XMLView: Discover Domain Specific Service Description
in a UDDI Compliant Registry

Weijian Fang

Luc Moreau

School of Electronics and Computer Science
University of Southampton, Southampton, SO17 1BJ, U.K.
{wf, l.moreau} @ecs.soton.ac.uk

Abstract

In recent years we have seen the wide adoption of Web
services architecture in grid computing. Service discovery,
as one of the critical tasks in Web services architecture, is
addressed by the UDDI specification. However, UDDI does
not gain as much popularity as other Web services spec-
ifications such as WSDL and SOAP. At the same time, a
number of domain-specific service description models are
developed to address the problem of service discovery in
specific application domains of grid computing. In this pa-
per, we argue that both UDDI and domain-specific service
description models can complement each other, instead of
replacing each other. To demonstrate this, we present a sys-
tem called XMLView that is able to accommodate domain-
specific service descriptions and present them in a UDDI
compliant view. Queries expressed on the domain-specific
model are also supported.

1 Introduction

The past few years have seen the wide adoption of Web
services architecture [1] in grid computing [2]. Service dis-
covery, as a critical task underpinning service invocation,
service orchestration, and service monitoring, is addressed
by the specification of Universal Description, Discovery
and Integration (UDDI) [3] in the Web services architecture.
However, UDDI has not gained as much popularity as other
pillars of the Web services architecture, such as WSDL and
SOAP.

At the same time, several service description models
have been developed inside the grid computing commu-
nity to facilitate service publication and discovery, where
a service-oriented architecture, but not particularly Web
services architecture, is adopted. For instance, the GLUE
schema [4] is widely used in grid computing to describe grid
resources and services available in virtual organizations; the
myGrid project (see www.mygrid.org.uk) develops a
workflow environment for bioinformatics, in which a FETA

978-1-4244-2579-2/08/$20.00 © 2008 IEEE

33

schema [9] is used to describe services available inside the
myGrid workbench, where services are not limited to Web
services.

It is not surprising that domain-specific service descrip-
tion models have been designed and implemented by appli-
cation developers. By domain-specific service description
model, we mean a non-UDDI data model that describes ser-
vices for discovery in a particular application domain. De-
signing a domain-specific model clearly provides more flex-
ibility to explicitly address domain specific issues, which
UDDI fails to address or does not provide a straightforward
solution to. For instance, domain-specific service metadata
can be defined directly as a first-class member of the service
model with the metadata type as the member name, while in
UDDI this has to be done by means of a non-trivial generic
metadata mechanism, which allows references to some pre-
defined technical documents.

Although UDDI presents a widely-supported service dis-
covery model, it is however difficult to persuade application
developers to migrate from domain-specific models to the
UDDI model, not only because UDDI’s incapability and in-
flexibility to address some domain-specific issues, but also
because the benefits from adopting UDDI might not offset
the effort spent refactoring legacy code.

We argue that both domain-specific modes and the UDDI
model have their own merits: domain-specific models ad-
dress domain problems better, while the UDDI model is
more widely understood, has more support, and thus pro-
vides better interoperability. Therefore both models should
complement each other rather than replace each other.

In our previous papers, we described a UDDI-compliant
Web service registry, GRIMOIRES (see www .grimoires.
org), that provides extensions such as third party annota-
tion and service discovery by interface signature [5], as well
as service lifecycle management based on the WSRF speci-
fications [6].

In this paper, in the context of GRIMOIRES, we describe
how a UDDI compliant registry is able to accommodate
domain-specific service descriptions and how service dis-

9t Grid Computing Conference

annotates annotates

UDDI
businessEntity

WSDL
Message Part
K

Metadata
- type

- value

- author
- date

contains contains

WSDL
Operation

A

A

UDDI
businessService

contains

annotates

links

Figure 1: GRIMOIRES service description model

contains

A
UDDI
bindingTemplate

UDDI

tModel

WSDL
Document

covery compliant with domain-specific models can be sup-
ported. The result is XMLView, which consists of a new
web service interface in the GRIMOIRES service registry
and an Eclipse-based client. When deploying GRIMOIRES
in an application domain, XMLView has the capability to
make GRIMOIRES’ service description data model invisi-
ble to application developers. Application developers still
stick to their own model to publish and discover services.
Furthermore, using XMLView helps present their services
in a view compliant with UDDI and leverage GRIMOIRES’
registry functionality such as security, access control, and
third-party annotation for free.

