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Abstract— Collaborative filtering is the most famous and rated highly. Examples of these systems include Amazon’s
adopted recommendation algorithm, which recommendsecommender system [1], Ringaetc. Collaborative filtering
items by identifying other similar users, in case of usercan be classified into two sub-categories: memory-based
based collaborative filtering, or similar items, in case of CF and model-based CF. Memory-based approaches make
item-based collaborative filtering. Significance weightin a prediction by taking into account the entire collection of
schemes assign different weights to neighboring usersdite previous rated items by a user, for example the GroupLens
found against an active user/item. In this paper, we clainrecommender system [2]. Model-based approaches use rat-
that the significance weighting schemes proposed in thiang patterns of users in the training set, group users into
literature, are flawed by the fact that they can not bedifferent classes, and use ratings of predefined classesto g
applied to general recommender system datasets. We proviéeate recommendation for attive usef on atarget itens.
the correct significance weighting schemes using differerfome examples of these approaches include item-based CF
novel heuristics, and by extensive experimental results of8], Singular Value Decomposition (SVD) based models [4],
two different datasets, show how significance weightindactorization methods [5], and clustering methods [6].
schemes affect the performance of a recommender systemRecommendations can be presented to an active user in the
Furthermore, we claim that the conventional weighted sunfollowings two different ways: by predicting ratings of it
prediction formula used in item-based collaborative filgr ~ a user has not seen before and by constructing a list of items
is not correct for very sparse datasets. We provide the cbrre ordered by his preferences. In the former case, an active
prediction formula and empirically evaluate it. user provides the prediction engine with the list of items to
be predicted, prediction engine uses other users (or items)
Keywords: Recommender Systems; Collaborative Filtering; Sig-ratings or content information, and then predict how much

nificance Weighting Schemes; Heuristics the user would like the given item in some numeric or binary
1] q . scale. In the latter case, different heuristics are used for
. Introduction producing an ordered list of items, sometimes terme@s

There has been an exponential increase in the volum& recommendation§7], [8]. For example, in collaborative
of available digital information, electronic sources, avd filtering recommender system this list is produced by making
line services in recent years. This information overload hathe rating predictions of all items an active user has not yet
created a potential problem—how to filter and efficientlyrated, sorting the list, and then keeping the féptems the
deliver relevant information to a user—which highlights active user would like the most. In this paper, we focused on
a need for information extraction systems that can filtethe former case—predicting the ratings of items—however
unseen information and can predict whether a user wouldie can easily construct a list of tag-items for each user
like a given source. Such systems are callecommender by selecting highly predicted items.
systemsand they mitigate the aforementioned problems to
a great extent. Given a new item, recommender systents.1 Problem Statement
can predict whether a user WOUId I|ke. Fh|s em or NoL ¢k works by finding the similar users (in case of user-
based on user preferences (likes—positive examples, and

dislikes—negative examples), observed behavior (expicit based CF) or similar items (in case of item-based CF). In
implicit feedback), and information (demographic or cante case of user-based CF, significance weighting schemes give

. ) . more weight (similarity) to a user who has co-rated a number
information) about items. ght ( )

N of items with the active user. Similarly, in case of item-
Collaborative filtering (CF) recommender systems are th% Y

. d sed CF, significance weighting schemes give more weight
most widely used recommender systems, which recommenda 9 ghting 9 g
items by t.aklng into account the taste (in terms of prefer- Lyww.ringo.com
ences of items) of users, under the assumption that USerthe user for whom the recommendations are computed.
will be interested in items that users similar to them have 3The item a system wants to recommend.



