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ABSTRACT
This paper considers the coordination of a team of Un-
manned Aerial Vehicles (UAVs) that are deployed to search
for a moving target within a continuous space. We present
an online and decentralised coordination mechanism, based
on the max-sum algorithm, to address this problem. In do-
ing so, we introduce a novel coordination technique to the
field of robotic search, and we extend the max-sum algo-
rithm beyond the much simpler coordination problems to
which it has been applied to date. Within a simulation en-
vironment, we benchmarked our max-sum algorithm against
three other existing approaches for coordinating UAVs. The
results showed that coordination with the max sum algo-
rithm out-performed a best response algorithm, which rep-
resents the state of the art in the coordination of UAVs
for search, by up to 26%. The results further showed that
the max-sum algorithm out-performed an implicitly coor-
dinated approach, where the coordination arises from the
agents making decisions based on a common belief, by up to
34% and finally a non-coordinated approach by up to 68%.

1. INTRODUCTION
In recent years, Multi-Agent Systems (MAS) research has
started to focus on coordination mechanisms for teams of
agents, in which the agents represent robotic platforms, such
as Unmanned Aerial Vehicles (UAVs), that are deployed for
information gathering tasks, such as searching for a moving
target [12]. Within these domains, a decentralised approach
to coordination is often favoured due to its robustness to
failures of individual agents [4], the potential presence of
complex topologies [5], the absence of a single point of fail-
ure [12], scalability and modularity [6]. However, decentral-
isation introduces two key challenges: (i) how to fuse infor-
mation from the UAVs in order to maintain a common belief
about the state of the target, and (ii) how to coordinate the
motion of the UAVs in order to collect the most informative
observations and avoid redundant coverage of the environ-
ment. The first of these challenges is commonly known as
the Decentralised Data Fusion (DDF) problem and has re-
ceived extensive attention in the data fusion literature [2, 6].
The second of these challenges has received less attention,
and is thus the topic of this paper.

Typically, the coordination must also be performed within
a highly dynamic environment; the most evident reason for
which is the dynamic motion of the target and the UAVs.
For this reason, offline approaches, such as pre-computing
the paths for the whole team, are not feasible, and the co-

ordination must be performed online in real-time. Now, an
online and decentralised coordination mechanism, based on
the max-sum algorithm, has recently been demonstrated to
be effective on a number of benchmark problems, includ-
ing graph-colouring [7] and the coordination of mobile sen-
sors that were constrained to move within a graph repre-
senting an indoor environment [12]. However, to date, such
approaches have not been applied to the more challenging
problem of coordinating the paths of UAVs that move in an
unconstrained continuous space.

Thus, it is this shortcoming that we address in this pa-
per. More specifically, we present a study of how the max-
sum algorithm can be applied to the coordination of UAVs
tasked to search for a target in a continuous space. We
benchmarked our approach against an adaption of the best
response algorithm used in [3] and against two other ap-
proaches to coordination found in the literature; a non-
coordinated approach and an implicitly coordinated approach
where the agents make decisions based on a shared under-
standing of the environment [10]. Our empirical results
showed that the max-sum approach out-performed all the
aforementioned approaches.

Thus, against this background, this paper makes the fol-
lowing contributions to the state of the art:

• For the first time, we apply the max-sum algorithm to
the challenging task of coordinating a team of UAVs
tasked to search for a target in a continuous space.
By doing this, we introduce a novel coordination tech-
nique to the field of robotic search, and we extend the
max-sum algorithm beyond the simpler coordination
problems to which it has been applied to date [7, 12].

• We benchmarked the max-sum coordination algorithm
against three existing approaches that have been pro-
posed for coordinating UAVs for search and showed
that it out-performed the explicitly coordinated ap-
proach based on a best response algorithm [3] by up
to 26%, the implicitly coordinated approach by up to
34% and finally a non-coordinated approach by up to
68%.

The remainder of this paper is organised as follows. In
Section 2 we analyse the relevant literature that motivated
our study of this problem. In Section 3 we formulate the
search task as a multi-agent coordination problem. In Sec-
tion 4 we define the coordination framework that we built
in order to address the coordination problem. We then em-
pirically compare the coordination approaches, and present



the results in Section 5. Finally, we conclude in Section 6,
and mention some ongoing improvements to this work.