The rest of the paper is organized as follows. Section 2
introduces various service description models. Section 3
and 4 respectively present the two key technologies under-
pinning XMLView, i.e, translation between domain-specific
models and the GRIMOIRES model, and template-based ser-
vice discovery. Section 5 discusses the performance of XM-
LView. Section 6 discusses related work and Section 7 con-
cludes the paper and outlines areas for future research.

2 Service Description Models

In this section, we introduce the data model used by
GRIMOIRES to describe services. We also introduce two
domain-specific service description models developed in
the grid computing community: FETA and GLUE. By doing
so, we show that GRIMOIRES’s service description model
is generic enough to express information delivered in FETA
and GLUE models, i.e., both GLUE and FETA models can be
mapped to the GRIMOIRES model without loss of informa-
tion.

2.1 GRIMOIRES

GRIMOIRES’ service description model is UDDI compli-
ant, as seen in Figure 1. UDDI data model is composed from
a limited set of high-level data constructs: businessEntity
represents service providers, which contains businessSer-
vice representing services; businessService further contains
bindingTemplate representing the concrete binding of a
service; and tModel (technical model) defines knowledge

34

referable from service descriptions, such as a category sys-
tem or a technical interface of a service.

UDDI allows businessEntity, businessService and bind-
ingTemplate to contain keyed references into tModel in-
stances, which serves as a generic metadata annotation
mechanism.

Although UDDI uses tModel to represent a service tech-
nical interface, e.g., a WSDL document, the WSDL document
itself is not part of the UDDI data model. Thus UDDI pro-
vides no means to discover a service according to its inter-
face signature, for instance, to find a service that supports a
certain operation, or to find a service that is able to process a
certain data type. GRIMOIRES’ data model extends UDDI’s
to address such limitations.

First, the wWSDL data model is added as part of the GRI-
MOIRES’ data model. The motivation is to allow the content
of a WSDL document to be attached to a UDDI service de-
scription, and to allow services to be discovered based on
the information contained in WSDL.

Second, a new generic metadata model is introduced.
Metadata can be attached not only to UDDI constructs such
as businessEntity, businessService and bindingTemplate,
but also to WSDL elements such as WSDL operation and
WSDL message part. A metadata element contains a meta-
data type that specifies the semantics of such an annotation,
a metadata value, and some provenance information such
as the metadata author and the annotation date. A metadata
value can be a simple string, a URI for some shared ontol-
ogy concept, an XML document, or even a graph of RDF
triples [8].

Compared with UDDI’s default metadata mechanism,
GRIMOIRES’s metadata model has two advantages. First,
XML or RDF styled metadata value can be used to represent
sophisticated and structured information as metadata, while
UDDI only supports key value pairs as metadata. Second,
with provenance information embedded in metadata, GRI-
MOIRES allows service providers, service consumers and
even third parties to attach metadata to service descriptions.
The rationale behind such a design is that people other than
service providers can also supply knowledge about or in-
sight into published services, which might not be foreseen
by service providers, such as a special usage of the service
or user-rated quality of service.

2.2 FETA

The FETA service description model [9] was conceived
by the myGrid project to describe services available in the
myGrid workbench. In the FETA model, a serviceDescrip-
tion element describes a service; it contains information
about the service such as its name, description, loca-
tionURL (the service endpoint), interfaceWSDL (the service
WSDL URL), and serviceType (the type of the service). The
serviceDescription element also contains an organization

element that describes the service provider, and an opera-
tions element that describes the set of operations that this
service exposes. Each operation description contains infor-
mation such as operationMethod (an ontology concept de-
noting the algorithm used in the operation implementation).
For each operation description, input and output parame-
ters are described, which contain information such as pa-
rameter’s semanticType (an ontology concept denoting the
semantic type of the parameter).

Obviously FETA serviceDescription can be mapped to
businessService in the GRIMOIRES model. FETA ser-
viceDescription’s locationURL and interfaceWSDL can be
expressed by bindingTemplate in the GRIMOIRES model.
FETA serviceDescription’s serviceType can be mapped to
metadata attached to businessService in the GRIMOIRES
model. FETA serviceDescription’s organization can be
mapped to businessEntity in the GRIMOIRES model.