(similarity) to an item which shares a number of common

users with the target item. K
We claim that the schemes presented in [9], [10], [11], D (i X T, i)
[12] can not be generalized to real world recommender sys- Poyn, = =1 = : 1)
tems. We provide the correct significance weighting scheme Z(\wm )
and propose different novel heuristics for it. We empitical ] ’

show that the proposed schemes outperform others in terms —— C
of accuracy metrics and coverage, especially in case ofya V(:rjz'2 Significance Weighting Schemes

sparse dataset. We focused on item-based CF, and evaluatelhe similarity between two users can be misleading if they
our algorithm on MovieLerfsand FilmTrust datasets. have rated very few items in common, and the same is true
The rest of the paper has been organized as follows. Setor similarity between items, which have been rated by very
tion 2 discusses the background concepts. Secipresents few users. For example, two items can have similarity of
a detailed overview of the significant weighting schemedf they have been identically rated by only two users, which
proposed in the literature, under different conditions:t®a  is not true. Significance weighting schemes overcome this
4 presents our proposed significance weighting schemeproblems by, decreasing the similarity if the rating prefile
Section 5 describes the dataset and metrics used in thif two user/items have very few ratings in common (denoted
work. Section6 compares the performance of the proposedy |R.NRp| < « in this work), and enhancing the similarity
schemes with the existing ones followed by the discussiohetween two rating profiles if they have a sufficient number
of results in sectiorT. Finally, sectior8 concludes the work. of ratings in common (denoted by2, N Ry| > « in this

work).
2. Background 3. Item-Based CF: Significance Weight-
Let M = { mi,ms,---,m,; } be the set of all users, ing Schemes
N ={ ni,ns,---,n, } be the set of all possible items that  Several significance weighting schemes have been pro-

can be recommended,,, ,, be the rating of usem; on  posed, such as [9], [10], [11], [12]. We claim they can not

item n;, and| R, N R,| be the common ratings between two he generalized to all similarities weights and datasets.
profiles.

3.1 Case Amplification (CA) Proposed in [9]

2.1 Item-Based Collaborative Filtering Case amplification refers to the transformation that em-
phasizes weights that are closer to one, and punishes the

Iltem-based CF [3] builds a model of item similarities |ower ones.
using an off-line stage. Suppose we want to make prediction

for an itemn, for an active usefn,. Let Mn;n; be the set WP if Wy >0
of all users, who have co-rated item) andn;. There are wh o, = ab JoTab = 2
a, _(_w(hb) if Wap < 0.

three main steps in this approach as follows:
« In the first step, all items rated by an active user aréVherew,  is the similarity between user andb, andp is

retrieved. a constant whose value is application dependefe notice

In the second step, target item’s similarity is com-that, the authors did not take the number of items in common

puted with the set of retrieved items. A set &f Dbetween two users while calculating the similarity, hence

most similar itemsn;, ns - - - nx with their similarities ~ Similarity weights may be misleading.

(or weights)w,,, , wp, - - - w,, are selected. Similarity

Wn,; n,, DEtWEen two itemsy; and n;, is computed

by first isolating the users who have rated these item&12]

(i.e. Mn;n;), and then applying the adjusted cosine In [12], the authors proposed a significance weighting

similarity [3]. scheme, claiming it devalues similarity weights that are
« In the last step, prediction for the target item is madebased on a small number of co-rated items between two

by computing the weighted average of the active user’s . _
rating on theK most similar items. Using Weighted These schemes focused on use_r-based CF using Pear;ontn_:m'rrela
. . . [9], however we can apply them to item-based CF using adjuststhe
sum, the prediction,,, », on itemn, for usermg, is  similarity [3] as well. The reason is these schemes emphasizpsrish
computed as follows [3]; similarities weights, which lies in range of{1,—1} for Pearson correlation
and adjusted cosine similarity.
71t must be noted that the given formula is incorrect for negatieights,
4www.grouplens.org/node/73 and the correct formula isv!, | = —(—wq,5)P. We reckon this is a typo
Swww.filmtrust.com and not an error. '

3.2 Significance Weighting Scheme Proposed in



users. The proposed similarity weighting scheme can b8.3.1 Forw,; <0

represented as follows: Let us assume we have, , = —0.5, |R, N Ry| = 60, 40.
Ra NR ’ min 5
w,, = 2ol ! b2 . 3) min(60.50) (0 5) — 50 (_0.5) = 0.5
W - for|R, N Ry| =60,
a,b —

It was corrected in [11], by replacing the az by Min. We min9.50) (—0.5) = 40.(~0.5) > —0.5
claim that both approaches are flawed by the fact that they for|R, N Ry| = 40.
can not be generalized. Let us take= 508, and validate

) The results shows that, this formula is increasing weigits i
our hypothesis.

cases where the common items between two users is less

than a threshold and leaving it as it is otherwise, which is
3.2.1 Forw,, >0 not correct.

