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Abstract— Collaborative filtering is the most famous and
adopted recommendation algorithm, which recommends
items by identifying other similar users, in case of user-
based collaborative filtering, or similar items, in case of
item-based collaborative filtering. Significance weighting
schemes assign different weights to neighboring users/items
found against an active user/item. In this paper, we claim
that the significance weighting schemes proposed in the
literature, are flawed by the fact that they can not be
applied to general recommender system datasets. We provide
the correct significance weighting schemes using different
novel heuristics, and by extensive experimental results on
two different datasets, show how significance weighting
schemes affect the performance of a recommender system.
Furthermore, we claim that the conventional weighted sum
prediction formula used in item-based collaborative filtering
is not correct for very sparse datasets. We provide the correct
prediction formula and empirically evaluate it.

Keywords: Recommender Systems; Collaborative Filtering; Sig-
nificance Weighting Schemes; Heuristics

1. Introduction
There has been an exponential increase in the volume

of available digital information, electronic sources, andon-
line services in recent years. This information overload has
created a potential problem—how to filter and efficiently
deliver relevant information to a user—which highlights
a need for information extraction systems that can filter
unseen information and can predict whether a user would
like a given source. Such systems are calledrecommender
systems, and they mitigate the aforementioned problems to
a great extent. Given a new item, recommender systems
can predict whether a user would like this item or not,
based on user preferences (likes—positive examples, and
dislikes—negative examples), observed behavior (explicitor
implicit feedback), and information (demographic or content
information) about items.

Collaborative filtering (CF) recommender systems are the
most widely used recommender systems, which recommend
items by taking into account the taste (in terms of prefer-
ences of items) of users, under the assumption that users
will be interested in items that users similar to them have

rated highly. Examples of these systems include Amazon’s
recommender system [1], Ringo1, etc. Collaborative filtering
can be classified into two sub-categories: memory-based
CF and model-based CF. Memory-based approaches make
a prediction by taking into account the entire collection of
previous rated items by a user, for example the GroupLens
recommender system [2]. Model-based approaches use rat-
ing patterns of users in the training set, group users into
different classes, and use ratings of predefined classes to gen-
erate recommendation for anactive user2 on a target item3.
Some examples of these approaches include item-based CF
[3], Singular Value Decomposition (SVD) based models [4],
factorization methods [5], and clustering methods [6].

Recommendations can be presented to an active user in the
followings two different ways: by predicting ratings of items
a user has not seen before and by constructing a list of items
ordered by his preferences. In the former case, an active
user provides the prediction engine with the list of items to
be predicted, prediction engine uses other users (or items)
ratings or content information, and then predict how much
the user would like the given item in some numeric or binary
scale. In the latter case, different heuristics are used for
producing an ordered list of items, sometimes termed astop-
N recommendations[7], [8]. For example, in collaborative
filtering recommender system this list is produced by making
the rating predictions of all items an active user has not yet
rated, sorting the list, and then keeping the top-N items the
active user would like the most. In this paper, we focused on
the former case—predicting the ratings of items—however
we can easily construct a list of top-N items for each user
by selecting highly predicted items.

1.1 Problem Statement
CF works by finding the similar users (in case of user-

based CF) or similar items (in case of item-based CF). In
case of user-based CF, significance weighting schemes give
more weight (similarity) to a user who has co-rated a number
of items with the active user. Similarly, in case of item-
based CF, significance weighting schemes give more weight

1www.ringo.com
2The user for whom the recommendations are computed.
3The item a system wants to recommend.



(similarity) to an item which shares a number of common
users with the target item.

We claim that the schemes presented in [9], [10], [11],
[12] can not be generalized to real world recommender sys-
tems. We provide the correct significance weighting scheme
and propose different novel heuristics for it. We empirically
show that the proposed schemes outperform others in terms
of accuracy metrics and coverage, especially in case of a very
sparse dataset. We focused on item-based CF, and evaluate
our algorithm on MovieLens4 and FilmTrust5 datasets.

The rest of the paper has been organized as follows. Sec-
tion 2 discusses the background concepts. Section3 presents
a detailed overview of the significant weighting schemes
proposed in the literature, under different conditions. Section
4 presents our proposed significance weighting schemes.
Section 5 describes the dataset and metrics used in this
work. Section6 compares the performance of the proposed
schemes with the existing ones followed by the discussion
of results in section7. Finally, section8 concludes the work.

2. Background

Let M = { m1,m2, · · · ,mx } be the set of all users,
N = { n1, n2, · · · , ny } be the set of all possible items that
can be recommended,rmi,nj

be the rating of usermi on
item nj , and|Ra ∩Rb| be the common ratings between two
profiles.