2. RELATED WORK
Significant contributions towards solving the decentralised
coordination problem have been made in both the MAS and
robotics communities. Approaches to coordinating a multi-
agent system were classified into three different levels in [10]:

• A non-coordinated approach where the agents do not
share messages or otherwise take into account the ac-
tions of other agents in the system

• An implicitly coordinated approach where the agents
share their observations, but make individual decisions
on what action to take next. This is also known as a
coordinated approach [6, 10].

• An explicitly coordinated approach where the agents
share both observations and predictions of what they
expect to gain in future observations. This is also
known as a cooperative approach [6, 10].

This framework has been widely used in the coordination lit-
erature in both the MAS [11] and robotics [6] communities,
and is also used in this paper.

Previous work from the robotics community has consid-
ered a search problem similar to the one studied here and
proposed a decentralised Bayesian solution to the DDF prob-
lem. While the approach to coordination in the aforemen-
tioned work was limited to implicit coordination, the work
was extended to consider explicit coordination by formu-
lating the problem as a distributed optimisation problem
[3]. This was iteratively solved by using either a Jacobi
or Gauss-Siedel type algorithm, where at every iteration,
each individual calculates its best response, given the previ-
ously communicated best responses of other UAVs and the
expected impact on the environment associated with these
actions. Once calculated, every individual communicates its
new best response, and its expected impact on the environ-
ment and the cycle starts again. As acknowledged by the
author, this approach is susceptible to converging to a local
optimum, rather than the global optimum. For the pur-
poses of this paper, this approach is referred to as the best
response algorithm.

A variation of this approach was used in another study on
the use of UAVs for search and track [6], where each agent
calculates its best response based on all previously commu-
nicated best responses of other agents and their expected
impacts on the environment, but in this case, the algorithm
does not iterate. While it was acknowledged that this ap-
proach is sub-optimal, it was argued that this was necessary
in a highly dynamic environment, since in the time required
for the iteration to take place, the environment would have
changed, rendering the iterated solution sub-optimal [6].

On the other hand, work from the MAS community showed
that the max-sum algorithm could out-perform best-response
algorithms for coordination [7], albeit on less complex prob-
lems. The max-sum algorithm is an approximate message
passing algorithm, where every agent tries to find the best
joint control action by negotiating with its neighbouring
agents. The max-sum algorithm is an application of the
generalised distributive law, a class of message passing algo-
rithms [1], and has been well used and studied in the field of

information theory and for coordinating mobile sensors [11,
12].

The application of the max-sum algorithm to the coordi-
nation of mobile sensors to monitor spatial phenomena [11,
12] was particular interesting, as it demonstrated that the
max-sum algorithm is applicable to more complex problems
than described in [7]. Additionally, a number of similari-
ties between the search problem and the spatial phenomena
monitoring problem were noted, such as the need to coop-
eratively explore an environment.

These similarities motivate the study of the applicabil-
ity of the max-sum algorithm to the online, decentralised
coordination of UAVs for search. As a matter of fact, the
max-sum algorithm presents a set of features that make it
attractive for this problem [7, 12]. The algorithm is decen-
tralised and allows multiple agents to negotiate locally over
a function to optimise. The topology of the interactions
is modelled as a factor graph, a particular type of bipar-
tite graph that will be presented in more detail in Section
4.2.4. The algorithm is able to scale up to a high number
of agents because it exploits the neighbouring interactions
among these agents.

3. THE TARGET SEARCH PROBLEM
In this section, we introduce the model of the search task.
Fundamentally, the problem is to coordinate the motion, and
hence observations, made by a team of UAVs so as to search
for a target in a timely manner. We define a continuous
search area A where the UAVs operate to search for the
target. Each UAV maintains an internal representation of
the area A by discretising the area into a grid G with a
resolution depending on the setting of the problem. Each
cell of the gridG represents a specific rectangular area within
the search area. We model the continuous time system using
small, discrete time steps, and assume that all the UAVs
have time synchronisation (e.g. through GPS time).

We define the search task by modeling the motion of the
agents, the target and the UAVs, and the sensor model.
First, we outline the motion model of the two classes of
agents, the UAVs and the target. Secondly, we introduce
the sensor model. In this work, it is assumed that each
UAV uses a fixed, downward pointing camera to detect the
target.

3.1 Agent Motion Model
The scenario mentioned in the previous section suggests two
types of agents, the UAVs and the target. In the following
sections, we will first describe the motion model of the tar-
get, and then of the UAVs.

