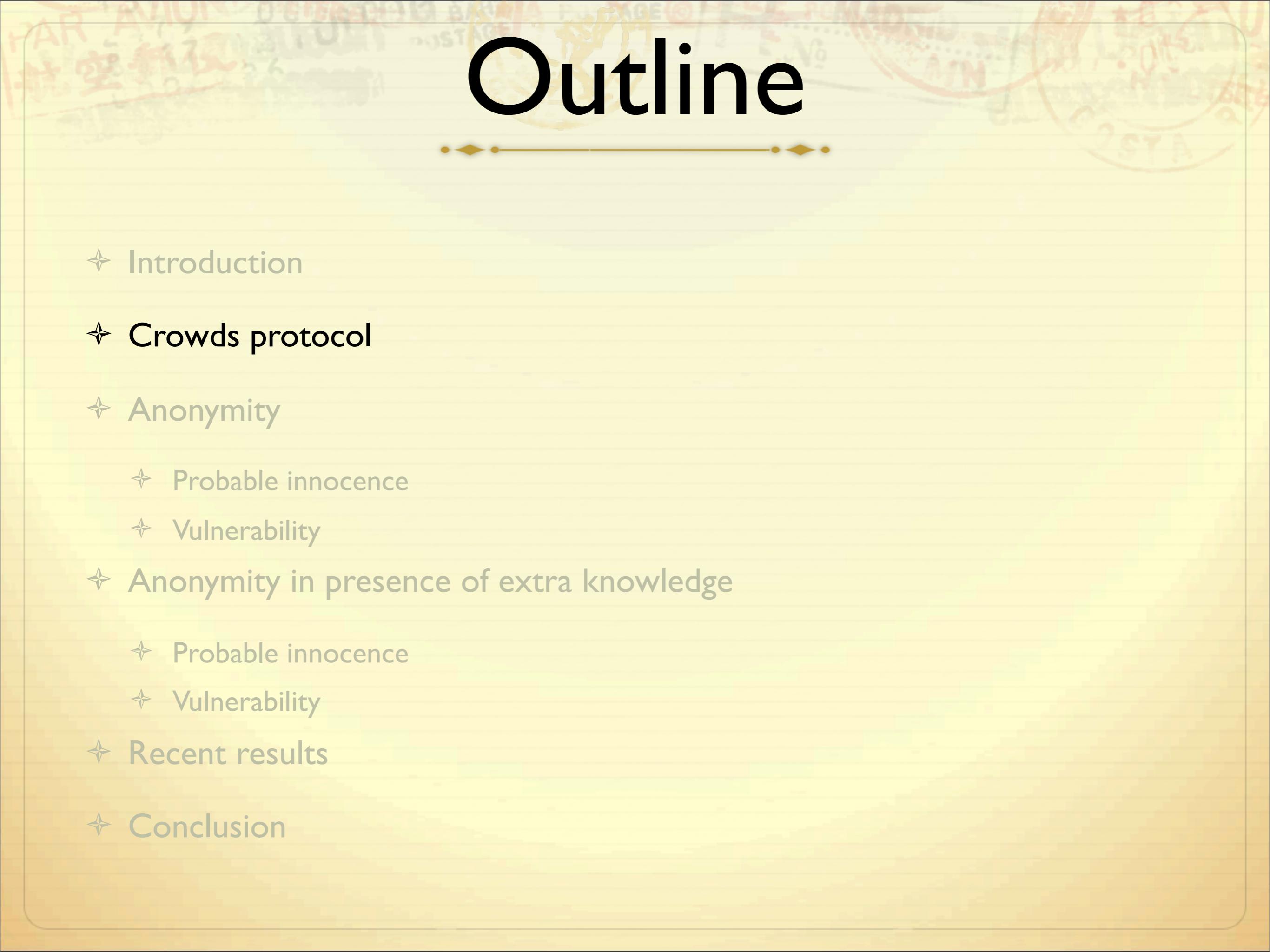
User's mother born on **12/07/1969**

Motivations

“Handless pick-pocket”

Scan his pocket

User's mother born on 12/07/1969

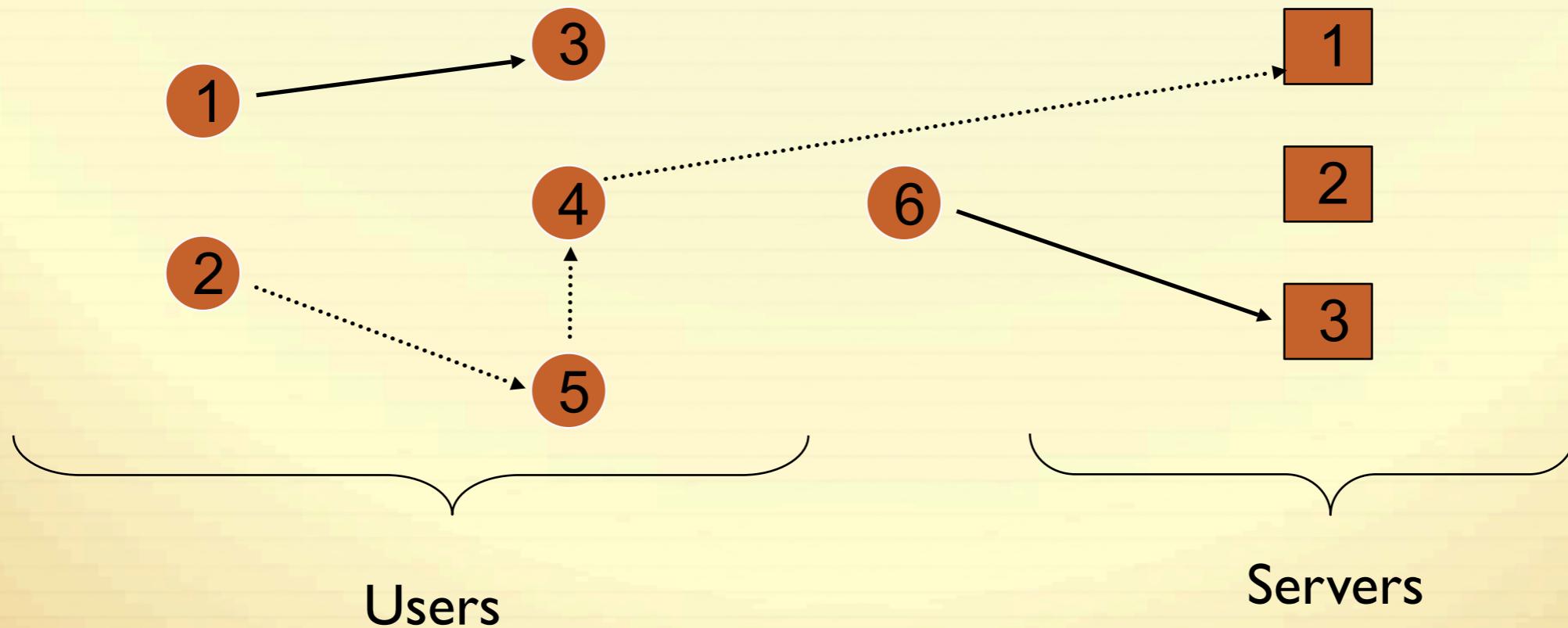


Motivations

Extra knowledge

★ Our goal: investigate the impact of the attacker's extra knowledge on the security of information hiding protocols.

