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Abstract—This paper presents a novel biologically-inspired
approach for tackling the problem of robot homing. In our
method the only information employed is optical flow. Optical
flow, which is not a property of landmarks like colour, shape,
and size but a property of the camera motion, is used for local-
ising an autonomous robot in a priori unknown environment.
Our method exploits the optical flow ‘fingerprint’ of landmarks
caused by the motion of the robot in the environment. For
this purpose, we have developed a training algorithm that
estimates the probability of observing the same landmark
from varying distances and velocities. Our method promises
to be computationally efficient and inexpensive. The simulation

results we present show the validity of our methods.

I. INTRODUCTION

Visual navigation lies at the heart of mobile robotics.

Homing (or inbound journey) refers to the navigation process

where an autonomous agent performs a return to its home po-

sition after having completed foraging (or outbound journey;

foraging is mainly attributed to a biological agent). A robot

may have to return to its base for a number of reasons like

recharging batteries, failure of a subsystem, or completion of

a task. The application areas of robots capable of performing

homing are plenty and vary. Search and rescue robots are

in need in areas that have been hit by earthquakes or in

environments that are hazardous for humans [1]. Planetary

missions to other regions constitute another application area

of robots whose navigation process involves returning back

to their base. In this paper we have developed a novel

approach to tackle the problem of robot homing using visual

modality as the only source of information. No other sensor

is provided to the robotic agent apart from two side-ways

cameras mounted on a simulated mobile platform.

Optical flow, that is the rate of change of image motion in

the retina or a visual sensor, is extracted from the motion of

the autonomous agent. The orientation of the cameras on the

robotic platform are perpendicular to the direction of motion

so as a translational optic flow information is generated.

Optic flow, which is not a property of the landmarks, like

colour, shape, and size, but a property of the camera motion

has been used for building topological maps in a priori

unknown environment based on the optical flow patterns of

the landmarks. The novelty of our method lies in the fact

that no information is given such as the position or the

velocity of the robot but only the optical flow ‘fingerprint’

of the landmarks caused by the motion of the robot. For
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this purpose, a training algorithm has been deployed and a

probability is inferred that is computed from the similarity of

the optical flow patterns between the outbound and inbound

journeys.

Biology is seen as an alternative solution to the problems

robots encounter which includes algorithmic complexity, per-

formance, and power consumption among others. Biological

inspiration provides simple, yet effective methods for the

solutions of such problems. The careful examination of

those methods has twofold gain. The study of the principles

of biological organisms entails making better autonomous

systems that will, in turn, help us perceive and understand

better the underlying mechanisms that underpin the biologi-

cal organisms.

This paper comprises five sections. Following is Section

II where related as well as background work is presented.

In Section III the methodology of the homing model is

described. Section IV presents the results of the statistical

model on the homing process of navigation. Finally, Section

V epitomizes the conclusions drawn from this work and

indicates a number of areas that further research is attainable.

II. RELATEDWORK

A large number of insects use optic flow for navigation.

Insects like Drosophila use the apparent visual motion of

objects to supply information about the three-dimensional

structure of the environment. The fly Drosophila uses optic

flow to pick near targets. Collett in [2] shows that in insects

the task of evaluating distances between objects is made

easier by making side-to-side movements of the head strictly

translational and disregarding any rotational components that

can influence the distance to the objects. Looming, i.e., image

expansion, can also distort the actual distance to the object

as the apparent size compared to the physical size of the

object differs. Collett in his experiments [2] ascertains that

Drosophila like many insects limit rotational flow during

exploratory locomotion. In fact, Drosophila move in straight-

line segments and restrict any rotation to saccades at the end

of each segment. Schuster et al. [3] have used virtual reality

techniques to show that fruit flies use translational motion for

picking up the nearest object while disregarding looming.