3.1.1 Target Motion Model
The target moves following a simple probabilistic Markov
motion model. The state of the target at time k is defined
as xT

k = (i, j), where (i, j) are the coordinates of the grid
cell that contains the target. The probability of the target
transitioning to another cell is modelled as:

P
“

xT
k+1|xT

k

”

=
1

|Adj (xT
k )|

(1)

where Adj
`

xT
k

´

is the set of cells adjacent to xT
k as well as

xT
k itself.



3.1.2 UAV Motion Model
The team of UAVs is formally defined as a set S of agents.
Every UAV has the following kinematic motion model:

ẋ = V cosψ (2)

ẏ = V sinψ (3)

ż = 0 (4)

ψ̇ =
g tanφ

V
(5)

where V is the UAV velocity, g is the acceleration due to
gravity, ψ is the UAV heading and φ is the UAV bank angle,
which is limited to some maximum value |φ| ≤ φmax. We
assume that the velocity of the UAV remains constant at
the cruise speed, which was taken as 25m/s, and that the
maximum bank angle is 25 degrees.

3.2 Sensor Model
Each UAV uses a fixed, downward pointing camera to detect
the target. The camera is assumed to capture one frame
per second. The primary interest in the sensor model is
to characterise the footprint of the camera, as well as the
probability of detecting a target within that footprint.

Formally, we denote sensor observations by the ith UAV
at the kth time step as zi

k, where zi
k can take on one of two

values, Di
k, representing a target detection event, or D̄i

k,
representing a no-detection event. We further define zk as
the net observations by all UAVs.

Moreover, we define a matrix oi
k, where the (i, j)th ele-

ment, denoted by oi
k (i, j), represents the probability of the

sensor on UAV i not detecting the target, conditional on the
target being at the (i, j)th cell:

oi
k (i, j) = P

“

zi
k = D̄i

k|xT
k

”

(6)

Naturally, P
“

zi
k = D̄i

k|x
T
k

”

= 1 − P
`

zi
k = Di

k|xT
k

´

.

In order to model P
`

zi
k = Di

k|xT
k

´

, we first characterised
the footprint of the camera, which was modeled as a pin-hole
camera [14]. As a consequence of this, the footprint can be
easily computed by making a flat Earth assumption and by
simple geometric arguments. Figure 1 shows an example of
a camera footprint1.

When the quadrilateral defined by the points
−→
Pi for i ∈

[1, 4] in Figure 1 is overlaid onto the grid G, the probability
of detecting the target, that is P

`

zi
k = Di

k|xT
k

´

, is assumed
to be linearly proportional to the ratio of the area of the
cell covered by the quadrilateral to the total area of the cell,
multiplied by a term α that models the range-dependent
characteristics of the sensor. In this case, the range depen-
dent characteristics were modeled as:

α = exp

„

− R

R0

«

(7)

Where R is the range from the sensor to the cell in ques-
tion and R0 is a constant term that was tuned to model
the range-dependency of the sensor. Therefore, the value of

1The authors would like to acknowledge V Scordamaglia’s
MATLAB function ’Trajectory and Attitude Plot Version
2’ as the source of the aircraft model used in a number
of illustrations in this document. It can be obtained from
http://www.mathworks.com/matlabcentral/fileexchange/4572-
trajectory-and-attitude-plot-version-2

Figure 1: Illustration of camera footprint.1

P
`

zi
k = Di

k|xT
k

´

for each cell in the grid G has a value vary-
ing from 0, when the cell is not within the footprint and α
when the cell is completely covered by the footprint. It can
be noted that this model accounts only for false negatives,
where the sensor fails to detect a target that is present in
the sensor field of view, but not for false positives, where the
sensor reports a detection when the target is not present in
the field of view. This model can be justified if the sensor
detection characteristics are tuned conservatively.

The UAVs share these observations with each other to
maintain a consistent belief of the distribution over the state
of the target across the UAVs. Assuming that the obser-
vations by the UAV sensors are conditionally independent,
then

P
“

zk = D̄k|xT
k

”

=

|S|
Y

i=1

P
“

zi
k = D̄i

k|xT
k

”

(8)

where D̄k = D̄1
k∩...∩D̄

|S|
k . Defining ok (i, j) = P

`

zk = D̄k|xT
k

´

,
the above equation means that:

ok =

|S|
Y

i=1

oi
k (9)

4. OUR COORDINATION SOLUTION
In this section, we outline the framework for coordinating
the sensor platforms such that they can collectively search
for a target. We first introduce the data fusion methodol-
ogy, based on the Bayesian formulation in [2], and then the
coordination approach we used.