2.1 Item-Based Collaborative Filtering

Item-based CF [3] builds a model of item similarities
using an off-line stage. Suppose we want to make prediction
for an itemnt for an active userma. Let Mninj be the set
of all users, who have co-rated itemni and nj . There are
three main steps in this approach as follows:

• In the first step, all items rated by an active user are
retrieved.

• In the second step, target item’s similarity is com-
puted with the set of retrieved items. A set ofK
most similar itemsn1, n2 · · ·nK with their similarities
(or weights)wn1

, wn2
· · ·wnK

are selected. Similarity
wni,nj

, between two itemsni and nj , is computed
by first isolating the users who have rated these items
(i.e. Mninj), and then applying the adjusted cosine
similarity [3].

• In the last step, prediction for the target item is made
by computing the weighted average of the active user’s
rating on theK most similar items. Using weighted
sum, the predictionpma,nt

on itemnt for userma is
computed as follows [3]:

4www.grouplens.org/node/73
5www.filmtrust.com

Pma,nt
=

K
∑

i=1

(wnt,i × rma,i)

K
∑

i=1

(|wnt,i|)

. (1)

2.2 Significance Weighting Schemes
The similarity between two users can be misleading if they

have rated very few items in common, and the same is true
for similarity between items, which have been rated by very
few users. For example, two items can have similarity of1,
if they have been identically rated by only two users, which
is not true. Significance weighting schemes overcome this
problems by, decreasing the similarity if the rating profiles
of two user/items have very few ratings in common (denoted
by |Ra∩Rb| < α in this work), and enhancing the similarity
between two rating profiles if they have a sufficient number
of ratings in common (denoted by|Ra ∩ Rb| ≥ α in this
work).

3. Item-Based CF: Significance Weight-
ing Schemes

Several significance weighting schemes have been pro-
posed6, such as [9], [10], [11], [12]. We claim they can not
be generalized to all similarities weights and datasets.

3.1 Case Amplification (CA) Proposed in [9]
Case amplification refers to the transformation that em-

phasizes weights that are closer to one, and punishes the
lower ones.

w′
a,b =

{

w
p
a,b if wa,b ≥ 0 ,

−(−w
p
a,b) if wa,b < 0.

(2)

Wherewa,b is the similarity between usera andb, andp is
a constant whose value is application dependent7. We notice
that, the authors did not take the number of items in common
between two users while calculating the similarity, hence
similarity weights may be misleading.

3.2 Significance Weighting Scheme Proposed in
[12]

In [12], the authors proposed a significance weighting
scheme, claiming it devalues similarity weights that are
based on a small number of co-rated items between two

6These schemes focused on user-based CF using Pearson correlation
[9], however we can apply them to item-based CF using adjustedcosine
similarity [3] as well. The reason is these schemes emphasizes or punish
similarities weights, which lies in range of {+1,−1} for Pearson correlation
and adjusted cosine similarity.

7It must be noted that the given formula is incorrect for negative weights,
and the correct formula is:w′

a,b
= −(−wa,b)

p. We reckon this is a typo
and not an error.



users. The proposed similarity weighting scheme can be
represented as follows:

w′
a,b =

max(|Ra ∩Rb|, α)

α
.wa,b. (3)

It was corrected in [11], by replacing theMax by Min. We
claim that both approaches are flawed by the fact that they
can not be generalized. Let us takeα = 508, and validate
our hypothesis.

3.2.1 For wa,b > 0

Let us assume we havewa,b = 0.5, |Ra ∩Rb| = 60, 40.

w′
a,b =















max(60,50)
50 .(0.5) = 60

50 .(0.5) > 0.5
for|Ra ∩Rb| = 60 ,

max(40,50)
50 .(0.5) = 50

50 .(0.5) = 0.5
for|Ra ∩Rb| = 40 .

We can see that it is not decreasing cases, where the common
items between two users are less than a threshold (α). This
was pointed out in [11]. We show this formula is also not
correct for negative correlations as shown below.

3.2.2 For wa,b < 0

Let us assume we havewa,b = −0.5, |Ra ∩Rb| = 60, 40.

w′
a,b =















max(60,50)
50 .(−0.5) = 60

50 .(−0.5) < −0.5
for|Ra ∩Rb| = 60 ,

max(40,50)
50 .(−0.5) = 50

50 .(−0.5) = −0.5
for|Ra ∩Rb| = 40 .