Ladybirds also move in straight-line segments and rely

on translational optic flow rather that looming cues. Other

animals like locusts and mantids turn their head from one

side to the other just before jumping. Kral and Poteser [4]

suggest that locusts and mantids use translational motion

to infer the three-dimensional structure of the environment

and in particular the distance to the object they wish to

approach. In some other experiments performed by Tautz et

al. [5] trained bees had to travel large distances across various



scenes that included both land and water. The results showed

that the flights over water had a significantly flatter slope

than the ones above land. This suggests that the perception of

distance covered by bees is not absolute but scene-dependent

where the optic flow perceived is evidently larger. This may

also suggest why some bees are drowning by ‘diving’ into

lakes or the sea while flying above water. The distance and

direction to a food source is communicated in the bees by

means of waggle dances that integrate retinal image flow

along the flight path [6], [7].

Two well-known homing models are the snapshot and

the Average Landmark Vector (ALV) model. The snapshot

model is an implementation of the template hypothesis [8],

[9]. It requires a panoramic snapshot of the goal position, be

it a hive, nest, or a food source. Along with the snapshot

the compass direction is stored. The snapshot model is

an image matching process between a snapshot taken at a

goal position and a snapshot containing the current view.

The image obtained from the omnidirectional camera is

unwrapped and a threshold operation is performed to yield

a one-dimensional black and white image. The landmarks

are denoted as black marks on the image. Then, this is

compared with the snapshot of the current view to produce

the homing vector. The homing vector is a two-dimensional

vector pointing towards the home position and is obtained

by summing up all radial and tangential vector components.

The ALV model [10] uses, too, a processed panoramic image

but, in contrast to the snapshot model, it need not be stored.

Only a two-dimensional vector for each landmark needs to be

stored that points to the direction of the landmark. Matching

and unwrapping of the image are not required since the

calculations are performed on the basis of vector compo-

nents. Thus, ALV is more parsimonious than the snapshot

model. Nevertheless, snapshots in the ALV model have to

be captured and processed to produce a one-dimensional

picture, as is in the snapshot model. A compass information

is required for the ALV model as well.

The snapshot and the Average Landmark Vector are two

models that have been inspired by the way insects perform

homing. On one hand, their main advantage is the simplicity

of the method that entails a low computational complexity.

On the other hand, their disadvantages are that both methods

are applied at the end of the homing process, that is, when an

agent is close to its home position. Moreover, all landmarks

need to be visible both in the current snapshot as well as in

the stored snapshot, that is, they must be the same landmarks

in both snapshots. In addition to the biologically inspired

methods, other methods of homing have been developed

that make use of the Extended Kalman Filter (EKF) or

homing methods that are based on panoramic vision [11].

The former are trying to tackle the Simultaneous Localisation

and Mapping (SLAM) problem and make use of probability

to build accurate maps that are based on vehicle position

estimates. In turn, these maps provide a more accurate

estimate of the vehicle’s position.

A work by Newman et al. [12] addresses the problem of

homing through the localisation and mapping method using

a laser scanner and wheel encoders. In their method they

extract line segments from a laser scanner that act as features

while the position of the robot is calculated from wheel

encoder readings. A major issue of the SLAM methodology

lies in the accumulation of errors as the robot navigates.

The slippage of the terrain causes erroneous sensor readings

and, the harsher a terrain is, the larger the accumulation of

errors that occur. The main disadvantage of SLAM, however,

is the computational cost that increases quadratically as

new observations are made by the sensor be it a laser

scanner or a camera [13], [14]. Updating all features and

the joint covariance matrix each time a new observation

is made adds significantly to the computational cost of the

method. Another issue in the SLAM methodology is the data

association problem where features or landmarks look alike.

FastSLAM uses Rao-Blackwellised particle filters and is a

method that tries to alleviate the data association problem

[15], [16]. SLAM methods can be applied to a wide range of

environments, such as indoors, outdoors, dynamic, or large-

scale environments. It can, thus, be understood why SLAM

has risen to one of the most research-intensive problems in

the robotics field.