Outline

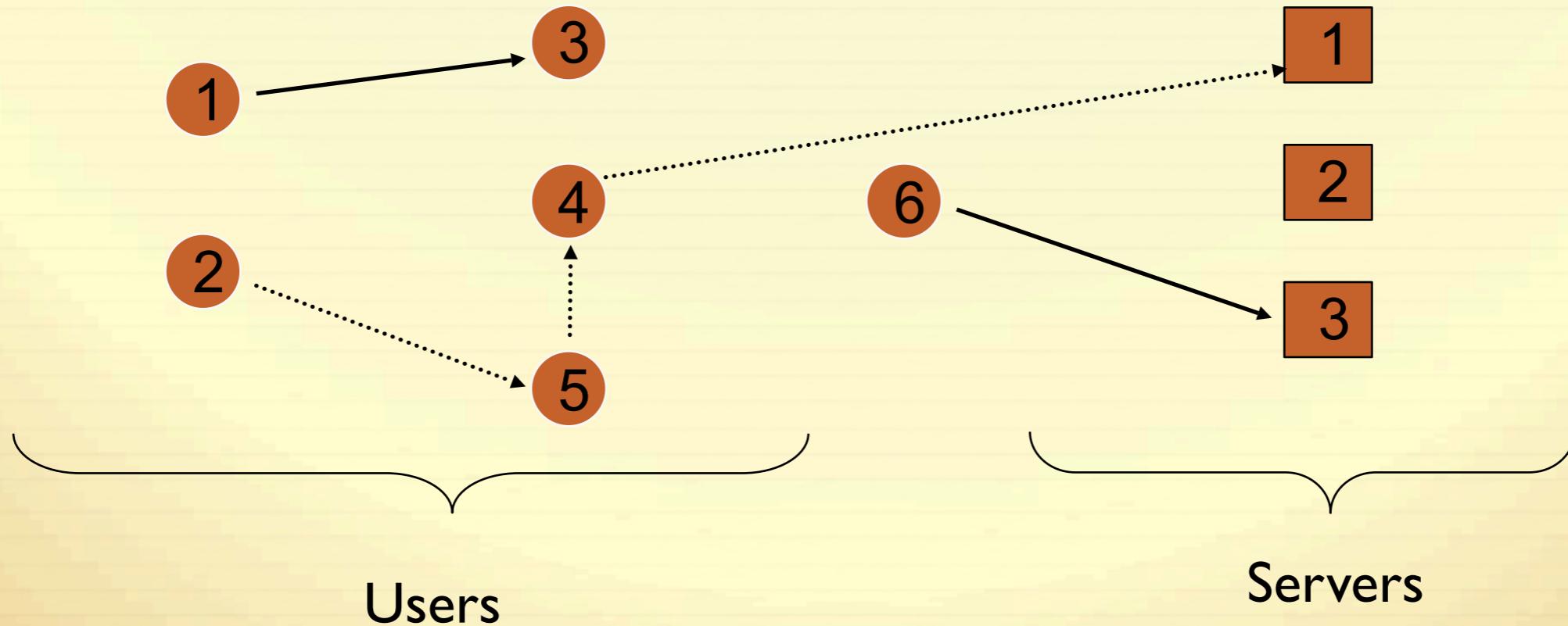


- ❖ Introduction
- ❖ Crowds protocol
- ❖ Anonymity
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Anonymity in presence of extra knowledge
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Recent results
- ❖ Conclusion

Crowds

The protocol

❖ **Crowds** [Reiter and Rubin 1998]: allows Internet users to perform anonymous web transactions.

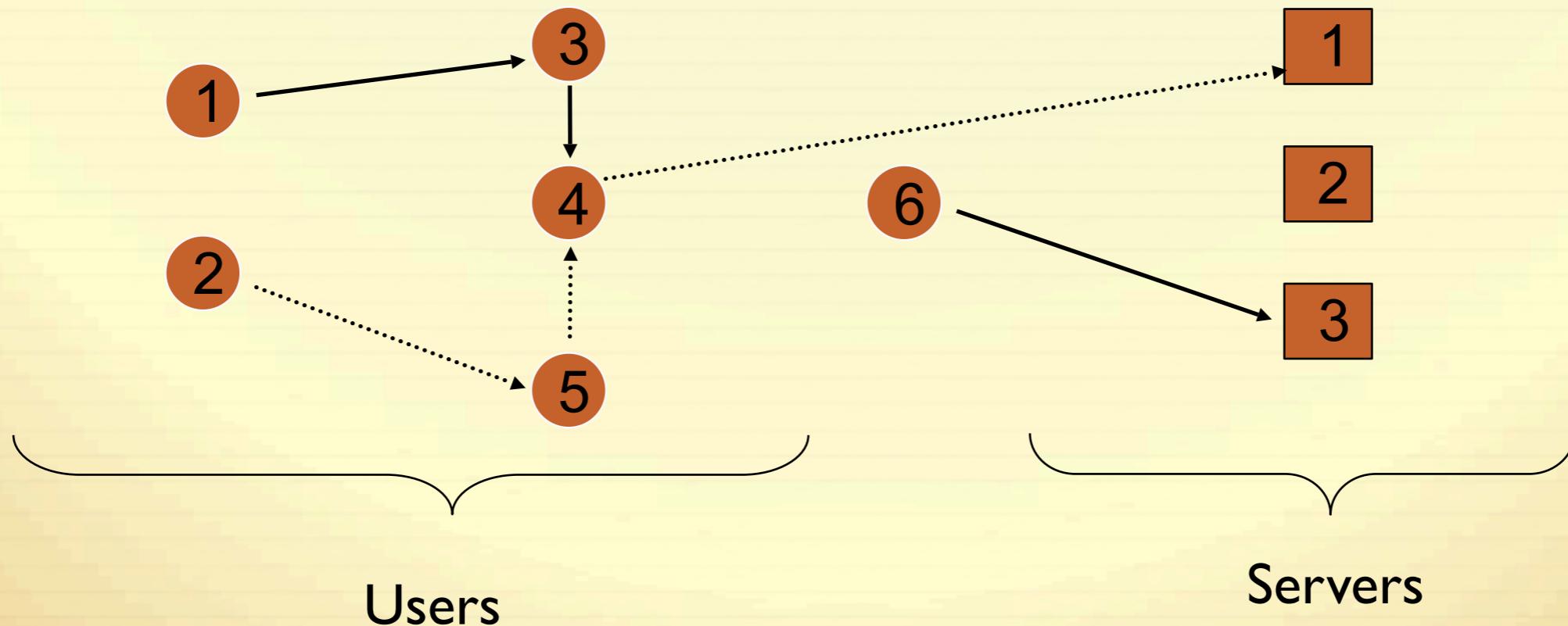


Crowds

The protocol

★ **Crowds** [Reiter and Rubin 1998]: allows Internet users to perform anonymous web transactions.