4.1 Bayesian Estimation
In this work, the probabilistic belief of the target’s position
over the grid G is defined as a matrix PT

k , with each element
of the matrix representing the probability of the target being
in the corresponding cell in G at time k:

PT
k (i, j) = P

“

xT
k = (i, j)

”

(10)

The estimation process involves two steps; the update step
that fuses observations into the belief, and the prediction



(a) (b) (c)

Figure 2: Cross-coupling of utility functions. Given
the same prior PDF, an observation by the first
UAV alone gives a utility of 0.5192 (a), while an
observation by the second UAV alone gives a util-
ity of 0.2372 (b). Finally, the utility of both UAVs
is 0.5694 (c). The heights of the PDFs have been
exaggerated for presentation purposes.1

step that propagates the belief to account for the dynamic
nature of the target. These steps are described further in
the following sub-sections.

A series of snapshots showing the changes in the distribu-
tion over the state of the target as the estimation process is
carried out is shown in Figure 4.

4.1.1 Update
We adopted the same Bayesian update equation as used in
previous work [3, 8] to fuse the observations made by the
UAVs into their belief of the state of the target. Thus,

P
“

xT
k+1|zi

k+1, ...z
i
1

”

=
1

C1
P

“

xT
k+1|zi

k, ...z
i
1

”

P
“

zi
k+1|xT

k+1

”

(11)
where C1 is a normalising constant to ensure that the proba-
bility distribution function (PDF) integrates to unity, and is
equal to P

`

zi
k+1|zi

k, ...z
i
1

´

. Here, P
`

zi
k+1|xT

k+1

´

is the sensor

model, and takes on the value of P
`

zi
k = Dk|xT

k

´

= 1 − oi
k

when the target is detected, and P
“

zi
k = D̄i

k|x
T
k

”

= oi
k in

the case the target is not detected.
Now, assuming conditional independence of the observa-

tions by the UAVs, we have:

P
“

xT
k+1|zk+1, ...z1

”

(12)

=
1

C2
P

“

xT
k+1|zk, ...z1

”

P
“

zk+1|xT
k+1

”

(13)

Again, C2 is a normalising constant. An illustration of the
Bayesian update step is shown in Figure 2.

4.1.2 Prediction
The Bayesian prediction step is used to estimate the target’s

Figure 3: Control space of one UAV, and their asso-
ciated sensor footprints. Each shade of grey denotes
one element of the control space.1

current state considering the target’s motion model and the
belief on its previous state, before incorporating the new
observations. As with the Bayesian update equation, we
adopted the prediction equation used in previous work [3,
8], which is based on the Chapman-Kolmogorov theorem
[9]. Adaptation to this problem gives:

P
“

xT
k+1|zk, ...z1

”

(14)

=

Z

P (xk+1|xk)P (xk|zk, ...z1) dx
t
k (15)

Here, P (xk+1|xk) is the target probabilistic motion model
described previously.

4.2 Coordination
In this section, we define the approach that was applied
to the cooperative search problem. We first introduce the
control space for the UAVs and the concept of receding hori-
zon control. We then define the utility function and finally
present the max-sum approach for explicit coordination.

4.2.1 Control Space
We assume that there exists a discrete set of pre-computed,
dynamically feasible trajectories that can be followed by the
UAVs, from which the coordination strategies can choose.
This approach of discretising the action space of a robotic
platform has been widely used in the robotics community,
with a famous example being the online path planner on
Stanley, the robot which won the DARPA Grand Challenge
[13]. In this work, this set of pre-computed trajectories is
calculated based on a set of nominal bank angles, in this case
ˆ

−25◦ −8◦ 0◦ 8◦ 25◦ ˜

. These were chosen as they
give a good spread in the resulting control actions, which is
illustrated in Figure 3.

From this description of the control space, it should be
clear that the future observations of a UAV can be predicted
for each member of the control space. Since each member is
defined by a path and bank angle, the camera footprints, and
hence the sensor model, can be predicted before taking the
action. This ability to predict the observations is exploited
for coordination, and is discussed further in Section 4.2.3.
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Figure 4: A series of snapshots showing the changes in the probability distribution over the state of the target
as the UAVs search. The height of the distribution is exaggerated for visualisation purposes.1

The joint action space between two or more UAVs, then,
is the set of all permutations of the individual control spaces
of each UAV. With five members in the control space of one
UAV, this means that two UAVs will have a joint control
space of size 25, three UAVs will have a joint control space
of size 125 and so on.