A. Applications of Optical Flow

Lately a growing number of autonomous vehicles have

been built using techniques inspired by insects and, in

particular, optical flow. One of the first works that studied the

relation of scene geometry and the motion of the observer

was by Gibson [17]. A large amount of work, however, has

been focussed on obstacle avoidance using optical flow [18],

[19], [20]. The technique, generally, works by splitting the

image (for single camera systems) into left- and right-hand

side. If the summation of vectors of either side exceeds a

given threshold then the vehicle is about to collide with an

object. Similarly, this method has been used for centring

autonomous robots in corridors or even a canyon [21] with

the difference that the summation of vectors this time must be

equal in both the left-hand side and the right-hand side of the

image. Ohnishi and Imiya [22] utilise optical flow for both

obstacle avoidance and corridor navigation. The performance

of optical flow has also been tested in underwater colour

images by Madjidi and Negahdaripour [23]. Vardy [24]

deploys various optical flow techniques which are compared

using block matching and differential methods to tackle

homing.

In a recent work implemented by Kendoul et al. [25]

optic flow is used for a fully autonomous flight control

of an Unmanned Aerial Vehicle (UAV). The distance trav-

elled in this UAV is calculated by integrating the optical

flow over time. A similar work for controlling a small

UAV in confined and cluttered environments has also been

implemented by Zufferey et al. [26]. Barron et al. [27]

discuss the performance of optical flow techniques. Their

comparison is focussed on accuracy, reliability and density

of the velocity measurements. Other works employ optic flow



methods for depth perception [28], motion segmentation [29],

or estimation of ego-motion [30].

A similar technique to optical flow developed by Langer

and Mann [31] called optical snow arises in situations where

camera motion occurs in highly cluttered 3D environments.

Such cases involve a passive observer watching the fall of the

snow, hence, the name of the method. Optical snow has been

inspired by research in animals that inhabit in highly dense

and cluttered environments; such animals include the rabbit,

the cat, and the bird. The properties of the optical snow are

that yields dense motion parallax with many depth disconti-

nuities occurring in almost all image points. This comes in

contrast to the classical methods that compute optical flow

and presuppose temporal persistence and spatial coherence.

In the work of Langer and Mann [31] the properties of optical

snow in the Fourier domain are presented and investigate its

computational problems on motion processing.

B. Mathematical Foundations of Optical Flow

This section describes the mathematics that underlie the

optic flow algorithms, and in particular, the Lucas-Kanade

(LK) algorithm [32] that has been employed in this research

work. In order for the optic flow algorithms to perform

well, some suitable images need to be chosen. This suit-

ability refers to images that have high texture and contain a

multitude of corners. Such images have strong derivatives

and, when two orthogonal derivatives are observed then

this feature may be unique, and thus, good for tracking.

Tracking a feature refers to the ability of finding a feature

of interest from one frame to a subsequent one. Tracking the

motion of an object can give the flow of the motion of the

objects among different frames. In Lucas-Kanade, algorithm

corners are more suitable than edges for tracking as they

contain more information. For the implementation of the LK

algorithm the OpenCV library [33] has been used.

The optic flow algorithm of Lucas-Kanade presupposes

three main criteria to produce satisfactorily results. These

are:

1) Brightness constancy. The brightness of a pixel does

not change from frame to frame, that is I(x, y, t) =
I(x + u, y + v, t + 1).

2) Temporal persistence or small movements. The motion

of the object that is tracked moves smoothly from

frame to frame, that is Ixu + Iyv + It = 0, where
v, u are the x, y components of the velocity ~u.

3) Spatial coherence. Neighbouring points of a pixel that

belong to the same surface have typically similar

motion, and project to nearby points on the image plane

[34].

The equation in the second criterion is an under con-

strained equation since it involves two unknowns for any

given pixel and cannot be used to solve the motion of a pixel

in the two dimensions. For this reason the third criterion is

used as an assumption to solve the full motion of a pixel

in the two dimensions. The third criterion assumes that the

neighbouring pixels of any given pixel move coherently as

they belong to the same object and project to the same

image plane as the given pixel projects. Thus, for solving the

problem in case, the brightness values of the neighbouring

pixels are taken and solve a system of linear equations [34].