Let us assume we have,, = 0.5, [Ra N Re| = 60,40 3 4 gjgnificance Weighting Scheme Proposed in

max(60,50) (0.5) = 99.(0.5) > 0.5 [10]
;o for|R, N Ry| = 60, In [10], the author proposed a significance weighting
Wap = %.(0.5) — 20.(0.5) = 0.5 scheme, which can be represented as follows:
for|Ra N Ry| =40.
w), = WD, ©
, o ,

We can see that it is not decreasing cases, where the common ) o
items between two users are less than a thresholdThis ~ We found it reasonably good fap,;, > 0, but it is wrong
was pointed out in [11]. We show this formula is also notfor wa <O0.

correct for negative correlations as shown below.
3.4.1 Forw,, <0

3.2.2 FOrwy; < 0 Let us assume we have, , = —0.5, |R, N Rp| = 60, 40.
Let us assume we have, , = —0.5, |R, N Ry| = 60, 40. 60 (L0.5) = £.(-0.5) < ~0.5
W 0 4for|RaﬂRb\ =60,
max(5%0750).(70'5) = 90 (~0.5) < ~05 a,b 5-(=0.5) = 2.(=0.5) > =05
o for|Ra M Ry| = 60, for|R, N Ry| = 40.
a,b w,(_o,@ = %,(_0,5) =05 We observe that if two user have less items in common, it is
for|R, N Ry| =40. increasing the weight, and decreasing the weights otherwis

which is obviously not correct.
The results shows that, this formula is decreasing weights i o ] ]
cases where the common items between two users is greadt Proposed  Significance  Weighting
than a threshold and leaving it as it is otherwise, which iSScheme and Heuristics
not correct.

4.1 Correct General Significance Weighting

3.3 Significance Weighting Scheme Proposed in Scheme
[11] We claim a general significance weighting scheme should

have the following properties:
In [11], the authors proposed a significance weighting
scheme, claiming it corrects the flaw in significance weight- > w Y
. . . a,b - Vg 320N |[ReNRp|> a0y
ing scheme presented in [12], which can be represented as Y
/ < Wab * Vw, ;>0 A |RaNRy|<a (6)

follows: w
“ > Wab Vi, y<0A|RaNRy|>a s

> Wap * Va, y<OA |RaNRs|<a-
, min(| R, N Ry|, @) ¢ Her | e

Wy = - Wa,b- (4) Intuitively, we emphasize positive weight which are close
to one and punish the remaining ones. For negative weights,
Let us evaluate it for negative weights. we take opposite of what is communicated by the weight. A

weight is punished more (shown by in equation 6) when

8Any other value can be assuméd,is a reasonable choice in MovieLens common ratings in two _profllfas are Ies_s than than the
dataset. case where, common ratings in two profiles are greater than



«. Correct, generalized form (denoted Byoposed in the
results, wheres is for General) is given by:

(1 Ra ﬁRbD .
/ _ “Wq, b Vwa‘bzo ’ (7)
We,p = |RaﬂRb\ w Y
a+max(|RaNRy[ o) " L @b+ Vwe p<0-

4.2 Novel Heuristics for Significance Weighting
Scheme

4.2.1 Adding 1 to all similarity weights

(8)

This heuristic (denoted bgim + 1 in the results) will take
advantage of negatively correlated weights as well, howeve
the positively correlated neighbors would heavily affdet t
prediction rather than negatively correlated dnes

wé,b = (Wap +1) : vwa,be{_1¢+1}'

4.2.2 Adding 1 to all similarity weights and decreasing
based on common ratings

|RaﬁRb‘
a+ |Ry N Ry

ro
wa,b -

(wa,

This heuristic (denoted byevg;.,,+1) decreases weights
computed by equation 8.

b+ 1) 9)

Vg pe {141}

4.2.3 Considering only positive similarity weights and
decreasing based on common ratings

|Ro N Ry
(e%

’
wab*

( ab)

This heuristic (denoted byDevp,ssim) Only takes into
account the positive weights and decreases them based
the common ratings.