The results shows that, this formula is decreasing weights in
cases where the common items between two users is greater
than a threshold and leaving it as it is otherwise, which is
not correct.

3.3 Significance Weighting Scheme Proposed in
[11]

In [11], the authors proposed a significance weighting
scheme, claiming it corrects the flaw in significance weight-
ing scheme presented in [12], which can be represented as
follows:

w′
a,b =

min(|Ra ∩Rb|, α)

α
.wa,b. (4)

Let us evaluate it for negative weights.

8Any other value can be assumed,50 is a reasonable choice in MovieLens
dataset.

3.3.1 For wa,b < 0

Let us assume we havewa,b = −0.5, |Ra ∩Rb| = 60, 40.

w′
a,b =















min(60,50)
50 .(−0.5) = 50

50 .(−0.5) = −0.5
for|Ra ∩Rb| = 60 ,

min(40,50)
50 .(−0.5) = 40

50 .(−0.5) > −0.5
for|Ra ∩Rb| = 40.

The results shows that, this formula is increasing weights in
cases where the common items between two users is less
than a threshold and leaving it as it is otherwise, which is
not correct.

3.4 Significance Weighting Scheme Proposed in
[10]

In [10], the author proposed a significance weighting
scheme, which can be represented as follows:

w′
a,b =

(|Ra ∩Rb|)

α
.wa,b. (5)

We found it reasonably good forwa,b > 0, but it is wrong
for wa,b < 0.

3.4.1 For wa,b < 0

Let us assume we havewa,b = −0.5, |Ra ∩Rb| = 60, 40.

w′
a,b =















60
50 .(−0.5) = 6

5 .(−0.5) < −0.5
for|Ra ∩Rb| = 60 ,

40
50 .(−0.5) = 4

5 .(−0.5) > −0.5
for|Ra ∩Rb| = 40.

We observe that if two user have less items in common, it is
increasing the weight, and decreasing the weights otherwise,
which is obviously not correct.

4. Proposed Significance Weighting
Scheme and Heuristics
4.1 Correct General Significance Weighting
Scheme

We claim a general significance weighting scheme should
have the following properties:

w′
a,b















> wa,b : ∀wa,b≥0∧ |Ra∩Rb|≥α ,

< wa,b : ∀wa,b≥0∧ |Ra∩Rb|<α ,

> wa,b : ∀wa,b<0∧ |Ra∩Rb|≥α ,

≫ wa,b : ∀wa,b<0∧ |Ra∩Rb|<α.

(6)

Intuitively, we emphasize positive weight which are close
to one and punish the remaining ones. For negative weights,
we take opposite of what is communicated by the weight. A
weight is punished more (shown by≫ in equation 6) when
common ratings in two profiles are less thanα, than the
case where, common ratings in two profiles are greater than



α. Correct, generalized form (denoted byProposedG in the
results, whereG is for General) is given by:

w′
a,b =

{

(|Ra∩Rb|)
α

.wa,b : ∀wa,b≥0 ,
|Ra∩Rb|

α+max(|Ra∩Rb|,α)
.wa,b : ∀wa,b<0.

(7)

4.2 Novel Heuristics for Significance Weighting
Scheme
4.2.1 Adding 1 to all similarity weights

w′
a,b = (wa,b + 1) : ∀wa,b∈{−1,+1}. (8)

This heuristic (denoted bySim+ 1 in the results) will take
advantage of negatively correlated weights as well, however,
the positively correlated neighbors would heavily affect the
prediction rather than negatively correlated ones9.

4.2.2 Adding 1 to all similarity weights and decreasing
based on common ratings

w′
a,b =

|Ra ∩Rb|

α+ |Ra ∩Rb|
(wa,b + 1) : ∀wa,b∈{−1,+1}. (9)

This heuristic (denoted byDevSim+1) decreases weights
computed by equation 8.

4.2.3 Considering only positive similarity weights and
decreasing based on common ratings

w′
a,b =

|Ra ∩Rb|

α
(wa,b) : ∀wa,b≥0. (10)

This heuristic (denoted byDevPosSim) only takes into
account the positive weights and decreases them based on
the common ratings.

4.2.4 Adding constant to negative similarity weights and
decreasing weights

w′
a,b =

(wa,b + 1)

10
: ∀wa,b<0. (11)

This heuristic (denoted byDiv10 in the results) will map
negative similarities10 into the range of0 (in casewa,b =
−1 to approximately0.1 (in casewa,b = −0.01), which
sound reasonable. In this way, we can meaningfully take
into consideration the information encoded in the negatively
correlated weights. We further, decrease this heuristic’s
similarities using common ratings (not shown), however, it
does not result in significant improvement.