Hence, if we take a window of 5 × 5 pixels a system of 25
linear equations needs to be solved. However, if a window is

too small the aperture problem may be encountered where

only one dimension of the motion of a pixel can be detected

and not the two-dimensional. On the other hand, if a window

is too large then the spatial coherence criterion may not

be met. Nevertheless, the system that needs to be solved

following a window of 5 × 5 pixels is expressed by (1)


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(1)

The goal on the above system of linear equations is to

minimise ||A~u− b||2 where A~u = b is solved by employing
least-squares minimisation as in (2),

(AT A)~u = AT b (2)

where AT A, ~u, and AT b are equal to (3),

[ ∑
I2

x

∑
IxIy∑

IxIy

∑
I2

y

]

︸ ︷︷ ︸

AT A

[
u
v

]

︸︷︷︸

~u

= −
[∑

IxIt∑
IyIt

]

︸ ︷︷ ︸

AT b

(3)

and the solution to the equation is given by (4)

~u =

[
u
v

]

= (AT A)−1AT b. (4)

If AT A is invertible, i.e., no zero eigenvalues, it means it
has full rank 2 and two large eigenvectors. This occurs in

images where there is high texture in at least two directions.

If the area that is tracked is an edge, then AT A becomes
singular, that is (5),

[ ∑
I2

x

∑
IxIy∑

IxIy

∑
I2

y

] [
−Iy

Ix

]

=

[
0
0

]

(5)

where −Iy, Ix is an eigenvector with eigenvalue 0. If the
area of interest is homogeneous then AT A ≈ 0 implying 0
eigenvalues. The reason that the LK algorithm was chosen is

that it is a fast and accurate optical flow algorithm. It relies

on local information rather than global as is the nature of

Horn and Schunck algorithm [35]. This has the advantage

of performing fast optic flow operations. Nevertheless, the

disadvantage of local information, that is derived from a

small window, is that large motions can move out of the

local window. The pyramidal approach of the LK algorithm

uses a coarse-to-fine iterative method, that is, various layers

in scale-space to overcome the local information problem.

Thus, the optical flow problem is first solved at the top layer



by tracking over large spatial scales and then as it proceeds

downwards to the lower layers the initial velocity criteria are

refined until it arrives at the raw image pixels.

III. METHODOLOGY

In this section we describe how the optical flow ‘signature’

of the landmarks, that is caused by the perceived motion

of the robot in the environment, can be used to localise

the robot during the homing process. Various landmarks

have been modelled and simulated from which the robot

passes through. The simulated landmarks have geometrical

shapes like a sphere or a rectangular and they are textured

in order to produce large amounts of optic flow (as is in real

environments). As mentioned in Section I the simulated robot

consists of two side-ways cameras which are perpendicular

to the direction of motion. This creates a translational optic

flow as the robot navigates through the environment. Every

landmark in the environment ‘emits’ a number of optic flow

vectors that are dependent on the distance between the robot

and the landmark, and the velocity of the robot. One of the

advantages of our method is that images are only captured

and are not used for storage or comparison. Storing and

comparing only the properties of vectors between different

frames, that is, the mean position of all the vectors and the

number of vectors, reduces the computational complexity and

the cost of the homing process.

During the outbound trip of the robot the camera calculates

and stores the optic flow vectors that are generated by the

motion of the vehicle. During this phase the robot builds

a topological map from the optical flow ‘fingerprint’ of the

landmarks. After the foraging trip has completed the homing

trip is initiated. In the homing phase, the robot compares

the optical flow patterns it currently perceives with the

ones occurred during the foraging journey. If the similarity

score (i.e., probability) between the two patterns is above a

given threshold, then the robot assumes the current landmark

observed is the same with the landmark observed during the

outbound trip. This information is then used to localise the

robot within the topological map. The similarity score of the

vectors is a probabilistic result of the Euclidean distance of

the vectors between the current image and the image taken

during the outbound journey.

