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Abstract

We propose a learning method for gait synthesis from
a sequence of shapes(frames) with the ability to extrap-
olate to novel data. It involves the application of PCA,
first to reduce the data dimensionality to certain fea-
tures, and second to model corresponding features de-
rived from the training gait cycles as a Gaussian dis-
tribution. This approach transforms a non Gaussian
shape deformation problem into a Gaussian one by con-
sidering features of entire gait cycles as vectors in a
Gaussian space. We show that these features which
we formulate as continuous functions can be modeled
by PCA. We also use this model to in-between (gener-
ate intermediate unknown) shapes in the training cycle.
Furthermore, this paper demonstrates that the derived
features can be used in the identification of pedestrians.

1. Introduction

The construction of shape models has been an area
of active research. Many applications share the need for
good dependable shape models which should enjoy two
distinctive features: to be flexible enough to extrapolate
beyond learning material, while being accurate enough
to generate plausible estimates. The point distribution
model proposed by Cooteset al.[2] suggesting a Gaus-
sian model for contour deformation, has been one of
the most popular models due to its simplicity. Leventon
et al.[4] proposed a similar shape model which acts on
signed distance functions (SDF’s), a notion that avoids a
strict point correspondence requirement. The common
theme between these approaches is that the data they
deal with, has in general a Gaussian distribution.

The issue with gait is that the distribution of the hu-
man silhouette’s deformation is non Gaussian[5], and
that gait is used as a sequence of shapes, such that a
particular deformation has to be drawn over the whole
sequence in order to produce a consistent gait cycle.
Cremers[3] developed a gait model which incorporates
an autoregressive (AR) system for the shape generation

while preserving the time coherence of the generated
shapes. This approach inherits the potential AR weak-
ness due to its linear nature which does not match the
gait features. Al-Huseinyet al.[1] used a cubic spline
with the statistical shape model to in-between the train-
ing cycle, this technique lacks the ability to generalize
outside the training gait cycles.

This paper proposes a new method to model shape
deformations of the entire gait sequences rather than in-
dividual shapes. Considering the problem from this per-
spective seems appealing, since gait shapes are usually
used in the context as complete cycles and not partic-
ular shapes. This can be used to generate prior shapes
in a prior shapes segmentation framework, and hence
clean data is used to train the model. It can also be used
in classification, in which case we assume that the seg-
mented shapes are clean.

Our proposed model is based on using PCA twice,
first, to reduce the data dimensionality and extract the
shapes’ eigenmodes, and second to model the deforma-
tion of these eigenmodes with a Gaussian distribution.
We notice that the deformation of shapes in a gait cycle
along the time axis is non Gaussian. However it is as-
sumed here that the deformation of shapes over various
gait cycles at a certain time is indeed Gaussian.

So in the rest of this paper we describe our model in
section 2, present the experimental outcomes in section
3, and draw a conclusion in section 4.

2. Gait Regenerative Model

In this section we describe the proposed framework
to model a set of gait cycles. The boundaries of the
training data consisting ofM gait cycles with different
number of shapes per cycle, are embedded as the zero
level sets ofN SDF’s,vi using fast marching [6], where
N is the total number of shapes in the training set. A
mean shape is computed asū = 1

N

∑N

i=1
vi, this shape

is then subtracted from the shapes to centralize the data,
and the resulting distance mapsui are then vectorized
and augmented into the matrixSof shape vectorsui.

Sn×N ≡
[
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1
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p

]
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the superscripts refer to the particular gait cycle, and the
subscripts refer to a shape within a cycle.

S is then subjected to the first principal component
decomposition, PCAbasis, to generate a common eigen-
vector basisψ for the entire data set,

ψ λ ψT =
(

S ST
)

× 1/N. (2)

PCAbasis is crucial, because the projection of the
shapes on the commonψ produces eigenmodesα cor-
responding to appropriate shapes,

αi = ψT ui. (3)

Each cycle is now represented by a set of shapes’
eigenmodes. The variations of these vectors we argue
belong to a Gaussian distribution, and therefore a sec-
ond decomposition, PCAfeature is applied to calculate
the eigenvectors associated with these vectors.