Flips a biased coin

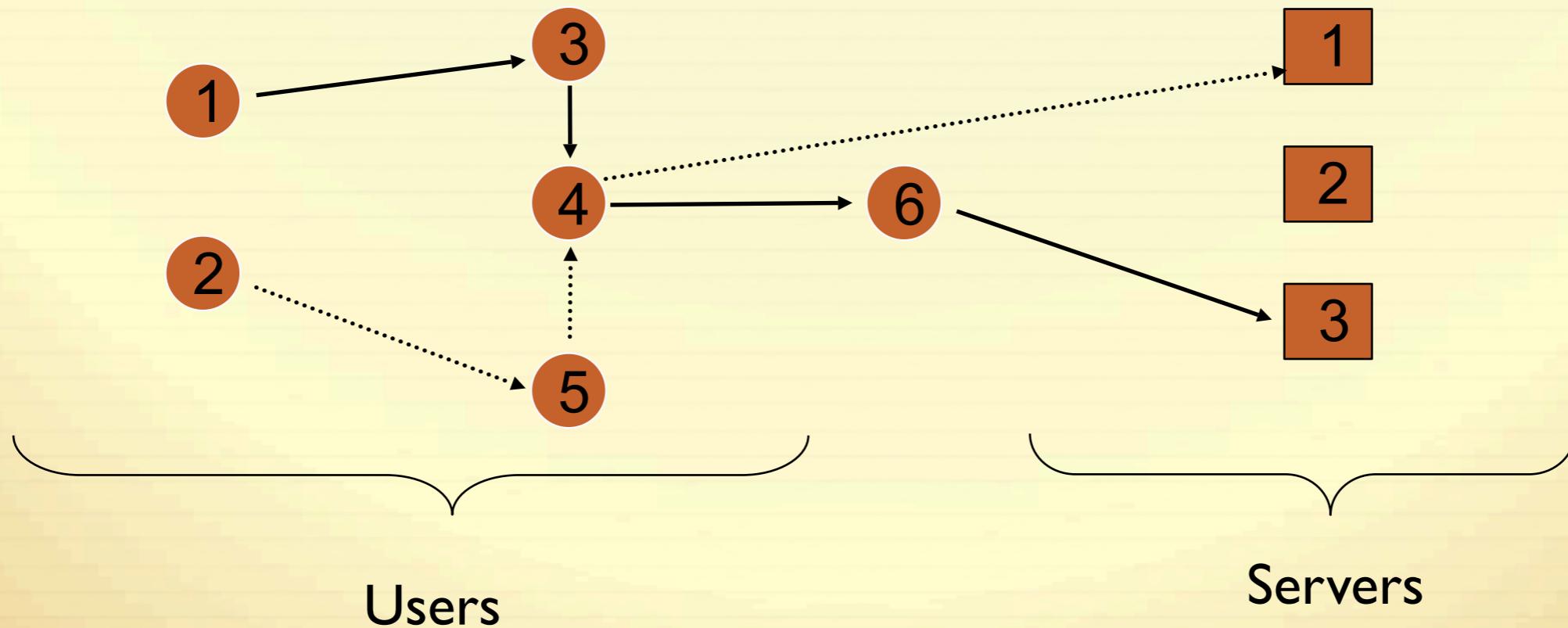


Crowds

The protocol

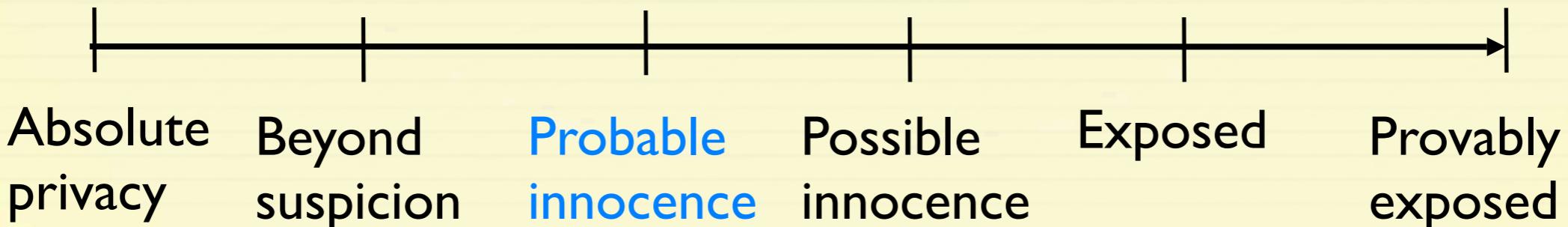
★ **Crowds** [Reiter and Rubin 1998]: allows Internet users to perform anonymous web transactions.

Flips a biased coin



Crowds

The protocol


★ **Crowds** [Reiter and Rubin 1998]: allows Internet users to perform anonymous web transactions.

Flips a biased coin

Probable Innocence

Informal definition

“A sender is probably innocent if, from the attacker's point of view, the sender appears no more likely to be the originator than to not be the originator”

Probable Innocence

Formal definition

- ❖ **Members:** a total of m members participating in the protocol
 - ❖ n honest members
 - ❖ $c = (m-n)$ corrupted members or collaborating attackers
- ❖ **Anonymous events:** a random variable A distributed over $\{a_1, a_2 \dots, a_n\}$, where a_i indicates that the honest user i is the initiator of the message.
- ❖ **Observable events:** a random variable O distributed over $\{o_1, o_2 \dots, o_n\}$, where o_i indicates that user i is honest and forwards the message to a corrupted user. In this case we say that user i is **detected**.