FETA serviceDescription’s operations and parameters
constitute the technical interface of the service, and there
is no difficulty for them to be expressed using WSDL oper-
ations and message parts in the GRIMOIRES model. Fur-
thermore, the information associated with FETA opera-
tion and parameter, such as operationMethod and param-
eter’s semanticType, can be mapped to metadata attached to
WSDL operation and WSDL message part in the GRIMOIRES
model.

2.3 GLUE

The GLUE schema [4] is widely used in grid computing
to describe grid resources and services available in virtual
organizations. Although initially conceived as a resource
description model, GLUE can also be applied to a service-
oriented environment. We show that the GRIMOIRES model
can also be used to fully express the information delivered
in GLUE.

The core entities of GLUE include Service and Site.
The latter can be considered as a description of a service
provider. In addition to Service, Site contains other child
elements such as Cluster (describing the computation in-
frastructure provisioned by the Site), Computing Element
(describing the Site’s job submission service) and Storage
Element (describing the Site’s data storage service).

GLUE Site and Service can be mapped to businessEntity
and businessService in the GRIMOIRES model. Leveraging
GRIMOIRES’ support for attaching XML representation as
metadata, other entities in the GLUE model such as Cluster,
Computing Element and Storage Element can be attached
to businessEntity as is in the GRIMOIRES model.

3 Translation of Service Description Models

In order to publish domain-specific service descriptions
into the GRIMOIRES registry, we can choose between two
strategies:

35

One is to introduce domain-specific models into GRI-
MOIRES, and to partition the backend database for different
models, with each partition only serving descriptions of a
particular model.

The other is to translate domain-specific service descrip-
tions to the GRIMOIRES model on publication and to trans-
late back on returning as a query result.

If taken, Option 1 would support direct publication and
discovery of domain-specific service descriptions with a rel-
atively small effort. However, it would undoubtedly compli-
cate the internal database management, which would intro-
duce more database maintenance problems in the long run.
Also, it seems non-trivial to present a service described by
a domain-specific model in a view according to the GRI-
MOIRES model, if required. Without such a function, users
can not browse or search GRIMOIRES in a uniform way in-
dependent of service description models.

Although challenging to implement, Option 2, which
translates between domain-specific models and the GRI-
MOIRES model, unifies descriptions from different models
in the GRIMOIRES model, and offers a solution to the in-
teroperability between models. For these reasons, we have
adopted Option 2.

In Section 2, we have already demonstrated the feasi-
bility of mapping between domain-specific models and the
GRIMOIRES model. In this section, we discuss its design
and implementation. The query over domain-specific model
is discussed in Section 4.

3.1 Configurability and Extensibility

Most domain-specific service description models such as
GLUE and FETA can be described by an XML schema, and
so does the GRIMOIRES model. XSL is widely adopted as a
mechanism to translate between XML documents following
different schemas. Therefore using the XSL transformation
to translate between service description models reinforce
the generality of our approach. We call the resulting sys-
tem XMLView because it is able to handle domain-specific
service descriptions that can be serialized to XML.

XMLView needs to support various domain-specific
models, which may be unknown at the time of design and
implementation of XMLView. Thus the extensibility is the
key for the feasibility of XMLView: XMLView must have
the capability to support new domain-specific models. Fur-
thermore, since XMLView will be extended by GRIMOIRES
users who are not familiar with GRIMOIRES internals, XM-
LView should also be extensible in a simple way, preferably
in a declarative manner instead of a programmatic manner.
Thus XMLView is designed with configurability deeply in
mind. Figure 2 defines a named set of translators that spec-
ify how to translate between the FETA model and the GRI-
MOIRES model.