In order for the robot to localise in an environment using

optic flow vectors, a training data set of n = 1000 obser-
vations has been implemented where a vector is observed

at varying distances between the robot and the landmark,

and at varying velocities. The distances and velocities chosen

to create the training set approximate the real distributions

of velocity and distance when a robot navigates in an

environment. Thus, a joint probability distribution has been

created by two continuous and independent variables, that is

velocity, C, and distance, D, and is expressed by (6)

fC,D(c, d) = fC(c) · fD(d) ∀c, d. (6)

The velocity and the distance variables have been drawn

from two Gaussian distributions with µ = 4, σ = 1 and
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Fig. 1. Histogram of vector deviations of the training algorithm and the log-
normal probability density function (pdf) fit. Mean and standard deviation
are µ = 2.24 and σ = 0.86, respectively.

µ = 11, σ = 3, respectively. The n observations model the
position of the vector in the plane in a varying combination of

distances and velocities. One assumption that needs to be met

in our method is that the majority of the vectors comprising

a given landmark should have the same, or almost the same

magnitude. In order to solve the similarity problem between

vectors, the mean, xk, yk, or centre point of every vector is

taken. Thus, summing up all the mean points of the training

set and dividing by the number of observations we end up

having the mean of the means, x̄, ȳ, as shown in (7)

x̄, ȳ =
1

n
·

n∑

k=1

xk, yk n = 1000. (7)

The mean of the means in an optic flow pattern can be

visualised as the centre of gravity in a physical system. We

then compute the Euclidean distances, χk, between the mean

of the means and the n observations as expressed by (8)

χk =
√

(xk − x̄)2 + (yk − ȳ)2. (8)

The histogram produced by the Euclidean distances, χk,

forms a log-normal probability density function (pdf) with

µ = 2.24 in log location and σ = 0.86 in log scale. Figure 1
shows the histogram of vector deviations and the probability

density function of the log-normal. The log-normal pdf is

deployed in order to infer a probability as to how likely it is

for the vectors of the current snapshot to have deviated when

compared with the vectors of a snapshot stored in memory.

Figure 2 depicts the cumulative distribution function (cdf) of

vector deviations and the log-normal.

The cumulative density function of log-normal is ex-

pressed by (9), where erfc is the complementary error

function and Φ is the standard normal cdf. The probability
density function of log-normal is given by (10)

FX(δ; µ, σ) =
1

2
erfc

[

− ln δ − µ

σ
√

2

]

= Φ

(
ln δ − µ

σ

)

(9)
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Fig. 2. Cumulative density functions (cdf) of vector deviations and the
log-normal distribution.

fX = (δ; µ, σ) =
1

δσ
√

2π
e−

(ln δ−µ)2

2σ2 δ > 0. (10)

Thus far, we have explained the methodology of the

training algorithm. We now move on to the process of cal-

culating a probability for the patterns observed by the robot

during the foraging and homing process. This probability will

aid the robot localise itself in the environment. During the

homing navigation process, the robot calculates the Euclidean

distance, δ, between the mean position, x̄, ȳ, of all the vectors
in a given landmark with the mean position of the vectors of

the landmarks stored in the database. Equations (11), (12),

and (13) describe the process for two distinct landmarks.

In (11), (12), r and s are the number of vectors for two
distinct landmarks i and j, one of which is observed during
the outbound trip while the other one is observed during the

inbound trip.

x̄i, ȳi =
1

r
·

r∑

a=1

xa, ya (11)

x̄j , ȳj =
1

s
·

s∑

b=1

xb, yb (12)

δ =
√

(x̄i − x̄j)2 + (ȳi − ȳj)2 (13)

P = 1 − Pδ (14)

The log-normal cdf then gives us the probability Pδ based

on the Euclidean distance δ between the two sets of vectors.
It is then subtracted from 1 to give the probability P as is
in (14). In addition, the probability P of the log-normal is
multiplied by the ratio of the number of the vectors as shown

in (15) with mini being the landmark i with the minimum

number of vectors and maxj being the landmark j with the

maximum number of vectors.