Probable Innocence

Formal definition

Definition [Reiter and Ruben, 98]: a protocol satisfies probable innocence if

$$\forall i \ p(o_i | a_i) \leq 1/2$$

$$\forall i \ p(a_i | o_i) \leq 1/2$$

Probable Innocence

Formal definition

Definition [Reiter and Ruben, 98]: a protocol satisfies probable innocence if

$$\forall i \ P(o_i | a_i) \leq 1/2$$

Definition [Halpern and O'Neill, 05]

$$\forall i \ P(a_i | o_i) \leq 1/2$$

Probable Innocence

Formal definition

Proposition: if the a priori distribution is uniform then

$$\forall i \ p(o_i | a_i) = p(a_i | o_i)$$

$$p(o_j | a_i) p(a_i) = p(a_i | o_j) p(o_j)$$

Probable Innocence

Formal definition

Proposition: if the a priori distribution is uniform then

$$\forall i \ p(o_i | a_i) = p(a_i | o_i)$$

Proof: by Bayes theorem we have

$$p(o_j | a_i) p(a_i) = p(a_i | o_j) p(o_j)$$

If **A** is uniformly distributed then (in Crowds) **O** is uniformly distributed too.
Hence $p(a_i) = p(o_j) = 1/n$

Probable Innocence

extended

Definition: a protocol satisfies α -probable innocence ($0 \leq \alpha \leq 1$) if

$$\forall i \ p(a_i \mid o_i) \leq \alpha$$

Vulnerability

[Smith 09]

[In Crowds]

$$\forall i \neq j \quad p(a_i | o_i) > p(a_j | o_i)$$

$$V(A) = \max_i p(a_i)$$

$$V(A | O) = \sum_j p(o_j) \max_i(p(a_i | o_j))$$

Vulnerability

[Smith 09]

[In Crowds]

$$\forall i \neq j \quad p(a_i | o_i) > p(a_j | o_i)$$

The **a priori vulnerability** of a random variable A is

$$V(A) = \max_i p(a_i)$$

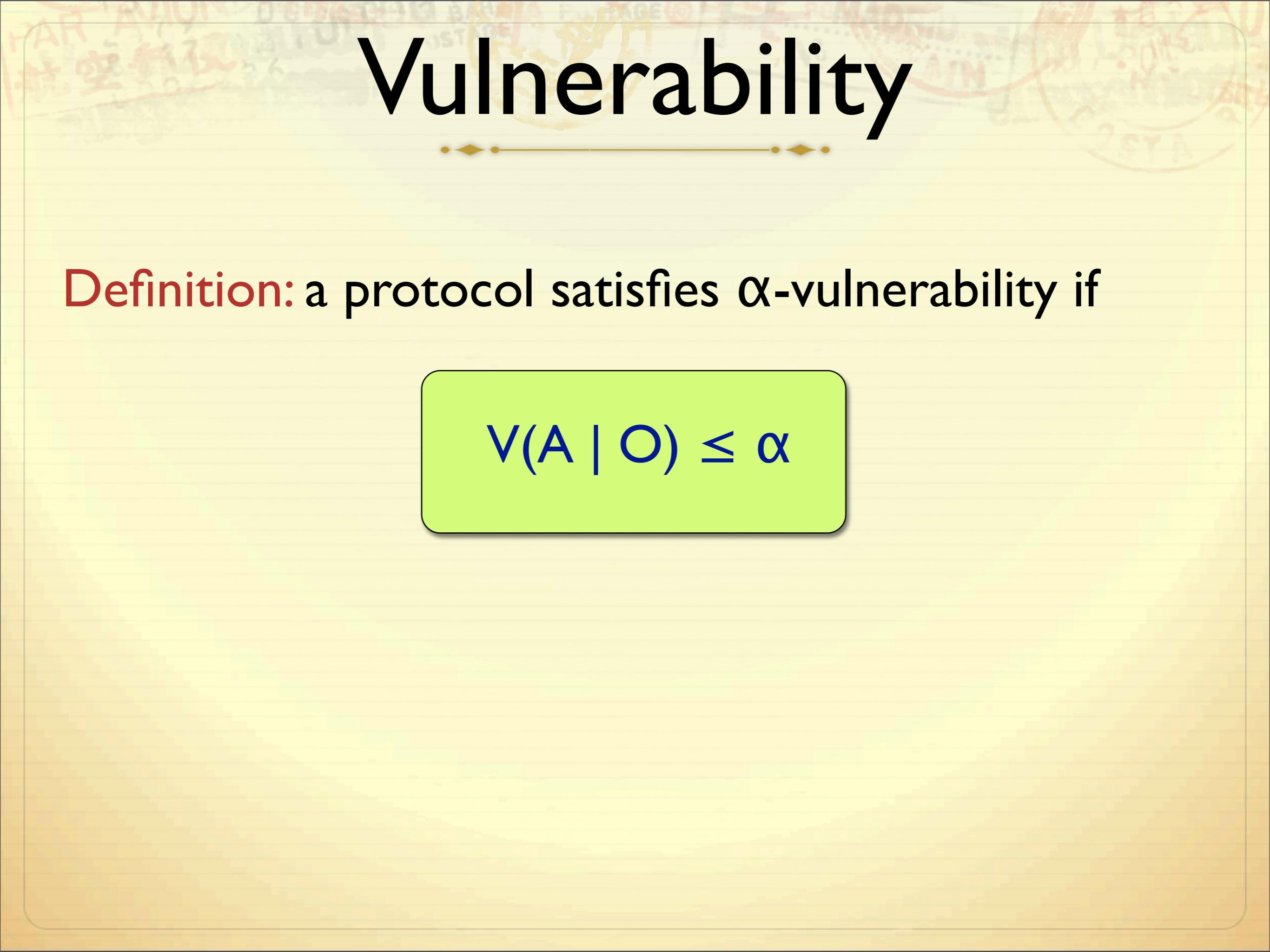
$$V(A | O) = \sum_j p(o_j) \max_i(p(a_i | o_j))$$

Vulnerability

[Smith 09]

[In Crowds]