To provide a systematic way to deal with different

<translators elementNamespaceURI=
"http://www.mygrid.org.uk/feta/">
<n2gTranslator
elementLocalname="serviceDescription"
validate="true">
<n2gAction type="saveBusiness"
xsl="feta/toUDDIBusiness.xsl"/>
<n2gAction type="saveService"
xsl="feta/toUDDIService.xsl"/>
<n2gAction type="saveWSDL"
xsl="feta/toWSDL.xsl"/>
<n2gAction type="saveMetadata"
xsl="feta/toServiceMetadata.xsl"/>
</n2gTranslator>
<g2nTranslator
grimoiresElementID="service">
<g2nAction type="loadService"
xsl="feta/fromUDDIService.xsl"/>
<g2nAction type="loadBusiness"
xsl="feta/fromUDDIBusiness.xsl"
mountPoint="/"/>
<g2nAction type="loadServiceMetadata"
xsl="feta/fromServiceMetadata.xsl"
mergePoint="/"/>
<g2nAction
type="loadMessagePartMetadata"
xsl="feta/fromMsgPartMetadata.xsl"
mergePoint="//* [local-name () =
'parameter’]"
filter="parameterName" />
</g2nTranslator>
</translators>

Figure 2: XMLView FETA configuration

domain-specific models, XMLView introduces two artifacts
in its configuration: translator and action.

A translator defines rules to transform an XML ele-
ment in one model to an XML element in another model.
There are two types of translators: the first translates from
domain-specific model elements to the GRIMOIRES model
(n2gTranslator), whereas the second performs the reverse
procedure (g2nTranslator). n2gTranslator eventually saves
everything into GRIMOIRES’ backend database. In Fig-
ure 2, we can see an n2gTranslator is defined to recog-
nize and translate the FETA serviceDescription element, and
an g2nTranslator to translate a GRIMOIRES service element
back to a FETA serviceDescription.

Rules defined in a translator are enforced by actions,
which are units of functionality exposed by XMLView and
reusable by different translators. Actions in a translator are
invoked in the same order as they are defined. Similarly to
translators, actions have two types, which we now describe.

n2gActions are used in n2gTranslators. They use the de-
clared XSL transformation via the “xsl” attribute, to trans-
form the submitted domain-specific elements to some GRI-
MOIRES model elements, and then save into GRIMOIRES’
backend database. For instance in Figure 2, saveBusiness,

36

saveService, saveWSDL and saveMetadata n2gActions,
save information transformed from domain-specific de-
scription as UDDI businessEnity, UDDI businessSerivce,
WSDL, and metadata respectively.

g2nActions are used in g2nTranslators. They load GRI-
MOIRES model elements from the backend database and
transform them to domain-specific elements using the de-
clared XSL transformation. For instance in Figure 2, the
loadServiceMetadata g2nAction loads metadata attached to
the service and transforms it to some domain-specific ele-
ment.

When a domain-specific model element is translated to
the GRIMOIRES model, its contained information is rep-
resented using UDDI, WSDL and metadata models collec-
tively. Thus when it is re-constructed, the information scat-
tering among UDDI, WSDL and metadata models must be
combined in a correct way. Hence, we introduce some di-
rectives to control this combining procedure. Currently two
directives, mount and merge, are supported, assuming a re-
sult XML element is available but only contains incomplete
information.

We can mount an XML element as a child to the result
XML element at a specified position. The position is in
the form of an XPath expression with respect to the re-
sult XML document. For instance in Figure 2, the load-
Business g2nAction mounts the FETA organization element
transformed from UDDI businessEntity at the position “/”,
i.e., as a direct child at the root of the result FETA ser-
viceDescription.

We can also merge an XML element with the result ele-
ment or a child element in the result element. The elements
to be merged have the same namespace and local name, and
each contains incomplete information. The merge position
can also be regulated by an XPath expression. For instance
in Figure 2, the loadServiceMetadata g2nAction generates
a FETA serviceDescription element from GRIMOIRES ser-
vice metadata, which then is merged with the result FETA
serviceDescription.

We can further choose the target merge position among
multiple candidates using a filter. For instance in Figure 2,
the loadMessagePartMetadata g2nAction generates a FETA
parameter element from GRIMOIRES message part meta-
data, which then should be merged with the FETA param-
eter element of the same parameterName in the result FETA
service description. Note there are multiple parameter defi-
nitions in one FETA serviceDescription. Here, a merge point
“//*[local-name()="parameter’]” tells that the element to be
merged is of the local name “parameter”, and a filter “pa-
rameterName” says that only the parameter of the same pa-
rameterName should be merged.