4.2.2 Receding Horizon Control
A number of factors mean that it is difficult or impossible
to determine the control actions that the UAVs should take
to find the target in the shortest time to optimality. These
include:

• Imperfect models of the sensor characteristics and UAV
motion and control

• The dynamic nature of the environment, as manifested
in the ever-changing PDF representing the belief of the
state of the target. This means that in the time it takes
to compute the optimal control action, the state of the
world has changed, possibly rendering the computed
action sub-optimal.

• The large search space, defined by the combinations of
the control spaces of each UAV over the entire mission

To compensate for these factors, receding horizon control is
used to approximate the optimal solution. Receding horizon
control was selected as it is a common technique used in the
literature to give computationally tractable solutions given
imperfect models of the world and a dynamic environment
[3, 6]. Put simply, receding horizon control chooses the ac-
tion that is optimal in some sense over a given prediction
horizon. This action is only executed for a length of time

Figure 5: Receding horizon control

less than the prediction horizon, before a new optimal ac-
tion is computed and the cycle is repeated. The concept of
receding horizon control is illustrated in Figure 5.

4.2.3 Utility Function
The global utility function used in this work, which sums
up the performance of the UAV team, is a function of the
cumulative probability of detecting of the target, that is,
the probability of detecting the target given all the observa-
tions made, and borrows from previous work on coordinating
UAVs for search [3]. Over a prediction horizon of N steps
and for a control action u, the utility function is defined as:

J (u,N) = P
`

D̄1:k

´

− P
`

D̄1:k+N

´

(16)



Here,

P (D̄1:n) =

n
Y

i=1

P (zi = D̄|zi−1, ..., z1) (17)

It can be seen that Equation 17 can be evaluated by calcu-
lating the cumulative product of the normalisation constants
in the Bayesian update equation. To calculate utilities for
each member of the control space, the observations that the
UAV was predicted to make were fused into a copy of the
PDF of the state of the target maintained by the UAV. As
noted in the work which introduced this utility function, it
attempts to maximise the increase in the cumulative prob-
ability of detection [3]. This utility function was selected as
it is already established in the search and track literature
[3].

Hence, the goal of the system is to find the joint control
that maximises the global utility - for a detailed definition
of how such joint paths are computed, refer to Section 4.2.1.
However, the computation of the global utility for a joint
control is not trivial, as the actions of one UAV may affect
the utility of another UAV. This occurs when the sensor
footprints of two UAVs overlap, as shown in Figure 2.

In order to apply the max-sum algorithm, the global util-
ity function must be the sum of the individual contributions
of each UAV in the team. To address this requirement, we
decomposed the global utility function into the utilities of
the individual UAVs using the concept of incremental utili-
ties [11]. This approach consists of establishing an ordering
of the agents in the team by assigning each agent a unique ID
number. In the context of UAVs, this could be the tail num-
ber of UAV. The individual utility of UAV i is then defined
as the incremental increase in the global utility function due
to the predicted action of UAV i, considering the predicted
actions of all UAVs j where j < i. It should be noted that
the ordering chosen for the UAVs does not impact on the
value of the calculated team utility.

As an example, consider the utilities shown in Figure 2.
The incremental utility of UAV (b) is calculated by taking
into account the value of its own observations and those
made by UAV (a). Specifically, the incremental utility of
UAV (b) is calculated by subtracting the value in Figure 2
(a) from the value in Figure 2 (c), namely, 0.5694−0.5192 =
0.0502.

4.2.4 Explicit Coordination with Max-Sum
The max-sum algorithm is an approximate message passing
algorithm, where every agent tries to find the best joint con-
trol action by negotiating with its neighbouring agents. For
completeness, we present a brief description of the max-sum
algorithm here. For a more sound and complete description,
refer to [7]. The max-sum algorithm operates over a factor
graph, a particular type of bipartite graph, containing two
types of nodes, “variables” and “functions”. Each variable
node is connected to a subset of the function nodes, while
each function node is connected to a subset of the variable
nodes.