$$\forall i \neq j \quad p(a_i | o_i) > p(a_j | o_i)$$


The **a priori vulnerability** of a random variable A is

$$V(A) = \max_i p(a_i)$$

The **a posteriori vulnerability** of a random variable A is

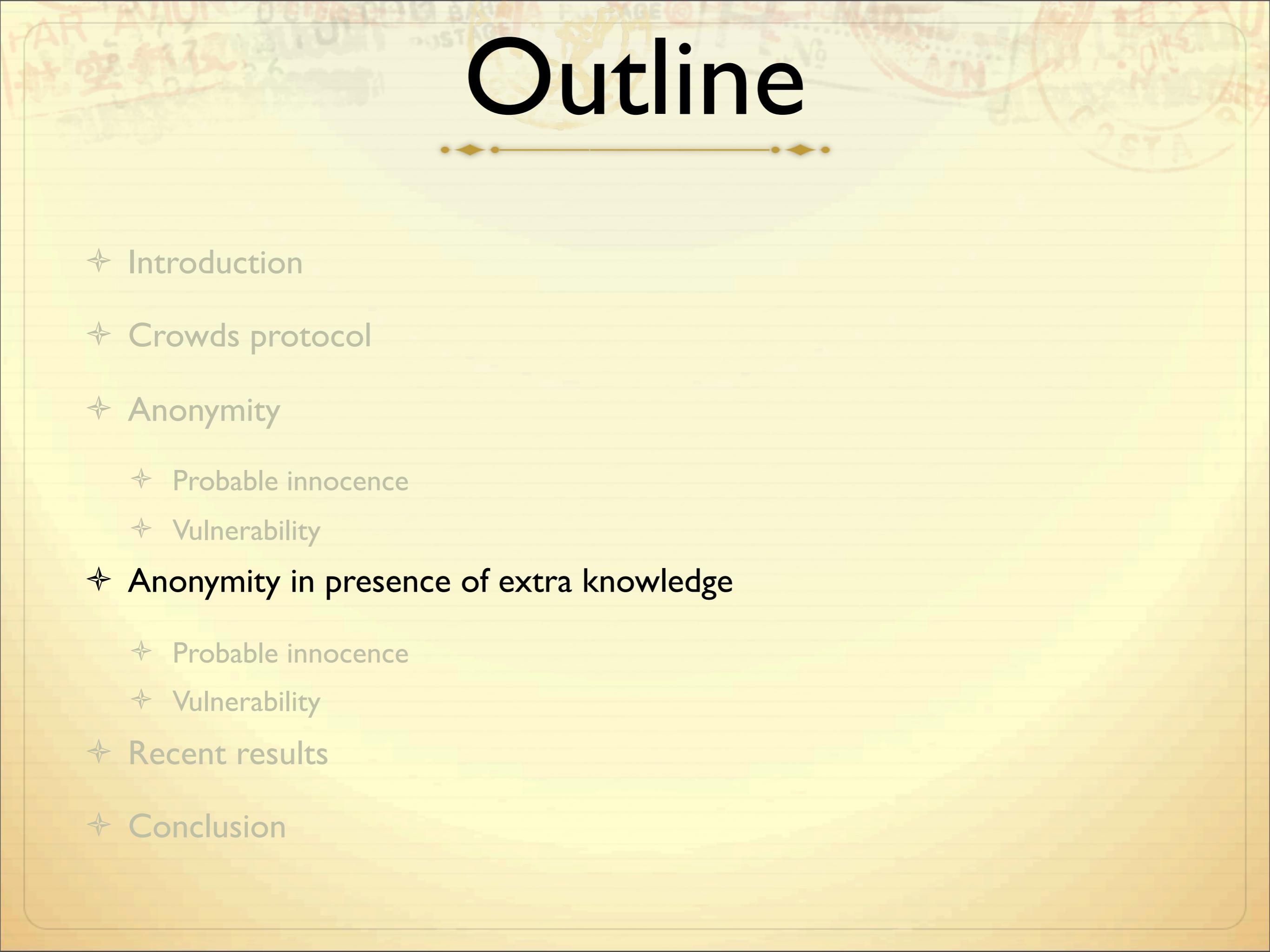
$$V(A | O) = \sum_j p(o_j) \max_i(p(a_i | o_j))$$

Vulnerability

Definition: a protocol satisfies α -vulnerability if

$$V(A | O) \leq \alpha$$

Vulnerability

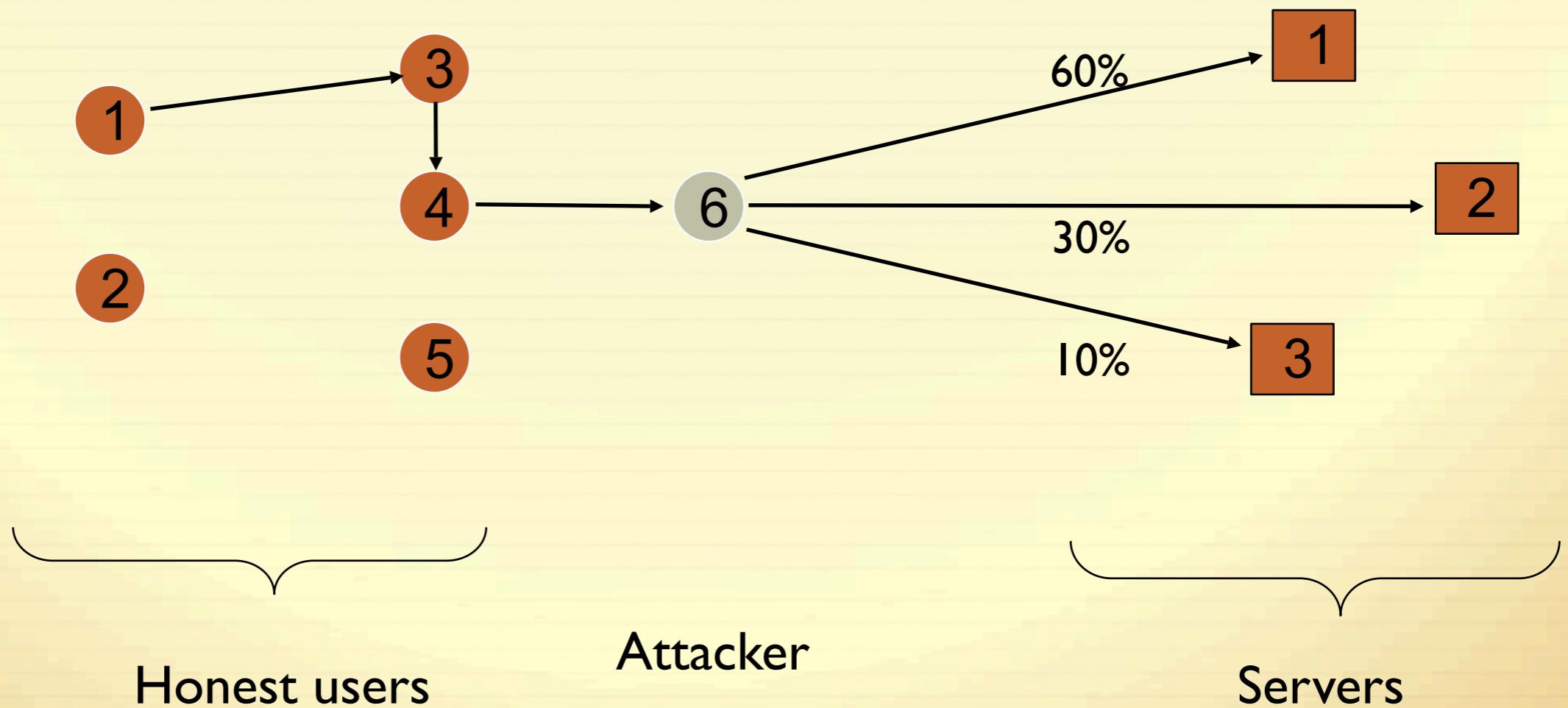

Definition: a protocol satisfies α -vulnerability if

$$V(A | O) \leq \alpha$$

Proposition:

1. α -probable innocence implies α -vulnerability.
2. If the **a priori distribution is uniform** then the two notions coincide.