Service)
Descrip- publish
tion » n2gTranslator
J query
|
XPath XPath DOM UDDI
- Engine Builder WSDL

Metadata

queryAnd- —
Translate Grimoires
<«— g2nTranslator Registry
Database

Figure 3: The architecture of XMLView
3.2 Architecture

Our previous paper [6] presents the architecture of the
GRIMOIRES registry. Figure 3 gives the architecture of XM-
LView. XMLView adds a new Web service interface to the
GRIMOIRES registry. Within this interface, four operations
are defined:

The publish operation takes an arbitrary XML element for
publication. It is up to XMLView to decide whether to ac-
cept it, i.e., to commit the publication into GRIMOIRES, or
to reject it. The latter situation probably means there is no
translator registered for this particular element. Otherwise,
the right translator corresponding to the to-be-published el-
ement is invoked. The interface places no constraint on the
sort of domain specific service description that is eligible to
be published as long as it has an XML representation.

The delete operation (not shown in Figure 3) takes a
string key and deletes the GRIMOIRES registry entity to
which the key refers. The key for instance could be a UDDI
business key or a UDDI service key.

XMLView offers two query operations:
queryAndTranslate, which are discussed below.

XMLView presents all information registered in GRI-
MOIRES, whether UDDI, WSDL or metadata, as a single
unified DOM document. This DOM document should be
considered virtual rather than concrete: it has no backing
XML document file, it is generated on demand as well as is
cacheable, and caching can be made at finer grains rather
than at the document level.

Both query and queryAndTranslate take an XPath ex-
pression as input, and return the result by executing the
input XPath over the DOM document presented by XM-
LView. The difference between these two operations is that
queryAndTranslate will attempt to translate the query re-
sult to XML elements compliant with the specified domain-
specific model whenever possible.

Let us examine the queryAndTranslate operation in more
detail. In addition to the XPath expression, queryAnd-
Translate also takes as input the XML namespace for the
expected domain-specific model, for instance a namespace

query and

37

<feta:serviceDescription xmlns:feta="...">

<feta:serviceName>
SHound3DbWhat
</feta:serviceName>
</feta:serviceDescription>

Figure 4: A FETA query template to find a "SHound3DbWhat”
service

“http://www.mygrid.org.uk/feta/” indicates the query result
is expected to be translated to the FETA model. This names-
pace prompts XMLView which translator should be used.
For instance, if a UDDI businessService appears in the
query result, XMLView checks whether there is a regis-
tered translator able to translate from UDDI businessService
to some element in the expected domain-specific model.
In fact, XMLView also checks whether this found UDDI
businessService is originally from the expected domain-
specific model. Only if it is from the expected domain-
specific model, XMLView will perform the translation. Ser-
vice descriptions in different domain-specific models usu-
ally contain quite different information, and thus some-
times, it does not make sense to translate between different
domain-specific models.

Because the proper translator can be chosen according to
the qualified name of the element to be translated, an XM-
LView instance supports multiple domain-specific models,
as well as GRIMOIRES’s own model, at run time.

4 Template-based Query

To use the query or queryAndTranslate operation, an
XPath expression conforming to the GRIMOIRES model
must be composed. Thus on the basis of this interface, the
GRIMOIRES model is still not made invisible to domain ap-
plication developers.

To solve this problem, we propose a template-based
query technique. The idea is, in order to discover some
service description according to a certain domain-specific
model, users need to create an incomplete description that
contains known information about the service as search cri-
teria. Note such a description could be invalid according to
the model since some required information could be miss-
ing from the template. For instance, Figure 4 shows a FETA
query template that finds a “SHound3DbWhat” service.

Given a query template, we can then generate an XPath
expression conforming to the GRIMOIRES model, which in-
volves two steps:

First, translate the query template in the domain-specific
model to some template(s) in the GRIMOIRES data model
using the method described in Section 3. Such translation is
possible because the query template is expressed according
to the domain-specific schema supported by the translation.
For the example template given in Figure 4, the GRIMOIRES
query template is shown in Figure 5.

Second, generate the XPath expression from the GRI-

<uddi:businessService xmlns:uddi="...">

<uddi :name>
SHound3DbWhat
</uddi :name>
</uddi:businessServices>

Figure 5: The translated query template in the GRIMOIRES model

//uddi:businessService
[uddi :name='SHound3DbWhat ']

Figure 6: The XPath expression conforming to the GRIMOIRES
model

MOIRES query template. The generated XPath expression
selects from the GRIMOIRES DOM document those elements
having the same namespace and local name as the given
GRIMOIRES query template(s), and containing all the infor-
mation existing in the given template(s). For the example
given in Figure 5, the generated XPath is shown in Figure 6.