9∀wa,b∈{−1,+1} denotes the range a weight can lie in.
10Unless specified, for the positive similarities, equation 7 was used.

4.2.5 Taking log of negative similarity weights

We take thelog (base 10) of negative similarities as
follows:

w′
a,b = log (wa,b + 2) : ∀wa,b<0. (12)

Let us evaluate this heuristic (denoted bylog in the results)
by assumingwa,b = −0.01,−0.5,−0.99,−1.

w′
a,b =























log (wa,b + 2) = log (−0.01 + 2) = 0.299 ,
log (wa,b + 2) = log (−0.5 + 2) = 0.176 ,
log (wa,b + 2) = log (−0.99 + 2) = 0.004 ,
log (wa,b + 2) = log (−1 + 2) = 0.

We observe that it is reasonably mapping negative weights
to positive ones, i.e. a highly negative weight is punished
more (shown by0) than others.

4.2.6 Taking log of negative similarity weights and de-
creasing based on common ratings

We takelog of negative similarities, and further decrease
them using a heuristic (denoted byLogDev in the results) as
follows:

w′
a,b =

|Ra ∩Rb|

|Ra ∩Rb|+ α
(log (wa,b + 2)) : ∀wa,b<0. (13)

Let us take the case from equation 12 wherewa,b = −0.5.
Assume we haveα = 50, and |Ra ∩Rb| = 10, 60.

w′
a,b =







10
10+50 .(0.176) = 0.029 for|Ra ∩Rb| = 10,

60
60+50 .(0.176) = 0.096 for|Ra ∩Rb| = 60.

We find, it is further punishing weights as described in
equation 6.

Another heuristic (denoted byLogCA) is to apply CA
(Case Amplification) over log similarities, as follows:

w′
a,b =

{

(log (wa,b + 2))3 : ∀wa,b<0∧ |Ra∩Rb|<α,

(log (wa,b + 2))2 : ∀wa,b<0∧ |Ra∩Rb|≥α,
(14)

where, a similarity is punished more when|Ra ∩ Rb| < α

as compared to when|Ra ∩Rb| >= α.
Finally, a heuristic (denoted byLogMax in the results),

which gave us reasonable results is given below:

w′
a,b =

|Ra ∩Rb|

max(|Ra ∩Rb|, α) + |Ra ∩Rb|
(log (wa,b + 2))

: ∀wa,b<0.

(15)



4.3 Shortcomings in the Prediction Formula of
Item-based CF Proposed in [3]

We claim that the the weighted sum prediction formula
(see equation 1) proposed in [3] and used in [13], [14], [15],
[16], [17] can not be generalized to very sparse datasets.
If most of the item-item similarities are negative, then it
would result in negative prediction, which is not correct. This
formula can be corrected, by using theadjusted weighted
sumthat considers the deviation of ratings from the average
rating of the active user.

Pma,nt
= r̄ma

+

K
∑

i=1

(wnt,i × r̂ma,i)

K
∑

i=1

(|wnt,i|)

, (16)

where,r̂ma,i = rma,i − rma
.

5. Experimental Evaluation
5.1 Dataset

We used MovieLens (SML) and FilmTrust (FT) datasets
for evaluating our algorithm. SML dataset contains943
users,1682 movies, and100 000 ratings on an integer scale
1 (bad) to5 (excellent). It has been used in many research
projects [3], [4], [18], [14]. The sparsity of this dataset is
93.7%

(

1− non zero entries
all possible entries=1− 100000

943×1682 = 0.937
)

.
We created the second dataset by crawling the FilmTrust

website. The dataset retrieved (on10th of March 2009)
contains1592 users,1930 movies, and28 645 ratings on a
floating point scale of1 (bad) to10 (excellent). The sparsity
of this dataset is99.06%11.

5.2 Metrics
Several metrics have been used for evaluating recom-

mender systems which can broadly be categorized intoPre-
dictive Accuracy Metrics, Classification Accuracy Metrics,
and Rank Accuracy Metrics[19]. The Predictive Accuracy
Metrics measure how close is the recommender system’s
predicted value of a rating, with the true value of that rating
assigned by the user. These metrics include mean absolute
error, mean square error, and normalized mean absolute
error, and have been used in research projects such as [9],
[20], [7], [3]. The Classification Accuracy Metrics determine
the frequency of decisions made by a recommender system,
for finding and recommending a good item to a user. These
metrics include precision, recall,F1 measure, and Receiver
Operating Characteristic curve, and have been used in [7],
[21]. The last category of metrics, Rank Accuracy Metrics
measure the proximity between the ordering predicted by
a recommender system to the ordering given by the actual

11All dataset can be downloaded from:
https://sourceforge.net/projects/hybridrecommend.
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Fig. 1: Determining the Optimal Value of Threshold Param-
eterα.

user, for the same set of items. These metrics include half-
life utility metric proposed by Brease [9]. Our specific taskin
this paper is to predict scores for items that already have been
rated by actual users, and to check how well this prediction
helps users in selecting high quality items. Keeping this into
account, we useMean Absolute Error (MAE)and Receiver
Operating Characteristic (ROC) sensitivity.