The issue is that these eigenmode vectors, if consid-
ered as sampled periodic signals, are of different lengths
and in different phases. A Hermite cubic spline is there-
fore used to represent the underlying continuous func-
tion for each vector,

α (t) = spline (α) , (4)

these continuous shape eigenmodesα (t) are aligned
and augmented as the columns of a zero-mean feature
matrixF,

F ≡ [α1 (t) , . . . , αM (t)]
∞×M . (5)

The feature covariance matrixC∞×∞ = F FT , has
infinite dimensions and the decomposition of its eigen-
vector components is not numerically tractable. A finite
dimensional kernelK is therefore defined as

KM×M = FT F. (6)

Since the vectors ofF are continuous functions, then
the components ofK can be computed by the following
integration:

ki,j =

∫

τ

αi (t)αj (t) dt. (7)

Now, the eigenvector decomposition ofK gives

ν η νT = K . (8)

The eigenvectorsφ(t), of the matrixC are found, [2]

φ = F ν. (9)

Equations (4-9) show that PCA can be applied to
continuous functions as effectively as with discrete data.

In other words, PCAfeature places an instantaneous
Gaussian model across the continuous functions at ev-
ery time instant. The coefficientsβ corresponding to
the eigenmodes of a cyclei are computed as:

βi = φT
(

αi − ᾱ
)

(10)

where ᾱ is the mean set of eigenmodes computed as
ᾱ = 1

M

∑M

i αi. These computed values,βi can only
be used to recall the eigenmodesαi of the training set, a
generalization into estimating novel data,α̂ means set-
ting new values,̂β different from the computedβ’s. A
set of eigenmodeŝα(t) is then computed using:

α̂ = φ β̂ + ᾱ. (11)

These eigenmodeŝα(t) are then translated into an
estimated cycle of vectorized gait shapes by Eq. (12),

ût = ψ α̂(t) + ū, (12)

whereψ and ū are respectively the eigenvector basis
and the mean shape of PCAbasis.

3. Evaluation

We have used the training cycles from the Southamp-
ton Gait database[7]. The images are initially manually
segmented and their SDF’s are then generated [6].

3.1. Novel Data Generation

The main contribution of this work is that it consis-
tently facilitates the manipulation of non Gaussian data
in a linear fashion. That is to say, the generation of a
novel cycle is achieved by adding a linear combination
of the eigenvectors to the mean cycle of shapes. Hence,
the model is trained using 20 gait cycles of different
subjects with a varying number of frames for each cy-
cle. Then using Eq. (11), three new cycles (shown in
Fig. 1) are generated by assigning 3 different values to
the first element of̂β and setting the rest to zero. Each
value set toβ̂1 produces a different set of eigenmodes
α̂, which in turn using Eq. (12) generate a new cycle of
gait shapes. For the sake of measurement, anL2-norm
distanceD is computed between the set of eigenmodes
αi for each of the training cycles and the mean set of
eigenmodes̄α. This measure is intended to show the
significance of the computed̂α’s from ᾱ compared to
the significance ofα’s of the training data from̄α for
the chosen̂β1. The distancesD corresponding to the
chosen coefficientŝβ1 are shown in Fig. 2. This indi-
cates that changing one coefficientβ̂1, produces a sig-
nificantly new set of eigenmodeŝα, which gives rise to
a novel gait cycle. Visually, it is easy to see from Fig.
1 the linear effect of changinĝβ1 in producing new se-
quences appearing in the rows (b-d).
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Figure 1. Row (a) is a cycle computed using
the mean eigenmodes ᾱ by setting β̂ = 0. The
rows (b-d) are novel cycles computed using β̂1 =

30, β̂1 = −9×10
4, and β̂1 = 18×10

4 respectively
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Figure 2. The distance D computed for the
eigenmodes αi of the training set, and for the
three novel eigenmode sets α̂ generated by set-
ting three new distinct values to β̂1

3.2. Reconstruction: Leave One Out

We assess reconstruction by regenerating sequences
of human walking subjects for our gait data. The leave
one out test has proved to be a useful method to as-
sess the reconstruction accuracy. Accordingly, for one
of the training gait cyclesi, a shapej is removed each
time, the remaining shapes of this cycle with the other
19 cycles together constituting the training set are used
to train the model. We then reconstruct theith cycle us-
ing Eq. (11) and (12) by settinĝβ to βi corresponding
to the cyclei. The reconstructed shapes are those used
to train the model as well as the one removed. This
model proves robust against overfitting and learns the
underlying trend of the data, which literally led to the
generation of a good estimate to the missing shape. An
error functionEr between the removed shapes and their
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Figure 3. A comparison of the error function
Er in the estimated shapes, Er1 computed for the
shapes estimated using [1], Er2 computed for the
shapes estimated using the proposed model

reconstructed estimates is computed as:

Er(j)=
√

tr((vrmv(j)−vest(j))T (vrmv(j)−vest(j))), (13)

wherevrmv is the removed shape andvest is the es-
timated shape. This norm counts the number of erro-
neous elements in the estimate compared to the refer-
ence shape. Fig. 3 compares the error functionEr1
computed using [1], and the error functionEr2 com-
puted using this model to reconstruct the same cycle. It
is noted that the average error is four times less using
the model proposed here. The reason for this is that in
this model the missing shape is estimated by combining
the effort of the instantaneous Gaussian contributed by
PCAfeature with the general trend of the data captured
by the cubic spline, while in [1], the estimation is based
purely on the estimation of general trend of the data.

3.3. Pedestrian Identification

The shape eigenmodes generated by our model can
be employed in the identification of pedestrians based
on their gait by using the following theorem.

Theorem: In the model proposed here:

d =

∫

τ

∥

∥V1 − V2
∥

∥

2

dt=
∑

i

∫

τ

∥

∥α1

i − α2

i

∥

∥

2

dt, (14)

whereV1 andV2 are the vectorized SDF’s of the gait
cycles for two subjects andα1 andα2 are their corre-
sponding eigenmodes.

Proof: Let V1 andV2 be the gait cycles for two sub-
jects withR shapes each, such that:

Vk = v̄k +

R
∑

i=1

ψk
i α

k
i (t), (15)
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Figure 4. The correct cycle has the least dis-
tance d to the test cycle

wherek = 1, 2; then the distanced, between the two
cycles is computed by:

d =

∫

τ

‖V1 − V2‖2dt (16)

=

∫

τ

∥

∥

∥

∥

∥

∥

v̄1+
∑

i

ψ1iα
1

i(t)−v̄2−
∑

j

ψ2jα
2

j(t)

∥

∥

∥

∥

∥

∥

2

dt.(17)

Since all the shapes in the proposed model are repre-
sented using a common mean shapeū and eigenvectors
ψ, thenv̄1 = v̄2 = ū, andψ1 = ψ2 = ψ and hence,

d=

∫

τ





∑

i

ψiα
1

i −
∑

j

ψjα
2

j





T



∑

i

ψiα
1

i−
∑

j

ψjα
2

j



dt (18)

and sinceψT
i ψj = δij , whereδij is theKroneckerdelta,

d =

∫

τ

∑

α1
2

−2α1α2+α2
2

=
∑

i

∫

τ

∥

∥α1i −α
2

i

∥

∥

2

dt (19)

This distanced is used in the identification to mea-
sure the closest training cycle to an unknown cycle. So,
for one of the subjects (chosen arbitrarily) in the train-
ing set, a new unknown cycle (not in the training set)
is used as the test cycle, the distanced is computed be-
tween the eigenmodes of this test cycle and the eigen-
modes of the known 20 cycles of the training set. Fig. 4
shows the outcomes, in which, it is seen that the correct
cycle is selected by calculating the least distance(d).

4. Conclusions

In this paper we proposed a gait model that trans-
forms the problem of non Gaussian shape deformation,

into a Gaussian one by considering entire gait cycles
as training data points and modeling them using PCA.
We have applied this model to human gait analysis and
synthesis, though it could be applied elsewhere. This
approach preserves, and meanwhile exploits the time
coherence of the shapes in the gait, which is important
in applications like tracking and prior shape based
segmentation with occluded images. The pioneering
employment of PCA in handling continuous functions
made it possible to align the gait cycles which made
the case for accurate automatic shape correspondence.
The introduction of PCA over corresponding shapes
resulted in producing the entire novel cycles with valid
shapes by changing the model coefficients which is the
main practical outcome of this model.

The proposed model was also used successfully in
reconstructing the training data. Furthermore it proved
more robust in the reconstruction of in-between shapes
compared to the previous approaches. These results
presented in this paper, demonstrate that the proposed
method enjoys the flexibility of the statistical methods
with the accuracy of deterministic techniques.

The model proposed here, has showed and proved
that the statistical shape eigenmodes can be used in
pedestrian identification, which can be extended into
a gait biometric by applying this model to a large
database, without the need for computing complex
shape descriptors, such as the statistical moments in
order to provide the common basis for measurement.
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