Having generated the XPath expression compliant with
the GRIMOIRES model, we then can use it to query over
the GRIMOIRES registry. The query result can be translated
back to the domain specific model, if required.

Using the template-based query technique, the GRI-
MOIRES service description model is made totally invisible
to domain application developers when service discovery is
concerned.

To make it user-friendly, template-based query is im-
plemented inside an Eclipse plug-in, called GRIMOIRES
Browser. As a GUI to the GRIMOIRES registry, GRIMOIRES
Browser has full support of the GRIMOIRES registry’s func-
tionalities including the XMLView interface.

5 Evaluation

In this section, we evaluate the performance of the XM-
LView service. The general discussion of GRIMOIRES’ per-
formance can be found in our previous papers [7] and [6].
We discuss two domain-specific models for which the trans-
lations are provided in XMLView: GLUE and FETA. In
each case, we present the service publication and discov-
ery overheads. Of course, users can extend XMLView to
support their very own model. In that case, the performance
we report here can provide valuable information to estimate
and reason about the performance with respect to that user-
defined domain-specific model.

The experiments in Section 5.1 and 5.2 are running on a
Windows XP computer installed with an Intel Core 2 Duo
2GHz Processor and 2GB memory. Both the test client and
the GRIMOIRES registry with XMLView are on the same
computer. The throughput experiment in Section 5.3 is car-
ried on the Iridis cluster (see http://www.soton.ac.
uk/iss/computing/hpc/iridis/index.html).

5.1 FETA

We take 79 FETA descriptions from the myGrid project.
It takes 116 seconds to publish them sequentially into GRI-

38

Table 1: FETA service discovery criteria

In the FETA model | As in the GRIMOIRES model
SN service name UDDI businessService name
ST service type metadata attached to
UDDI businessService
oT operation task metadata attached to
WSDL operation
PST | parameter semantic metadata attached to
type WSDL message part
1200
Oquery
1000 1 HqueryAndTranslate
w 800
£
f=
° 600 -
£
400
200 ﬂ
0
SN ST oT PST

Figure 7: Service discovery for the FETA model

MOIRES through the XMLView interface, i.e., it takes an
average of 1.47 second to publish a FETA description. In av-
erage, a FETA description contains 1934 bytes and 30 XML
tags. The populated GRIMOIRES registry is then used to
evaluate the service discovery performance.

In this experiment, it is relatively expensive to publish a
FETA description because all 79 sample FETA descriptions,
having been translated to UDDI businessServices, belong
to the same UDDI businessEntity. Before adding a busi-
nessService into a businessEntity, the GRIMOIRES registry
needs to check whether such a businessService already ex-
ists in the businessEntity. If so, the old businessService
would be deleted. Thus adding a businessService into an
existing businessEntity incurs an overhead relevant to the
size of the businessEntity. So the relatively expensive publi-
cation overhead that we observe in this experiment is rather
associated with these particular FETA description samples
than a general characteristic about XMLView’s publication
performance.

Four service discovery cases with different query crite-
ria are evaluated, as listed in Table 1. Their performance
are shown in Figure 7. For each case, we measure the over-
head of both the query operation (shown in the grey bar)
and the queryAndTranslate operation (shown in the black
bar). In addition to what has been done by the query oper-
ation, the queryAndTranslate operation translates matched
descriptions in the GRIMOIRES model back to the FETA
model.

The overhead of the query operation is decided by the
complexity of the XPath expression used in the query. For

Table 2: GLUE discovery criteria

In the GLUE model As in the GRIMOIRES model
SiteN (find Site by) name UDDI businessEntity name
ServN | (find Service by) name | UDDI businessService name
CN (find Site by) Cluster metadata attached to
name UDDI businessEntity

instance, among them, PST, which finds a service that has
an operation taking in a parameter of the specified semantic
type, uses an XPath expression crawling over UDDI, WSDL,
and metadata models, and thus not surprisingly incurs the
largest overhead.

The translation overhead, measured by the difference be-
tween the two operations’ overheads, is relevant to the num-
ber of FETA service descriptions being translated, and to the
information complexity of the descriptions. SN returns 1
matched description, ST returns 2, OT returns 3, and PST
returns 7. The average translation overhead for a single
FETA service description is 53.6ms.