MAE measures the average absolute deviation between
a recommender system’s predicted rating and a true rating
assigned by the user. It is computed as follows:

|E| =

T
∑

i=1

|pi − ai|

T
,

where pi and ai are the predicted and actual values of
a rating respectively, andT is the total number of test
samples12 in the test set. It has been used in [9], [3], [14],
[18], [9], [7], [13], [4], [22].

ROCis the extent to which an information filtering system
can distinguish between good and bad items.ROC sensitivity
measures the probability with which a system accept a good
item. The ROC sensitivity ranges from1 (perfect) to 0
(imperfect) with 0.5 for random. To use this metric for
recommender systems, we must first determine which items
are good (signal) and which are bad (noise). We consider
an item good if a user rated it with a score higher than his
average (in the training set) and bad otherwise as used in
[18].

12A test sample consists of a tuple,< uid,mid, rating >, and the
objective is to predict the ratings assigned by the actual users.



Table 1: A comparison of proposed algorithm with existing interms of accuracy metrics, and coverage. Average and standard
deviation of the results, over5 folds, is shown. The best results are shown in bold. We observe that, the proposed scheme
(ProposedG, given in equation 7) outperform others significantly over FilmTrust dataset.

Scheme
Best MAE ROC-Sensitivity Coverage

(SML) (FT) (SML) (FT) (SML) (FT)
No 0.808± 0.004 1.639± 0.017 0.534± 0.003 0.563± 0.005 99.725± 0.030 91.873± 0.300

|Ra∩Rb|
α

0.747± 0.003 1.602± 0.019 0.784± 0.006 0.579± 0.005 99.744± 0.020 92.040± 0.241
CA 0.844± 0.004 1.642± 0.016 0.506± 0.004 0.589± 0.005 99.724± 0.031 91.201± 0.412
Max 0.749± 0.003 1.605± 0.022 0.735± 0.003 0.577± 0.036 99.744± 0.026 92.008± 0.283
Min 0.747± 0.003 1.610± 0.018 0.753± 0.003 0.575± 0.007 99.730± 0.021 91.855± 0.226

ProposedG 0.747± 0.003 1.485± 0.005 0.787± 0.004 0.608± 0.005 99.744± 0.042 94.110± 0.312
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Fig. 2: Determining the Optimal Value of Neighborhood Size
(K).

Furthermore, we usedcoveragethat measures how many
items a recommender system can make recommendation for.
It has been used in [19], [14], [18].

6. Results

We performed the striated5 fold cross validation [23] and
reported the average results with standard deviation. Each
distinct fold contains20% ratings of each user as a test set
and the remaining80% ratings as a training set. We further
subdivided our training set into a test set and training set
for measuring the parameters sensitivity. For learning the
parameters, we conducted5-fold cross validation on the80%
training set, by selecting the different test and training set
each time, and taking the average of the results.

6.1 Learning The Optimal Values of Parame-
ters

6.1.1 Learning the optimal values of parameterα

We kept the neighborhood size fixed to5 and10 for FT
and SML dataset respectively. We varied the value ofα from
2 to 30 with a difference of2 for FilmTrust, and from10 to
100 with a difference of10 for SML dataset and observed the
corresponding change in MAE. Figure 1 shows how MAE
changes withα for the proposed scheme. Similarly, we tuned
all schemes for the best values ofα13.

6.1.2 Learning the optimal values of neighborhood size
(K)

We varied the neighborhood size from5 to 50 with a
difference of5, and observe the corresponding MAE, while
keeping the optimal values ofα. Figure 2 shows that5, and
10 was found to be the best neighbor sizes for FT, and SML
dataset respectively. Similarly, we tuned all algorithms for
the best values of neighborhood size14. For the subsequent
experiments, we used optimal values ofα and K, for all
schemes.