Vg 420 (20)

4.2.4 Adding constant to negative similarity weights and
decreasing weights

/

o+ 1
wa,bz(w b+ 1)

10
This heuristic (denoted byiv,o in the results) will map
negative similaritie® into the range of0 (in casew,;, =
—1 to approximately0.1 (in casew,;, = —0.01), which

Vi, <0 (11)

4.2.5 Taking log of negative similarity weights

We take thelog (base10) of negative similarities as
follows:

wzlz,b = log (wa,b + 2) : vwa,b<0- (12)

Let us evaluate this heuristic (denoted lby in the results)

by assumingw, , = —0.01,—0.5,—0.99, —1.
log (wqp + 2) = log (—0.01 4+ 2) = 0.299,
log (wa.p + 2) = log (—0.5 + 2) = 0.176,
wg,, = { log (wa,p +2) = log (—0.99 4 2) = 0.004,
log (wep +2) =log (—1+2) =0.

We observe that it is reasonably mapping negative weights
to positive ones, i.e. a highly negative weight is punished
more (shown byd) than others.

4.2.6 Taking log of negative similarity weights and de-
creasing based on common ratings

We takelog of negative similarities, and further decrease
them using a heuristic (denoted bygp.., in the results) as
follows:

, |Ra N Ry
=———(1 ap+2)) Yy . (13
Wa b |RamRb‘+(1(0g(’w bt )) a,56<0 ( )
Let us take the case from equation 12 wherg, = —0.5.

Assume we havex = 50, and|R, N R,| = 10, 60.

.(0.176) = 0.029 for|R, N Ry| = 10,

, 10+50
Wab = 60+50 .(0.176) = 0.096 for|R, N Rp| = 60.
We find, it is further punishing weights as described in
equation 6.

Another heuristic (denoted bY.ogca) is to apply CA
(Case Amplification) over log similarities, as follows:

{

where, a similarity is punished more whéR, N Rp| < «
as compared to whefR, N Ry| >= .

(1Og (wa,b + 2))3
(log (wa, +2))?

r_ PV, <0 A |R.NRy|<as
wa,b - '

: vwa,b<0/\\RaﬂRb|2aa

(14)

sound reasonable. In this way, we can meaningfully take Finally, a heuristic (denoted b¥.ogas.. in the results),

into consideration the information encoded in the negbtive

which gave us reasonable results is given below:

correlated weights. We further, decrease this heuristic’s

similarities using common ratings (not shown), however, it

does not result in significant improvement.

o, ,e{—1,+1} denotes the range a weight can lie in.
10ynless specified, for the positive similarities, equation a&wsed.

|RaﬁRb|
max(| Ry N Ry, ) + |Ra N Ry

: vwa,b<0~

/ —
wa,b -

(log (wa,s +2))

(15)



4.3 Shortcomings in the Prediction Formula of 1%
Item-based CF Proposed in [3]

We claim that the the weighted sum prediction formula
(see equation 1) proposed in [3] and used in [13], [14], [15],
[16], [17] can not be generalized to very sparse datasets.
If most of the item-item similarities are negative, then it
would result in negative prediction, which is not corredtist L7, ‘ 5 = . - -
formula can be corrected, by using thdjusted weighted Threshold parameter Alpha (FT)

sumthat considers the deviation of ratings from the average

N

~

©
T

-
'S
%o
a

Mean Absolute Error

o

rating of the active user. |
g 0.7519
K w
[J]
Z(wng,i X Tma,i) % 0.7519¢
P, =7 i=1 (16) £ o7s1s)
ma,ne = Tm, + I ) <
&
> (wn, i) S
1=1 0.7517 ‘ : : 1
10 20 30 40 50 60 70 80 90 100
where,fma,i = Trmga,i — T'me- Threshold parameter Alpha (SML)
. . Fig. 1: Determining the Optimal Value of Threshold Param-
5. Experimental Evaluation ctora