5.2 GLUE

We have downloaded all the GLUE descriptions available
in the EGEE project (see public.eu-egee.org) from
its LDAP-based information server, and transformed them
into XML documents conforming to the GLUE XML schema.
There were 267 GLUE Site descriptions on 12 October 2007.
It takes 281 seconds to publish them into the GRIMOIRES
registry through the XMLView interface. This gives an av-
erage of 1.05 second for the publication overhead per de-
scription. In average, a GLUE description contains 90,682
bytes and 456 XML tags. The populated GRIMOIRES reg-
istry is then used to evaluate the discovery performance.

Three service discovery cases with different query crite-
ria are evaluated, as listed in Table 2. Their performance
are shown in Figure 8. For each case, we measure the over-
head of both the query operation (shown in the grey bar) and
the queryAndTranslate operation (shown in the black bar).
In SiteN and ServN, the overhead of the query operation is
relatively small: 47ms for SiteN and 31ms for ServN. CN
incurs a large overhead due to its complex XPath expres-
sion.

5.3 Throughput

We also conducted a throughput test using the same set
of EGEE GLUE descriptions as in Section 5.2 on the Iridis
cluster. During the experiment, one cluster node is dedi-
cated to the GRIMOIRES registry, and extra 16 cluster nodes
are brought up one by one as clients. Each client node
starts up 8 threads, and each thread repeatedly sends ran-
dom GLUE Site discovery request to the GRIMOIRES reg-
istry. A new request is sent only if the previous request has
been served. Therefore ultimately there are 128 clients (in
the form of threads) simultaneously accessing GRIMOIRES.
We measure the total number of served requests, which is
shown in Figure 9.

39

In Figure 9, each data point represents the number of to-
tal served requests per minute (i.c., the sum of all clients’
throughput). When plotting, we take an average of five
neighboring measurements. In the figure, a cross indicates
the time point when a new client node is brought up.

As seen in Figure 9, after running more than 10 hours,
with up to 128 clients, we do not observe obvious perfor-
mance degradation when numerous clients simultaneously
accessing GRIMOIRES. On 26/10/07 08:00, 10 minutes af-
ter the last client node was brought up, 3165 requests had
been served in that minute. Many jumps can be seen along
the curve. Although those cluster nodes are dedicated to our
experiment, the cluster network is shared between our ex-
periment and other applications running at the same time.
As there is a lot of communication involved between the
GRIMOIRES registry and clients, those jumps could be due
to the interruption caused by the other network users.

6 Related Work

There are some other service description models in ad-
dition to those discussed above. For instance, OWL-S [10],
formerly DAML-S, uses the OWL Web ontology language
to describe a Web service; BioMOBY [11] defines a ser-
vice as an atomic process or operation that takes a set of in-
puts and produces a set of outputs; intended to be a generic
information management system, the ebXML registry [12]
also defines a registry information model and a Web service
profile that implements a Web service registry. With the
help of XMLView, GRIMOIRES can be set up to accommo-
date OWL-s, BioMOBY and ebXML service descriptions
and serve queries according to their own models.

The Globus Toolkit (see www . globus . org) provides
the Monitoring and Discovery System (MDS). MDS fo-
cuses on the mechanism to disseminate and gather infor-
mation on Grids rather than the information model to de-
scribe services or resources. Information is published in
xml according to some schema. While the GLUE schema
is used for compute information, the owners of information
sources or grid resources have the freedom to define their

5000

4000 4 B queryAndTranslate
3500
3000
2500
2000 +
1500
1000
500
ol — NN 00 eew |

SiteN ServN

Time in ms

CN

Figure 8: Service discovery for the GLUE model

4000

-]
[Y
i ol ML

0 Q/HNA‘J‘./‘ y"‘W\y}‘ |/ w««wﬂrwﬁ\ W I\ Y“\ A&M\‘, ‘\‘ g
/

3500

[

| I
YT
ML IAT g AT
Ul P\

|
L)
\“‘A“‘w

—~

| W

3000

2500

2000

1500

L

1000
25/10/0007 25/10/0007 26/10/0007 26/10/0007 26/10/0007 ~ 26/10/0007 26/10/0007 26/10/0007
20:00 22:00 00:00 02:00 04:00 06:00 08:00 10:00

Figure 9: The throughput of XMLView

own schema, so that arbitrary xml data can be published
to describe service profiles and states. As far as inquiry is
concerned, MDS relies on the XPath language. Similar to
MDS, XMLView allows users to define their own domain-
specific model to describe services, and such a model is
fully supported during publication and discovery. Different
from MDS, XMLView is able to present published descrip-
tions in a UDDI-compliant view.