Table 2: Distribution of Positive and Negative Neighbors (FT
dataset)

No. Of Neighbors Similarities > 0 (%) Similarities < 0 (%)
5 84.873 15.127
10 80.951 19.049
15 71.868 28.132
20 60.951 39.049
25 52.210 47.790
30 46.291 53.709
35 41.984 58.016
40 38.766 61.234
45 38.010 61.989
50 37.410 62.590

13They found to be in the range of2− 8 for FT, and10− 30 for SML
dataset respectively.

14They found to be in the range of5− 10 for FT, and10− 20 for SML
dataset respectively.



6.2 Results in Terms of MAE, ROC-Sensitivity,
and Coverage

Table 1 shows the comparison of different schemes (CA
was Proposed in [9],Max was Proposed in [12],Min was
Proposed in [11], and(|Ra∩Rb|)

α
was Proposed in [10]) with

proposed one (given in equation 7) in terms of MAE, ROC-
sensitivity, and coverage. The results are statistically signif-
icant for FilmTrust dataset—10% improvement in terms of
MAE, and4% improvement in terms of ROC. Furthermore,
its coverage is higher than any other scheme. The reason
for good results is that, FT dataset is very sparse and
most of the correlations among items are negative. Our
scheme carefully assigns different significance weights to
positive and negative similarities, which results in increased
accuracy and coverage. To check the proportion of positive
and negative neighbours against an active item, we show
the distribution of similarities (in terms of positives and
negatives) between a target item and other topK most
similar neighbouring items. We compute similarity weights
by adjusted cosine similarity and report the average results
using 5-fold cross validation. We observe in table 2 that
even in case of5 neighbours against a target item,15% of
the similarities are negative.

Table 3: A Comparison of the proposed scheme with others,
under varying neighborhood size (FT dataset). We observe
that the performance of conventional significance weighting
schemes degrades rapidly with the increase in the number
of neighbors.

Scheme Neigh. (K) MAE ROC-Sensitivity Coverage
No 1.639 0.563 91.873

|Ra∩Rb|
α

1.602 0.579 92.040
CA 5 1.642 0.589 91.201
Max 1.605 0.577 92.008
Min 1.610 0.575 91.855

ProposedG 1.485 0.608 94.110
No 2.033 0.470 85.896

|Ra∩Rb|
α

2.006 0.476 86.367
CA 10 1.871 0.535 83.906
Max 2.020 0.466 86.385
Min 2.024 0.471 85.634

ProposedG 1.560 0.566 93.768
No 2.427 0.365 79.298

|Ra∩Rb|
α

2.436 0.372 80.118
CA 15 2.106 0.483 76.610
Max 2.431 0.368 80.013
Min 2.427 0.368 79.176

ProposedG 1.623 0.516 93.436
No 2.971 0.192 73.363

|Ra∩Rb|
α

2.977 0.205 74.567
CA 20 2.977 0.205 74.567
Max 2.938 0.183 69.052
Min 3.022 0.192 72.595

ProposedG 1.635 0.501 93.262

6.3 Comparison of Different Schemes Over
FilmTrust Dataset

Table 3 shows the performance of item-based CF over
FilmTrust dataset. We observe that the proposed scheme
(given in equation 7) performs better than others, and that
its performance does not degrade with the increase in the
number of neighbors.

6.4 Comparison of Different Proposed Heuris-
tics Over FilmTrust Dataset

Table 4: A comparison of different Heuristics (FT dataset)
Heuristic MAE ROC-Sensitivity Coverage

NO 1.639 0.563 91.873
ProposedG 1.485 0.608 94.110
Sim+ 1 1.44 0.609 95.100

DevSim+1 1.430 0.612 95.100
DevPosSim 1.441 0.621 94.610

Div10 1.422 0.630 95.100
Log 1.421 0.624 95.100

LogDev 1.415 0.628 95.100
LogCA 1.417 0.627 95.100
LogMax 1.432 0.614 95.100
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Fig. 3: The effect of Sparsity on MAE (SML dataset)

Table 4 presents a comparison of different proposed
heuristics (ProposedG is given in equation 7,Sim + 1
is given in equation 8,DevSim+1 is given in equation 9,
DevPosSim is given in 10,Div10 is given in equation 11,
log is given in equation 12,LogDev is given in equation



Table 5: The effect of sparsity on coverage (FT dataset)
Scheme Sparsity Level Coverage