5.1 Dataset

We used MovielLens (SML) and FilmTrust (FT) datasets
for evaluating our algorithm. SML dataset containg3  user, for the same set of items. These metrics include half-
users,1682 movies, andl00 000 ratings on an integer scale lifé utility metric proposed by Brease [9]. Our specific task
1 (bad) to5 (excellent). It has been used in many researcfihis paper is to predict scores for items that already haee be

projects [3], [4], [18], [14]. The sparsity of this datasst i rated by actual users, and to check how well this prediction
93.7% (1 — _non zero entries _y 100000 _ () 937 ). helps users in selecting high quality items. Keeping this in

" all possible entries 943 %1682 :
We created the second dataset by crawling the FiImTru%Ccou?t’ WghUSMfar.] ?bsglgtg Error .ﬁfoE}and Receiver
website. The dataset retrieved (doth of March 2009) perating Characteristic ( ) sensitivity .
MAE measures the average absolute deviation between

contains1592 users,1930 movies, and28 645 ratings on a p : dicted rafi q ;
floating point scale ot (bad) to10 (excellent). The sparsity a recommender system§ predicted rating and a true rating
assigned by the user. It is computed as follows:

of this dataset i99.06%%.

5.2 Metrics T
Several metrics have been used for evaluating recom- _ ;'p i~ ail
mender systems which can broadly be categorizedPn¢o |E| = — 7

dictive Accuracy MetricsClassification Accuracy Metrigs .

and Rank Accuracy Metric§l9]. The Predictive Accuracy Wherép; and a; are the predicted and actual values of
Metrics measure how close is the recommender system& rating respectively, and’ is the total number of test
predicted value of a rating, with the true value of that igtin Sample¥’ in the test set. It has been used in [9], [3], [14],
assigned by the user. These metrics include mean absol#8l: (9], [7], [13], [4], [22].

error, mean square error, and normalized mean absolute ROCis the extent to which an information filtering system
error, and have been used in research projects such as [§fN distinguish between good and bad iteRGC sensitivity
[20], [7], [3]. The Classification Accuracy Metrics detemai  Measures the probability with which a system accept a good
the frequency of decisions made by a recommender systed€m. The ROC sensitivity ranges from (perfect) to 0

for finding and recommending a good item to a user. Thesémperfect) with 0.5 for random. To use this metric for
metrics include precision, recallj1 measure, and Receiver recommender systems, we must first determine which items
Operating Characteristic curve, and have been used in [7f€ good gigna) and which are badnpisg. We consider
[21]. The last category of metrics, Rank Accuracy Metricsan item good if a user rated it with a score higher than his
measure the proximity between the ordering predicted bverage (in the training set) and bad otherwise as used in
a recommender system to the ordering given by the actu 8].

A0 dataset can be downloaded from:  12A test sample consists of a tuple;, wid, mid, rating >, and the
https://sourceforge.net/projects/hybridrecommend. objective is to predict the ratings assigned by the actuatsus



Table 1: A comparison of proposed algorithm with existingdrms of accuracy metrics, and coverage. Average and sthnda
deviation of the results, over folds, is shown. The best results are shown in bold. We obstrat, the proposed scheme
(Proposedg, given in equation 7) outperform others significantly ovédmRrust dataset.