Srinivasan et al [13] described a UDDI registry that also
understands OWL-S service description. So users can di-
rectly publish OWL-S descriptions, which are then mapped
to the UDDI data model by the registry. In addition to stan-
dard UDDI publication and query interfaces, a capability in-
terface is provided to support ontology-based matchmaking.
In comparison, XMLView takes a more generic approach in
that any domain-specific service descriptions with an XML
representation can be published and discovered, which in-
clude OWL-S descriptions.

The idea of using XSL to transform syntactically dif-
ferent but semantically equivalent documents has been ex-
plored in many places. For example, Szomszor et al [14] de-
scribed using XSL-based type adaptors to harmonise syntac-
tically incompatible interfaces in Web services workflows.

7 Conclusion

In this paper, we present the XMLView approach to al-
low a UDDI compliant service registry such as GRIMOIRES
to accommodate domain specific service descriptions and to
support queries according to the domain-specific model.

In this way, GRIMOIRES makes its own service descrip-
tion model transparent to domain applications. Using GRI-
MOIRES with XMLView, domain developers are able to
present domain services in a standard UDDI view, and to
make use of functionalities of GRIMOIRES such as third
party annotation, security and access control.

Our evaluation of XMLView shows it presents accept-
able performance. The throughput experiment uses the reg-

40

istry data from the EGEE information server, and reveals that
XMLView has a stable performance under stress test. Fu-
ture work will expand on this basis to evaluate XMLview’s
performance under more dynamic and realistic workload.

Acknowledgment

GRIMOIRES is funded by the Commissioned Software
Project of OMII-UK (see www.omii.ac.uk).
References

[1] Web Services Architecture. The World Wide Web Consortium.
http://www.w3.0org/TR/ws-arch/.

(2]
(3]

Service-Oriented Science. I. Foster. Science, vol. 308, May 6, 2005.

Universal Description, Discovery and Integration (UDDI). OASIS.
http://www.uddi.org.

The GLUE schema.
“sergio/datatag/glue/

http://www.cnaf.infn.it/

(4]

[5] Simon Miles, Juri Papay, Terry Payne, Keith Decker, and Luc
Moreau. Towards a protocol for the attachment of semantic descrip-
tions to grid services. Scientific Programming, vol. 12, pp. 201-211,
2005.

[6] Weijian Fang, Luc Moreau, Rachana Ananthakrishnan, Mike Wilde,
and lan Foster. Exposing UDDI service descriptions and their
metadata annotations as ws-resources. In Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing, pages
128-135, Barcelona, Spain, September 2006.

[7]1 Weijian Fang, Simon Miles, and Luc Moreau. Performance analysis
of a semantics-enabled service registry. Concurrency and Computa-
tion: Practice and Experience, 2007.

[8] WWW Consortium. RDF Primer. http://www.w3.org/TR/
rdf-primer/.

[9] Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble. Feta: A
Light-Weight Architecture for User Oriented Semantic Service Dis-
covery. In Proceedings of Second European Semantic Web Confer-
ence, ESWC 2005, Heraklion, Crete, Greece, May-June 2005. pp.
17-31, Springer-Verlag LNCS 3532 2005.

[10]

(11]

OWL-S. http://www.daml.org/services/owl-s/.

M. D. Wilkinson and M. Links. Biomoby: an open-source biologi-
cal web services proposal. Briefings In Bioinformatics, 4(3), 2002.

[12] ebXML Registry standards. http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=regrep.

[13] N. Srinivasan, M. Paolucci, and K. Sycara. Adding OWL-S to
UDDI, implementation and throughput. In First International Work-
shop on Semantic Web Services and Web Process Composition
(SWSWPC 2004), San Diego, California, USA.

[14] M. Szomszor, T. R. Payne, and L. Moreau. Dynamic Discovery of
Composable Type Adapters for Practical Web Services Workflow.
In UK e-Science All Hands Meeting 2006, September 2006, Not-
tingham.