In order to apply the max-sum algorithm to our multi
agent framework, a variable node pn and a function node
Un were defined for every UAV n. Each variable pn repre-
sents the possible trajectories that the nth UAV can take,
as defined in Section 4.2.1. Each function node represents
the individual utility of the nth UAV, as defined in Section
4.2.3. The edges of the factor graph were computed dynami-

cally, by building connections between function and variable
nodes. Each variable node pn was always connected to the
corresponding Un and vice-versa, as the control action by
the nth UAV always affects its utility. Every time the UAVs
negotiate, the function node Un, owned by UAV n, is con-
nected to a subset of variables pm, owned by a subset of
UAVs m. To belong to m, a UAV must have lower ID than
n, due to the way in which the individual utilities of the
UAVs were defined in Section 4.2.3. Additionally, the pre-
dicted observations made by the UAV must overlap with the
predicted observations of UAV n.

Whether two predicted observations overlapped was de-
termined by evaluating the utility of the two individual pre-
dicted observations, and the joint utility of both predicted
observations together. If the two individual utilities summed
to the joint utility, then the two actions were considered ad-
ditive, and hence independent, and the variable node of the
other UAV was not connected to the function node Un. Oth-
erwise, the utilities were sub-additive, and the variable node
was connected to Un. An example of a factor graph built
following this procedure can be found in Figure 6.

We chose to use this utility-based method of determining
whether predicted observations overlapped over geometrically-
based methods as this makes the source of the predicted
observations anonymous. By this, we mean that the UAV
receiving the predicted observations does not need to know
about the sensing model of the UAV that transmitted it,
as the sensing model is already encoded in the predicted
observation. On the other hand, if a geometrically based
method was used, the receiving UAV would need to have
knowledge of the sensor model of the UAV sending the pre-
dicted observation, which would restrict its applicability to
homogeneous systems. However, it is acknowledged that a
limitation of this approach is that it scales linearly with the
number of UAVs in the system, as each UAV needs to con-
sider the predicted observations of every other UAV. Hav-
ing said this, it would be trivial to introduce domain-specific
heuristics that allow a UAV to reject predicted observations
that clearly do not overlap with its predicted observations,
without having to calculate the utilities. This would mean
that a UAV would only need to calculate the utilities for a
subset of the other UAVs, thereby improving the scalability.
One such heuristic that could be applied in this situation is
a threshold on the Euclidean distance between the UAVs.
If another UAV is sufficiently far away so that its footprint
will not overlap, then its predicted observations can be safely
ignored.

Once the factor graph was computed, negotiation started.
During negotiations, function and variable nodes each sends
a different type of message:

• From variable to function:

Qxn→Um(xn) =
X

U
m′∈Adj(xn)
Um′ 6=Um

RUm′→xn(xn) (18)
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A1 A2 A3 A4 A5

Figure 6: An example of a factor graph, here the
predicted observations of UAV 5 are independent of
those of all the other agents, while the predicted
observations of UAV 4 are independent of those of
UAV 1.

• From function to variable:

RUm→xn(xn) (19)

= max
xm\xn

2

6

6

4

Um(xm) +
X

x
n′∈Adj(Um)

xn′ 6=xn

Qxn′→Um(xn′)

3

7

7

5

(20)

where every xi represents a variable node, every Ui repre-
sents a function node, and the operator Adj(.) is used to
represent the set of connected nodes of a variable or func-
tion node.

The negotiation takes place within this asynchronous mes-
sage passing phase. The algorithm is guaranteed to converge
to the optimal joint action if the factor graph has a tree
structure. Otherwise, it finds an approximate solution [7].
In this particular application, the factor graph will usually
be cyclic.

It should be noted that the incremental nature of the indi-
vidual contributions to the global utility function described
in Section 4.2.3 tends to reduce the number of edges in this
graph, as function nodes are only connected to variables
nodes belonging to UAVs with a lower or equal ID. Addi-
tionally, a function node is only connected to a variable node
if it depends on that variable, further sparsifying the graph.
Empirical evidence suggests that this sparsity improves the
convergence and computational time of the max-sum algo-
rithm [11, 12].

Finally, to decide on a control action, the marginal func-
tion is calculated at each variable node:

Zn (xn) =
X

m∈M(n)

Rm→n (xn) (21)

The selected control, x∗, is:

x∗ = argmaxxn (Zn) (22)

5. EXPERIMENTS
This section describes the results of simulations performed
to test hypotheses on the effect of coordination on the per-
formance of a team of UAVs. The performance metric was
the average time taken for a team of UAVs to obtain a 95%
cumulative probability of detecting the target, conditioned
on all the observations made by the UAVs up to that time.