Scheme Best MAE ROC-Sensitivity Coverage
(SML) (FT) (SML) (FT) (SML) (FT)

No 0.808 4+ 0.004 1.639 + 0.017 0.534 +0.003 0.563 £ 0.005 99.725 £ 0.030 91.873 + 0.300
|Raaﬂ 0.747 + 0.003 | 1.602 4+ 0.019 0.784 £+ 0.006 0.579 £0.005 | 99.744 +0.020 | 92.040 £+ 0.241
CA 0.844 + 0.004 1.642 + 0.016 0.506 + 0.004 0.589 £+ 0.005 99.724 + 0.031 91.201 + 0.412
Max 0.749+0.003 | 1.605+0.022 | 0.735+0.003 | 0.577+0.036 | 99.744 +0.026 | 92.008 £ 0.283
Min 0.747 £0.003 | 1.610+0.018 | 0.753+0.003 | 0.575+0.007 | 99.730 4+ 0.021 91.855 + 0.226
Proposedg | 0.747 +0.003 | 1.485 +0.005 | 0.787 +0.004 | 0.608 +0.005 | 99.744 + 0.042 | 94.110 + 0.312

=
o

N 6.1 Learning The Optimal Values of Parame-
£ 155 ters
9
2" 6.1.1 Learning the optimal values of parametera
2 155
% We kept the neighborhood size fixed fcand 10 for FT
g and SML dataset respectively. We varied the value ffom
. I T T e P 2 to 30 with a difference of2 for FilmTrust, and froml0 to
Neighbourhood Size K (FT) 100 with a difference ofi0 for SML dataset and observed the
corresponding change in MAE. Figure 1 shows how MAE
o changes withy for the proposed scheme. Similarly, we tuned
2o ] all schemes for the best values @f.
0.84 b
L
2003: 6.1.2 Learning the optimal values of neighborhood size
o LW
[
[}
=i 7 We varied the neighborhood size fromto 50 with a

0.74 ! ! ! ! ! !
5 10 15 20 25 30 35 40 45 50

Neighbourhood Size K (SML)

difference of5, and observe the corresponding MAE, while
keeping the optimal values ef. Figure 2 shows thai, and
Fig. 2: Determining the Optimal Value of Neighborhood Size10 was found to be the best neighbor sizes for FT, and SML
(K). dataset respectively. Similarly, we tuned all algorithros f
the best values of neighborhood StzeFor the subsequent
experiments, we used optimal values @fand K, for all

schemes.
Furthermore, we usedoveragethat measures how many

items a recommender system can make recommendation for. o . . .
It has been used in [19], [14], [18]. Table 2: Distribution of Positive and Negative Neighbor¥ (F

dataset)

No. Of Neighbors | Similarities > 0 (%) | Similarities < 0 (%)
5 84.873 15.127
10 80.951 19.049
15 71.868 28.132
6. Results 20 60.951 39.049
25 52.210 47.790
_ o 30 46.291 53.709
We performed the striate@lfold cross validation [23] and 35 41.984 58.016
reported the average results with standard deviation. Ea¢h jg gg-gfg gi-ggg
distinct fold contain®20% ratings of each user as a test set 50 37.410 62590

and the remaining0% ratings as a training set. We further
subdivided our training set into a test set and training set
for measuring the parameters sensitivity. For learning the
parameters, we conductéefold cross validation on thg0%
training set, by selecting the different test and trainieg s
each time, and taking the average of the results.

13They found to be in the range af— 8 for FT, and10 — 30 for SML
dataset respectively.

14They found to be in the range &6f— 10 for FT, and10 — 20 for SML
dataset respectively.



6.2 Results in Terms of MAE, ROC-Sensitivity,
and Coverage

6.3 Comparison of Different Schemes Over
FilmTrust Dataset

Table 3 shows the performance of item-based CF over
iimTrust dataset. We observe that the proposed scheme
given in equation 7) performs better than others, and that

its performance does not degrade with the increase in the
number of neighbors.

Table 1 shows the comparison of different schemes (C
was Proposed in [9]M axz was Proposed in [12]Min was
Proposed in [11], and®«"®:l) \vas Proposed in [10]) with
proposed one (given in equation 7) in terms of MAE, ROC-
sensitivity, and coverage. The results are statisticadlpis 6.4 Comparison of Different Proposed Heuris-
icant for FilmTrust dataset40% improvement in terms of .’ .