PT = P

(
mini

maxj

)

(15)

Fig. 3. Snapshot of the reference landmark and its optical flow ‘signature’
taken at a distance of 11m and a velocity of 4km/h.

Fig. 4. Clustering of two landmarks by employing the histogram of their
vectors.

This results to the total probability (or similarity score),

PT . Thus, even if the Euclidean distance, δ, between two
sets of vectors is small, the total probability, PT , can be low

if the ratio of the vectors is small. Hence, two patterns which

are totally different may have a small Euclidean distance that

yields a high probability. Multiplying the probability value,

P , by the ratio of the number of vectors can drop significantly
the total probability value, PT , assuming that the number of

vectors of the two sets are not of the same multitude. The

landmark of Fig. 3 acts as a reference for the following snap-

shots in order to demonstrate the similarity score at varying

distances and velocities, and between different landmarks.

The optic flow images are created by calculating the motion

of a landmark between two contiguous frames. It should also

be noted that the flow vectors appear upside down since the

images are read from top to bottom.

In this work, a clustering algorithm has also been imple-

mented for counting the number of landmarks. The counting

of landmarks is a method that is used by insects as revealed

in a recent work by Dacke and Srinivasan [36]. Although

the clustering algorithm is a rather simple one, distinguish-

ing between different landmarks is an important task. The



number of landmarks each one of the two cameras can

distinguish is two. Therefore four is the maximum number

of landmarks that can be seen at any time. However, in the

case where one or more landmarks have gone missing then

the robot can still recognise its location from the optical flow

‘fingerprint’ of the remaining ones. The clustering algorithm

creates a histogram of the vectors and finds the minimum

point between the two peaks of the histogram. Figure 4 shows

an application of the algorithm with two landmarks. In the

same figure some outliers have been located, that is, vectors

with small length that have been disregarded.

IV. RESULTS

The homing model described in this paper has been im-

plemented in C++ programming language and the MATLAB

[37] software has been used for the analysis of the data. The

breve simulator [38] was used for the creation of landmarks

in 3D. The algorithm was run offline on a Pentium 4 machine

at 3.00 GHz with 1.00 GB of RAM. The following graphs,

Fig. 5, demonstrate the effectiveness of our approach by

comparing the vectors of the reference image, Fig. 3, taken

at a distance of 11m and a velocity of 4km/h with the
vectors of the same landmark taken at different distances and

velocities. Figures 5(a), 5(b), and 5(c) depict the similarity

score at a distance of 11m and a velocity of 5km/h while
Figs. 5(d), 5(e), and 5(f) depict the similarity score at a

distance of 8m and a velocity of 4km/h.
The circle in the graphs represents the mean position of all

the vectors that comprise a landmark. The green, (Gr), optic

flow vectors refer to the reference image while the blue, (Bl),

ones refer to the current snapshot. Deviation is the Euclidean

distance, δ, between the mean position of the vectors of the
current snapshot, x̄, ȳ, with the mean position of the vectors
of the reference image. The number of elements, i.e., vectors,

in the current snapshot differs from frame to frame as the

angle of perception changes. Time, t, denotes the time steps
the images were captured. It is clear that the similarity score

is quite high in all three images, Figs. 5(a)-5(c). This shows

that velocity does not influence significantly the patterns of

the images. However, as it is expected, the similarity score

drops as time step, t, changes, Fig. 5(b) and Fig. 5(c). In
the remaining graphs, Figs. 5(d)-5(f), of Fig. 5, the distance

at which images were taken is 8m while the velocity has
been kept the same as is in the reference image, that is,

4km/h. The similarity score in these figures appears to be
lower revealing that distance influences more than velocity

the optic flow patterns. Nevertheless, the similarity score can

be considered quite satisfactory, in general.