In other words, had there been a target in the search area,
there would have been a 95% probability of detecting it in
this time. At time k, this probability was calculated by
1 − P

`

D̄1:k

´

. As noted previously, P
`

D̄1:k

´

is the proba-
bility of not detecting the target up to time k, based on the
observations by the team of UAVs up time k.

This section first presents a description of other approaches
to coordination against which the max-sum algorithm was
benchmarked in Section 5.1. Following this, the hypotheses
themselves and the experimental methodology used to test
these hypotheses are described in Section 5.2. Finally, the
results of the experiments are presented and discussed in
Sections 5.3 and 5.4.

5.1 Benchmark Algorithms
In this section, we outline the three approaches to coordina-
tion that the max-sum algorithm was benchmarked against.
These approaches are classified into the three levels of coor-
dination described in [10].

Non-Coordination: In the non coordinated approach, each
UAV selects its control to optimise the utility function
described in Section 4.2.3 over a given horizon, inde-
pendently of the other UAVs. This optimisation oc-
curs on the basis of different PDFs on the state of the
target, since the UAVs also do not share observations.

Implicit Coordination: In the implicitly coordinated ap-
proach, each UAV selects its control to optimise the
utility function described in Section 4.2.3 over a given
horizon, independently of the other UAVs. In this
case, the UAVs communicates observations so that
each UAV maintains the same belief of the state of
the target, and makes decisions based on this shared
belief. In this case, the implicit coordination arises
because each UAV is making its decision based on a
common prior belief of the state of the target.

Explicit Coordination with Best Response: In the ex-
plicitly coordinated approach, the UAVs make a team
decision based on both the common prior information,
as well as the predicted observations communicated
by other UAVs. The best response algorithm is an ex-
ample of an explicit coordination algorithm that is the
state of the art for the coordination of UAVs for search
[3, 6]. It is for this reason that this paper benchmarks
the performance of the max-sum algorithm against the
performance of the best response algorithm. The best
response algorithm operates by having every UAV de-
termine the best control action it can choose, given
its belief, and given its knowledge about the control
actions that the other UAVs of the team are going to
take, based on what the other UAVs have previously
communicated. Every UAV then broadcasts its new
decision, and the cycle is repeated.

In the previous application of the best response algo-
rithm for coordinating UAVs, two termination crite-
rion were defined, a theoretical one, where the proce-
dure was iterated until the best joint control action was
found, and a practical one where the procedure iter-
ated until the solution converged to a given threshold
[3]. In our case, to be able to compare this approach to
the max-sum algorithm, we fixed the number of iter-
ations that both the max-sum algorithm and the best



response algorithms were allowed to go through before
termination. For the simulations, this was fixed at six
iterations. Additionally, while the previous work op-
timised over a continuous control domain [3], the best
response algorithm was only allowed to optimise over
the discrete control domain available to the max-sum
algorithm in this work.

In terms of the coordination overhead, the best re-
sponse algorithm requires slightly less communication
than the max-sum algorithm. This is because once
the predicted observations are communicated, the best
response algorithm only communicates the index rep-
resenting its best response at each iteration. On the
other hand, the max-sum algorithm needs to commu-
nicate the variable to function and function to variable
messages, which are vectors of length equal to the num-
ber of possible values each variable can take on, which
is five in these simulations, there being five control ac-
tions in the control space.

5.2 Methodology
This section describes the methodology that was used to test
the following hypotheses in simulation:

• Teams of UAVs that were explicitly coordinating us-
ing the max-sum algorithm would out-perform teams
of the same size that were explicitly coordinating by
using the best response algorithm, which would in turn
out-perform teams that were implicitly coordinating,
which would out-perform teams that were not coordi-
nated. Naturally, a shorter time taken to obtain a 95%
cumulative probability of detecting the target meant
that a team had performed better.

• A single UAV would perform equally well for all levels
of coordination.

First, the methodology is outlined. This is followed by a
listing of the controlled variables in the experimental de-
sign. Lastly, the experimental variables being tested are
presented.

In recognition of the possibility that the initial positions
of the UAVs would influence the result, ten sets of random
initial positions were generated for teams of one, two and five
UAVs. Each team then flew a simulated search mission using
each of the four types of coordination, starting from each
of the ten initial positions. For each simulated mission, the
time to achieve a 95% confidence in detecting the target was
recorded. After all 120 simulated missions were complete,
the mission times for each team size/level of coordination
combination was averaged across the ten initial positions.
This gave average mission times for each team size/level of
coordination combination. Finally, for each team size, a
Student’s t test with a 95% confidence interval was applied
to determine if the differences between the average times for
each type of coordination were statistically significant.