MAE, and4% improvement in terms of ROC. Furthermore, tics Over FilmTrust Dataset
its coverage is higher than any other scheme. The reason

for good results is that, FT dataset is very sparse andfaple 4: A comparison of different Heuristics (FT dataset)

most of the correlations among items are negative. Our Heuristic | MAE | ROC-Sensitivity | Coverage
scheme carefully assigns different significance weights to NO 1.639 0.563 91.873
positive and negative similarities, which results in iraged P Py Sfal{G 1ii%15 8:282 gg:iég
accuracy and coverage. To check the proportion of positive Devgimy1 | 1.430 0.612 95.100
and negative neighbours against an active item, we show Devpossim | 1.441 0.621 94.610
the distribution of similarities (in terms of positives and DL’Z;O iféf 8:232 gg:igg
negatives) between a target item and other #fpmost Logpey 1.415 0.628 95.100
similar neighbouring items. We compute similarity weights Logca 1.417 0.627 95.100

Loghtar | 1432 0.614 95.100

by adjusted cosine similarity and report the average result
using 5-fold cross validation. We observe in table 2 that
even in case ob neighbours against a target itei§% of

the similarities are negative. w

olute Error
—
[=2]
ol
T

Table 3: A Comparison of the proposed scheme with others 2

under varying neighborhood size (FT dataset). We observ ——NOg,
that the performance of conventional significance weightin < *° —¢— |CommonRatings|/Alphal |
schemes degrades rapidly with the increase in the numbi § 1 — ,mx I
of neighbors. 2 14 e Min i
Scheme Neigh. (K) | MAE | ROC-Sensitivity | Coverage 135 ‘ ‘ ‘ ‘ ‘ ‘
No 1.639 0563 91.873 0.984 0.986 0.938 0'9.9 0.992 0.994 0.996
[RanRy| 1.602 0.579 92.040 Sparsiy Level
CA 5 1.642 0.589 91.201
Max 1.605 0.577 92.008 12
Min 1.610 0.575 91.855 . __—
Proposedg 1.485 0.608 94.110 2 ol / '
No 2.033 0.470 85.896 ] /ooy,
|RaNNBy| 2.006 0.476 86.367 8l 7| —— o, |
CA 10 1.871 0.535 83.906 5 Zi — e log
Max 2.020 0.466 86.385 2 1 g |
Min 2.024 0.471 85.634 QML o 7 i ,ngaX
Proposedc 1.560 0.566 93.768 g * ;'?v*
No 2.427 0.365 79.298 2 114 ERC
[Ran Ry 2.436 0.372 80.118 | | | | | —— Dy |
I\SIZQX 15 gigi 8;122 gggig 0.984 0.986 0.988 0.99 0.992 0.994 0.996
Min 2.427 0.368 79.176 Sparsiy Level
P’""?,?\logedc %g%i 8'%2 32'322 Fig. 3: The effect of Sparsity on MAE (SML dataset)
RN Ry 2.977 0.205 74.567
'\%A 20 g-g;; 8232 gg-gg; Table 4 presents a comparison of different proposed
M?rf 3022 0192 72595 heuristics Proposedq is given in equation 7,5im + 1
Proposedc 1.635 0.501 93.262 is given in equation 8 Devg;n+1 IS given in equation 9,

Devpossim IS given in 10,Divyg is given in equation 11,
log is given in equation 12Logp., IS given in equation



Table 5: The effect of sparsity on coverage (FT dataset) 6:6 Comparison of Results of Weighted Sum

Scheme | Sparsity Level | Coverage and Adjusted Weighted Sum Prediction For-
No 57.598
|EaORp| 57.352 mula
CA 57.725 Table 6 shows the performance of item-based CF
Max 0,086 B over FilmTrust dataset, using weighted sum and adjusted
All Heuristics > 75.0 weighted sum formula for prediction. We observe that the
No 51.057 adjusted cosine formula performs better than the weighted
W 50.875 one and that with the increase in the number of neighbors,
o oo the performance of weighted one degrades. Hence, adjusted
Min 0.988 50.870 weighted sum formula should be used in item-based CF
All Heuristics > 70.0 rather than the weights sum that has extensively been used
‘Ra'\r‘?Rbl ﬁggg in literature for item-based CF [13], [14], [15], [16], [17]
CA 41.744 ) .
Max 42.034 7. Discussion
Min 0.990 41.740
All Heuristics > 59.0 We observe from the result section that significance
‘ Ra'\iwow 24.042 weighting schemes taking negatively correlated neighbors
T ;i:gg? into account gave better results from the rest. They give
Max 24.061 good results under sparse dataset.
Min 0.992 24.081 It is worth noting that, if we use cosine similarity [9]
All Heuristics > 35.0 as a measure of similarity between two item then similarity