Outline



- ❖ Introduction
- ❖ Crowds protocol
- ❖ Anonymity
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Anonymity in presence of extra knowledge
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Recent results
- ❖ Conclusion

Extra knowledge

••• (in Crowds) •••

- ★ **Fixed paths:** allows attackers to identify the users' preference level of the servers.

Extra knowledge

Probable innocence

$$\forall i, k \ p(a_i \mid o_i, s_k) \leq \alpha$$

Extra knowledge

Probable innocence

❖ Modeling the extra knowledge

- ❖ **Extra observables:** a random variable S distributed over the set $\{s_1, s_2, \dots, s_r\}$.
- ❖ **Correlation between S and A :** the conditional probabilities matrix $P(s_k | a_i)$.

$$\forall i, k \ P(a_i | o_i, s_k) \leq \alpha$$

Extra knowledge

Probable innocence

❖ Modeling the extra knowledge

- ❖ **Extra observables:** a random variable S distributed over the set $\{s_1, s_2, \dots, s_r\}$.
- ❖ **Correlation between S and A :** the conditional probabilities matrix $p(s_k | a_i)$.
- ❖ **Definition [First attempt]:** a protocol satisfies α –probable innocence in presence of extra knowledge if

$$\forall i, k \ p(a_i | o_i, s_k) \leq \alpha$$

Extra knowledge

Probable innocence

- ★ **Example 1:** an instance of Crowds with 6 members and 2 servers
 - ★ 5 honest members {1,2,3,4,5}
 - ★ One attacker {6}
 - ★ Probability of forwarding (of the biased coin) $P_f = 3/4$
 - ★ Members {1,2} prefer the first server:
 $\forall i \in \{1,2\} P(s_1 | a_i) = 3/4$
 - ★ Members {3,4,5} prefer the second server:
 $\forall i \in \{3,4,5\} P(s_2 | a_i) = 3/4$

Extra knowledge

Probable innocence

- Extra knowledge does not alter the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{14}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_2	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{14}$	$\frac{2}{7}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_3	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_4	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_5	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{20}$	$\frac{3}{20}$	$\frac{3}{5}$

Extra knowledge

Probable innocence

- Extra knowledge does not alter the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{14}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_2	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{14}$	$\frac{2}{7}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_3	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_4	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_5	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{20}$	$\frac{3}{20}$	$\frac{3}{5}$

Extra knowledge

Probable innocence

- Extra knowledge does not alter the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{2}{3}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{2}{7}$	$\frac{1}{14}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_2	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{14}$	$\frac{2}{7}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
a_3	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_4	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{1}{12}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{5}$	$\frac{3}{20}$	$\frac{3}{20}$
a_5	$\frac{1}{18}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{3}$	$\frac{3}{14}$	$\frac{3}{14}$	$\frac{3}{20}$	$\frac{3}{20}$	$\frac{3}{5}$

Extra knowledge

Probable innocence

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
- ❖ 5 honest members {1,2,3,4,5}

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}
 - ❖ Probability of forwarding (of the biased coin) $p_f = 3/4$

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}
 - ❖ Probability of forwarding (of the biased coin) $p_f = 3/4$
 - ❖ Members {1,2} prefer the first server:

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}
 - ❖ Probability of forwarding (of the biased coin) $p_f = 3/4$
 - ❖ Members {1,2} prefer the first server:
$$\forall i \in \{1,2\} p(s_1 | a_i) = 9/10$$

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}
 - ❖ Probability of forwarding (of the biased coin) $p_f = 3/4$
 - ❖ Members {1,2} prefer the first server:
$$\forall i \in \{1,2\} p(s_1 | a_i) = 9/10$$
 - ❖ Members {3,4,5} prefer the second server:

Extra knowledge

Probable innocence

- ❖ **Example 2:** an instance of Crowds with 6 members and 2 servers
 - ❖ 5 honest members {1,2,3,4,5}
 - ❖ One attacker {6}
 - ❖ Probability of forwarding (of the biased coin) $p_f = 3/4$
 - ❖ Members {1,2} prefer the first server:
$$\forall i \in \{1,2\} p(s_1 | a_i) = 9/10$$
 - ❖ Members {3,4,5} prefer the second server:
$$\forall i \in \{3,4,5\} p(s_2 | a_i) = 9/10$$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

- ❖ Extra knowledge alters the relevance of the detection

$p(a o, s)$	o_1, s_1	o_2, s_1	o_3, s_1	o_4, s_1	o_5, s_1	o_1, s_2	o_2, s_2	o_3, s_2	o_4, s_2	o_5, s_2
a_1	$\frac{3}{4}$	$\frac{3}{16}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_2	$\frac{3}{16}$	$\frac{3}{4}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{56}$	$\frac{1}{56}$	$\frac{1}{56}$
a_3	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{14}$	$\frac{9}{56}$	$\frac{9}{56}$
a_4	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{1}{24}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{14}$	$\frac{9}{56}$
a_5	$\frac{1}{48}$	$\frac{1}{48}$	$\frac{1}{24}$	$\frac{1}{24}$	$\frac{1}{6}$	$\frac{9}{32}$	$\frac{9}{32}$	$\frac{9}{56}$	$\frac{9}{56}$	$\frac{9}{14}$

Extra knowledge

Probable innocence

Definition [Safe version]: a protocol satisfies α -probable innocence in presence of extra knowledge if

$$\forall i, j, k \ p(a_i \mid o_j, s_k) \leq \alpha$$

Extra knowledge

Probable innocence

Proposition [Impact of the extra info]

1. $\forall i, j, k \ p(a_i | o_j, s_k) \leq \alpha$ if $p(a_i | o_j) \leq q\alpha$

2. If $\forall i, j, p(a_i | o_i) = p(a_j | o_j)$ then

$\forall i, j, k \ p(a_i | o_j, s_k) \leq \alpha$ iff $p(a_i | o_j) \leq q\alpha$

where

$$q = \min_{i,j,k} \left(\frac{p(s_k | o_j)}{p(s_k | a_i)} \right)$$

Extra knowledge

Vulnerability

Definition: a protocol satisfies α -vulnerability in presence of extra knowledge if