No 57.598
|Ra∩Rb|

α
57.352

CA 57.725
Max 57.642
Min 0.986 57.333

All Heuristics > 75.0
No 51.057

|Ra∩Rb|
α

50.875
CA 51.155
Max 51.076
Min 0.988 50.870

All Heuristics > 70.0
No 42.009

|Ra∩Rb|
α

42.206
CA 41.744
Max 42.034
Min 0.990 41.740

All Heuristics > 59.0
No 24.042

|Ra∩Rb|
α

24.086
CA 24.027
Max 24.061
Min 0.992 24.081

All Heuristics > 35.0

13, LogCA is given in equation 14, andLogMax is given
in equation 15) in terms of MAE, ROC-Sensitivity, and
coverage. We performed pair-t test on predictions generated
by item-based CF proposed in [3] and those of generated
by applying different heuristics. The results (in terms of
MAE) of pair-t test showed that the proposed heuristics are
significantly better—at> 99% confidence interval—than the
simple approach.

6.5 Performance Evaluation Under Different
Sparsity Levels

We already showed the result in the case of FilmTrust
dataset which is a good example for sparse datasets. To
check the effect of sparsity on the MovieLens dataset, we
increased the sparsity level of the SML training set by
dropping some randomly selected entries, whereas, we kept
the test set same for each sparse training set. Figure 3 shows
that the performance of the conventional item-based CF and
other schemes in literature degrades with the increase in the
sparsity, however, the performance does suffer less in the
case of proposed heuristics.

Table 5 shows how different approaches suffer in terms
of coverage with the increase in sparsity. We observe that,
the coverage of the conventional approaches degrade rapidly
with the increase in sparsity, whereas, in the proposed
heuristics, it drop gracefully with the increase in sparsity15.

15We did not show results for the heuristic given in equation 10, because
with the increase in sparisty, fewer positive neighbors areavailable, resulting
in decreased MAE and coverage.

6.6 Comparison of Results of Weighted Sum
and Adjusted Weighted Sum Prediction For-
mula

Table 6 shows the performance of item-based CF
over FilmTrust dataset, using weighted sum and adjusted
weighted sum formula for prediction. We observe that the
adjusted cosine formula performs better than the weighted
one and that with the increase in the number of neighbors,
the performance of weighted one degrades. Hence, adjusted
weighted sum formula should be used in item-based CF
rather than the weights sum that has extensively been used
in literature for item-based CF [13], [14], [15], [16], [17].

7. Discussion
We observe from the result section that significance

weighting schemes taking negatively correlated neighbors
into account gave better results from the rest. They give
good results under sparse dataset.

It is worth noting that, if we use cosine similarity [9]
as a measure of similarity between two item then similarity
weights would lie in the range of{0, 1}, hence our heuristics
can not give any advantage. To check the performance of
item-based CF, we applied cosine similarity measure (with
significance weighting schemes proposed in the literature),
and the results, in terms of MAE, were not very promising in
the case of FilmTrust dataset. The lowest MAE observed was
1.471 (with standard deviation of0.022). Surprisingly, ROC
was observed to be0.68 (with standard deviation of0.008),
which is higher than any of the heuristics and schemes in
case of adjusted cosine similarity. Further experiments are
needed to analyze these results.

To check the performance of our heuristics when only
neighbors having no or negative correlation with the target
item are available, which can be the case, for example
in cold-start scenarios [24]; we conducted experiment in
the case of FilmTrust dataset, by applying adjusted cosine
similarity with adjusted weighted sum formula. The results
in general were insignificant as compared to the conventional
approaches. We believe performance can be increased by
taking data distribution into account, which is a subject of
future work.

Based on the experimental results, we may conclude that
the proposed heuristics are useful to make recommendations
on highly sparse datasets.

8. Conclusion
We show that the significance weighting schemes for

collaborative filtering presented in [9], [10], [11], [12] are
flawed by the fact that they can not be generalized to all
datasets. We propose various novel heuristics for signif-
icance weighting scheme and empirically evaluate them.
Furthermore, we show that the conventional weighted sum



Table 6: A Comparison of Weighted Sum and Adjusted Weighted sum prediction formula (FT dataset)

No. Of Neighbors
Weighted Sum Adjusted Weighted Sum

MAE ROC-Sensitivity Coverage MAE ROC-Sensitivity Coverage
5 1.639 0.563 91.873 1.486 0.619 95.377
10 2.033 0.470 85.896 1.453 0.622 95.377
15 2.427 0.365 79.298 1.444 0.623 95.377
20 2.971 0.192 73.363 1.442 0.626 95.377
25 3.480 0.154 67.725 1.443 0.629 95.376
30 3.934 0.102 58.973 1.449 0.625 95.376

prediction formula [3] used in item-based CF is not correct,
and provide the correct one.