weights would lie in the range di0, 1}, hence our heuristics
can not give any advantage. To check the performance of
13, Logca is given in equation 14, andogaa. 1S given  jtem-based CF, we applied cosine similarity measure (with
in equation 15) in terms of MAE, ROC-Sensitivity, and significance weighting schemes proposed in the literature)
coverage. We performed pair-t test on predictions gengrateand the results, in terms of MAE, were not very promising in
by item-based CF proposed in [3] and those of generateghe case of FilmTrust dataset. The lowest MAE observed was
by applying different heuristics. The results (in terms of1 471 (with standard deviation df.022). Surprisingly, ROC
MAE) of pair-t test showed that the proposed heuristics argvas observed to be.68 (with standard deviation df.008),
significantly better—at> 99% confidence interval—than the which is higher than any of the heuristics and schemes in
simple approach. case of adjusted cosine similarity. Further experimengs ar
needed to analyze these results.
6.5 Performance Evaluation Under Different To check the performance of our heuristics when only
Sparsity Levels _ne|ghbors haymg no or'negatlve correlation with the target
item are available, which can be the case, for example
We already showed the result in the case of FilmTrustn cold-start scenarios [24]; we conducted experiment in
dataset which is a good example for sparse datasets. The case of FilmTrust dataset, by applying adjusted cosine
check the effect of sparsity on the MovieLens dataset, wsimilarity with adjusted weighted sum formula. The results
increased the sparsity level of the SML training set byin general were insignificant as compared to the converitiona
dropping some randomly selected entries, whereas, we keppproaches. We believe performance can be increased by
the test set same for each sparse training set. Figure 3 shoteking data distribution into account, which is a subject of
that the performance of the conventional item-based CF arfditure work.
other schemes in literature degrades with the increaseein th Based on the experimental results, we may conclude that
sparsity, however, the performance does suffer less in thihe proposed heuristics are useful to make recommendations
case of proposed heuristics. on highly sparse datasets.
Table 5 shows how different approaches suffer in terms
of coverage with the increase in sparsity. We observe tha8. Conclusion

the coverage of the conventional approaches degrade yapidl o o
with the increase in sparsity, whereas, in the proposed We show that the significance weighting schemes for

heuristics, it drop gracefully with the increase in spgigit ~collaborative filtering presented in [9], [10], [11], [12]ea
flawed by the fact that they can not be generalized to all

datasets. We propose various novel heuristics for signif-
15We did not show results for the heuristic given in equationdetause prop g

with the increase in sparisty, fewer positive neighborsaaeglable, resulting iIcance We|ght|ng scheme and emp'”C_a"y evallljate them.
in decreased MAE and coverage. Furthermore, we show that the conventional weighted sum



Table 6: A Comparison of Weighted Sum and Adjusted Weighted prediction formula (FT dataset)

No. Of Neighbors Weighted Sum Adjusted Weighted Sum
' MAE | ROC-Sensitivity | Coverage | MAE | ROC-Sensitivity | Coverage
5 1.639 0.563 91.873 | 1.486 0.619 95.377
10 2.033 0.470 85.896 | 1.453 0.622 95.377
15 2.427 0.365 79.298 | 1.444 0.623 95.377
20 2,971 0.192 73.363 | 1.442 0.626 95.377
25 3.480 0.154 67.725 | 1.443 0.629 95.376
30 3.934 0.102 58.973 | 1.449 0.625 95.376

prediction formula [3] used in item-based CF is not correct{11] H.Ma, I. King, and M. Lyu, “Effective missing data preiin for col-
and provide the correct one.
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