$$V(A | O, S) \leq \alpha$$

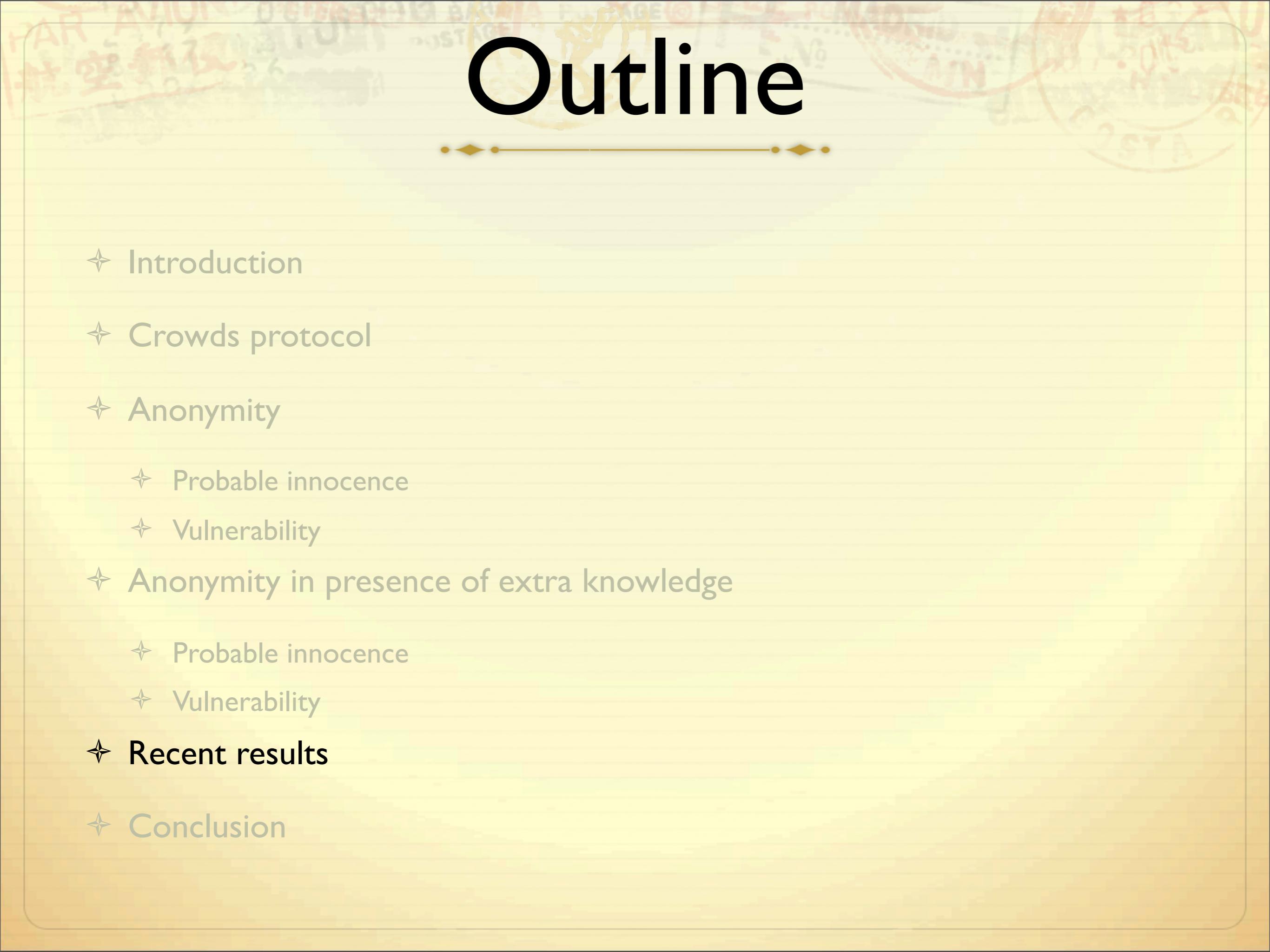
where

$$V(A | O, S) = \sum_{j,k} P(o_j, s_k) \max_i (P(a_i | o_j, s_k))$$

Extra knowledge

Vulnerability

Proposition [Impact of the extra info] Assume that
 $\forall i \ p(o_i | a_i) = p = \max_{i,j} p(o_j | a_i)$ then


1. $V(A | O, S) \leq \alpha$ if $V(A | O) \leq \alpha/(qr)$

2. If the a priori distribution is uniform and $\frac{(1-p)}{n-1}q \leq \frac{(1-q)}{r-1}p$ then
 $V(A | O, S) \leq \alpha$ iff $V(A | O) \leq \alpha$

where

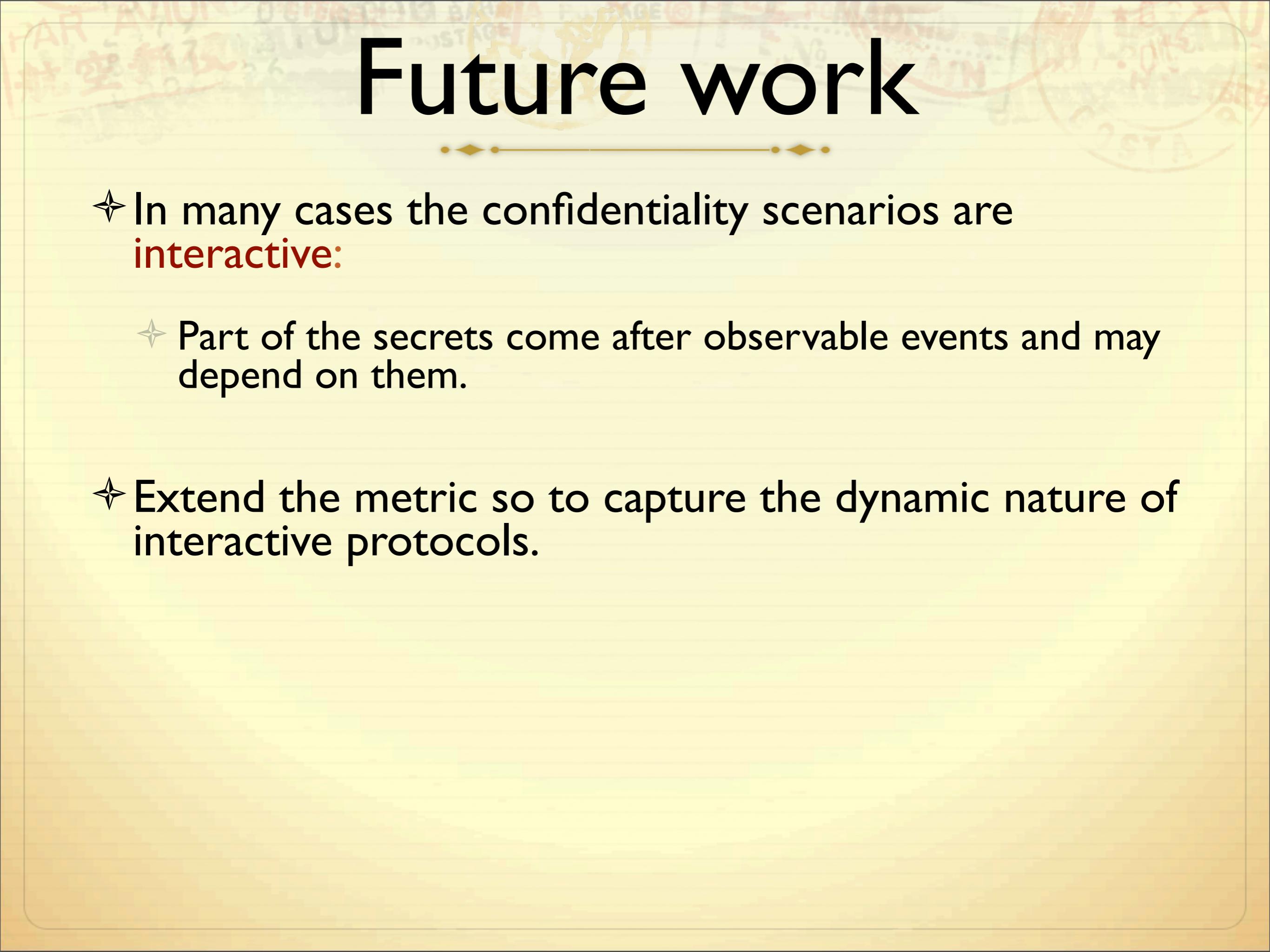
- $r = \text{card}(\{s_1, s_2, \dots, s_r\})$
- $q = \max_{i,k} p(s_k | a_i)$