5.2.1 Controlled Variables
The controlled variables in this experiment were:

• The characteristics of the UAV (e.g. cruise speed, con-
trol space, initial position)

• The characteristics of the sensors used to detect the
target (e.g. field of view, the R0 value used to model
the range-dependent error characteristics).

• The data fusion method and implementation used to
fuse observations from the sensors on-board UAVs, ob-
servations received from other UAVs, as well as the
prior belief on the state of the target.

• The prediction horizon over which the utility function
was evaluated

5.2.2 Experimental Variables
The experimental variables used in this work were:

• The three team sizes

• The four levels of coordination (non coordinated, im-
plicitly coordinated, explicitly coordinated using the
best response algorithm and using the max-sum algo-
rithm)

5.3 Results
The results obtained from the simulated missions are illus-
trated in Figure 7. The differences between the times for
the different types of coordination in the two and five UAV
teams are evident. A Student’s t test showed that the dif-
ferences in the performance of the max-sum algorithm com-
pared to the best response algorithm, implicit coordination
and no coordination were statistically significant. Specifi-
cally, these results illustrated that for a team of two UAVs,
explicit coordination with the Max-Sum algorithm reduced
mission times by 7% compared with explicit coordination
with the best response algorithm, by 17% compared with
implicit coordination, and by 48% compared with no coor-
dination. In a team of five UAVs, explicit coordination with
the max-sum algorithm reduced mission times by 26% com-
pared against explicit coordination with the best response
algorithm, by 34% compared against implicit coordination,
and 68% when compared against no coordination.

On the other hand, the differences that can be observed in
the one UAV team are much smaller, and a Student’s t test
showed that these differences were statistically insignificant.
This self-evident result verified that no level of coordination
was unfairly advantaged or disadvantaged.

5.4 Discussion
The simulation results showed that explicit coordination
using the max-sum algorithm out-performed the best re-
sponse algorithm, implicit coordination and no coordination.
The simulation results further showed that explicit coordina-
tion using the best response algorithm outperformed implicit
and no coordination. The simulation results finally showed
that implicit coordination out-performed no coordination for
both teams of 2 and 5 UAVs. From these observations, we
can see that all of the hypotheses outlined previously were
verified.

The results also showed that by explicitly coordinating
with the max-sum algorithm, the performance relative to
other methods of coordination was not affected by the size
of the team, except for the degenerate case of a single UAV
team. Hence, it can be asserted that the max-sum algorithm
is a valid approach to inducing explicit coordination in a
team of robotic platforms.

6. CONCLUSIONS
In this paper, we applied the max-sum algorithm, developed
in [7], to coordinate a team of UAVs to search for a dynamic



(a)

(b)
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Figure 7: Times to achieve a 95% cumulative prob-
ability of detection for one (a), two (b) and five
(c) UAVs. The top and bottom of the central box
in each box plot depicts the 25% and the 75% per-
centiles of the results, while the central mark repre-
sents the median. The two whiskers extend to the
most extreme data points that are not considered
outliers, which are represented individually by the
cross “+” symbols.

target. We benchmarked the max-sum algorithm against
three other types of coordination approaches, namely the
best response algorithm [3], representing the state of the
art in the coordination of UAVs for search, the implicitly
coordinated approach where agents make decisions individ-
ually, based on common information, and the non coordi-
nated approach, where the UAVs do not share any infor-
mation at all. To compare the performance of the different
approaches, we measured the average time taken for a team
of UAVs to obtain a given confidence of detecting the tar-
get. By doing this, we showed that coordination with the
max-sum algorithm out-performed the best response algo-
rithm by 26%, implicitly coordinated approach by 34% and
the non-coordinated approach by 68% in the case of five
UAVs, and by 7%, 17% and 48% respectively for teams of
two UAVs.

These results indicate that the max-sum algorithm has
potential to be applied in complex systems operating in dy-
namic environments. Hence, the future of this work is to
test the application of max-sum algorithm for coordination
in high-fidelity simulations, such as Software-in-the-Loop
and Hardware-in-the-Loop simulations and finally, through
a flight demonstration.
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