Figure 6 depicts two different landmarks and the similarity

score is inferred against the reference landmark of Fig. 3. The

distance and velocity at which they were captured remains

the same as is in the reference image. In the first graph, Fig.

6(c), the similarity score is quite low, that is 2.04% while in

the next graph, Fig. 6(d), the similarity score is high enough,

that is 39.13% although the two landmarks are different to

each other. In the former case, the probability is low because

deviation is large while in the latter, the probability is high

because deviation is small. As it can be seen in the last graph,

Fig. 6(d), the texture and the shape of the landmark, Fig. 6(b),

resemble that of the reference landmark, Fig. 3. In cases such

as this, the matching algorithm, and hence the localisation

of the robot can be erroneous.

Finally, in Fig. 7, a comparison between two landmarks

is attempted. In the first graph, Fig. 7(c), two landmarks are

captured initially at a distance of 5m from the sphere-like
landmark and 11m from the tower-like landmark, Fig. 7(a).
In the same graph, a second snapshot has been captured

but at a distance of 13m from the tower-like landmark

and 7m from the sphere-like landmark. The velocity at

which the initial snapshot was taken is 4km/h while at
the current (second) snapshot the velocity was increased to

5km/h. Their similarity score is at an acceptable level, that
is, 22.55% for the tower-like landmark and 27.08% for the

sphere-like landmark. In the graph of Fig. 7(d) the landmarks

of Fig. 7(a) at their initial snapshot are compared with

two different landmarks, Fig. 7(b). The hill-like landmark

is at a distance of 7.0m while the tower-like landmark is
at a distance of 13m. The velocity the image was taken is
5km/h. The probability in this case is quite low revealing
the dissimilarity between the landmarks. In particular, the

similarity score of the tower-like landmarks is at 8.34% while

for the other two landmarks is at 0.93%.

V. CONCLUSIONS AND FUTURE WORK

The simulation experiments of this work show that a

similarity score of 20.0% and above is adequate to identify

and recognise a landmark from its optical flow ‘fingerprint’ .

The results are quite encouraging and sensible, especially if

we take into consideration the fact that the only information

used was optic flow. Our method promises to tackle the

homing problem in a priori unknown environment using a

parsimonious biologically-inspired approach to solve a well-

studied problem. Of significant interest is that our model

can also help explain the methods employed by insects, and

in particular honeybees, to perform localisation and thus

homing. To support this, a recent study by Avargues-Weber et

al. [39] reveals that honeybees are capable of discriminating

faces. It could well be the case of optical flow patterns.

In addition, our model does not require the storage or the

processing of images every time matching is to be performed.

Only the properties of the vectors are stored in every frame,

that is, the mean position of all the vectors and the number

of vectors.

Future work will focus on using Bayesian statistics to

extend the optic flow model to complex scene environments.

In this case, a prior distribution needs to be calculated and a

likelihood to be determined. The posterior distribution will

enable the model to adapt and improve as new observations

enter the model. In addition, a robust clustering algorithm

for classifying various landmarks would be advantageous.

However, the problem in this case is that we do not know

which vectors belong to which landmarks. An unsupervised

clustering method, therefore, needs to be developed. This

problem can also be overcome if there is no counting of



(a) Image taken at time t (b) Image taken at time t + ∆t

(c) Image taken at time t + 2∆t (d) Image taken at time t

(e) Image taken at time t − ∆t (f) Image taken at time t − 2∆t

Fig. 5. Optical flow vectors of the reference landmark at its initial setting (distance=11m, velocity=4km/h) against the optical flow vectors of the same
landmark taken at a distance of 11m and a velocity of 5km/h, Figs. 5(a), 5(b), 5(c), and at a distance of 8m and a velocity of 4km/h, Figs. 5(d), 5(e),
5(f).

landmarks and the images are not fragmented into landmarks,

but instead are taken as whole piece of information.
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