Outline

- ❖ Introduction
- ❖ Crowds protocol
- ❖ Anonymity
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Anonymity in presence of extra knowledge
 - ❖ Probable innocence
 - ❖ Vulnerability
- ❖ Recent results
- ❖ Conclusion

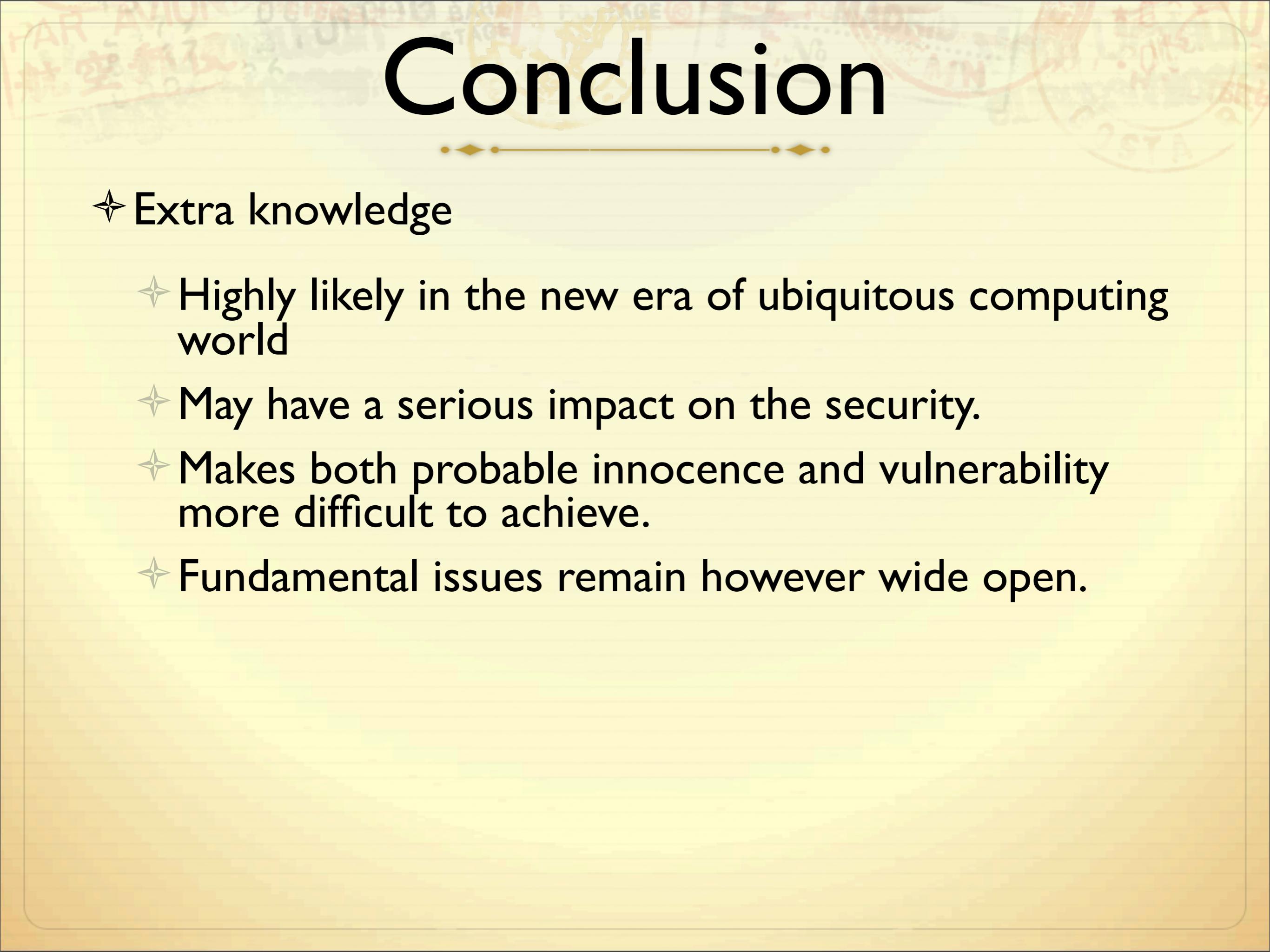
Recent results

Trust in Crowds


- ❖ Extend Crowds protocol with trust:
 - ❖ Associate to each principal a trust level $t \in [0, 1]$.
 - ❖ The forwarding process is governed by a policy where the probability of choosing a member depends on her trust level.
- ❖ Results:
 - ❖ Study the impact of such probabilistic behaviour of principals.
 - ❖ Establish necessary and sufficient criteria for choosing an appropriate policy of forwarding between members in order to achieve a desired level of privacy.

Recent results

Beliefs


- ❖ **Open problem:** measure and account for the **accuracy** of the adversary extra knowledge.
- ❖ **Integrate the notion of adversary's beliefs:**
 - ❖ Assume that both the actual a priori distribution of the hidden input and its correlation to the extra information are unknown to the adversary.
 - ❖ Generalise the approach to information flow systems.
- ❖ **Results:**
 - ❖ New metric for quantitative information flow based on the concept of vulnerability that takes into account the adversary's beliefs.
 - ❖ Our model allows to identify the levels of accuracy for the adversary's beliefs which are compatible with the security of a given program or protocol.

Future work

- ❖ In many cases the confidentiality scenarios are **interactive**:
 - ❖ Part of the secrets come after observable events and may depend on them.
- ❖ Extend the metric so to capture the dynamic nature of interactive protocols.

Conclusion

- ❖ Extra knowledge
- ❖ Highly likely in the new era of ubiquitous computing world
- ❖ May have a serious impact on the security.
- ❖ Makes both probable innocence and vulnerability more difficult to achieve.
- ❖ Fundamental issues remain however wide open.