Acknowledgment
The work reported in this paper has formed part of the

Instant Knowledge Research Programme of Mobile VCE,
(the Virtual Centre of Excellence in Mobile & Personal
Communications), www.mobilevce.com. The programme is
co-funded by the UK Technology Strategy Board’s Collabo-
rative Research and Development programme. Detailed tech-
nical reports on this research are available to all Industrial
Members of Mobile VCE.

References
[1] J. Y. G Linden, B Smith, “Amazon.com recommendations: item-to-

item collaborative filtering,” inIEEE, Internet Computing, vol. 7,
2003, pp. 76–80.

[2] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “Grouplens: applying collaborative filteringto usenet
news,” Commun. ACM, vol. 40, no. 3, pp. 77–87, March 1997.

[3] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collab-
orative filtering recommendation algorithms,” inProceedings of the
10th international conference on World Wide Web. ACM New York,
NY, USA, 2001, pp. 285–295.

[4] M. Vozalis and K. Margaritis, “Using SVD and demographic data for
the enhancement of generalized collaborative filtering,”Information
Sciences, vol. 177, no. 15, pp. 3017–3037, 2007.

[5] R. Bell, Y. Koren, and C. Volinsky, “The BellKor solutionto the
Netflix prize,” AT&T Labs–Research: Technical report November,
2007.

[6] Y. Park and A. Tuzhilin, “The long tail of recommender systems and
how to leverage it,” inProceedings of the 2008 ACM conference on
Recommender systems. ACM New York, NY, USA, 2008, pp. 11–18.

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Application of di-
mensionality reduction in recommender system–a case study,” inACM
WebKDD 2000 Web Mining for E-Commerce Workshop. Citeseer,
2000.

[8] S. Al Mamunur Rashid, G. Karypis, and J. Riedl, “ClustKNN:a highly
scalable hybrid model-& memory-based CF algorithm,” inProc. of
WebKDD 2006: KDD Workshop on Web Mining and Web Usage
Analysis, August 20-23 2006, Philadelphia, PA. Citeseer.

[9] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering.” MorganKaufmann,
1998, pp. 43–52.

[10] J. Herlocker, J. Konstan, and J. Riedl, “An algorithmic framework for
performing collaborative filtering,” inProceedings of the 22nd annual
international ACM SIGIR conference on Research and development
in information retrieval. ACM New York, NY, USA, 1999, pp. 230–
237.

[11] H. Ma, I. King, and M. Lyu, “Effective missing data prediction for col-
laborative filtering,” inProceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2007, p. 46.

[12] M. McLaughlin and J. Herlocker, “A collaborative filtering algorithm
and evaluation metric that accurately model the user experience,” in
Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM New
York, NY, USA, 2004, pp. 329–336.

[13] M. Vozalis and K. Margaritis, “Applying SVD on generalized item-
based filtering,”International Journal of Computer Science and Ap-
plications, vol. 3, no. 3, pp. 27–51, 2006.

[14] M. Ghazanfar and A. Prugel-Bennett, “A Scalable, Accurate Hybrid
Recommender System,” in2010 Third International Conference on
Knowledge Discovery and Data Mining. IEEE, 2010, pp. 94–98.

[15] M. Vozalis and K. Margaritis, “On the combination of user-based and
item-based collaborative filtering,”International Journal of Computer
Mathematics, vol. 81, no. 9, pp. 1077–1096, 2004.

[16] L. Candillier, F. Meyer, and M. Boullé, “Comparing state-of-the-art
collaborative filtering systems,”Machine Learning and Data Mining
in Pattern Recognition, pp. 548–562, 2007.

[17] J. Wang, A. De Vries, and M. Reinders, “Unifying user-based and
item-based collaborative filtering approaches by similarityfusion,” in
Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2006,
p. 508.

[18] M. Ghazanfar and A. Prugel-Bennett, “An improved switching
hybrid recommender system using naive bayes classifier and
collaborative filtering,” inThe 2010 IAENG International Conference
on Data Mining and Applications, April 2010. [Online]. Available:
http://eprints.ecs.soton.ac.uk/18483/

[19] L. G. T. Jonathan L. Herlocker, Joseph A. Konstan and J. T.
Riedl, “Evaluating collaborative filtering recommender systems,”
ACM Transactions on Information Systems (TOIS) archive, vol. 22,
pp. 734–749, 2004.

[20] B. M. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Recommender
systems for large-scale e-commerce: Scalable neighborhood formation
using clustering,” 2002.

[21] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of rec-
ommendation algorithms for e-commerce.” ACM Press, 2000, pp.
158–167.

[22] D. Kim and B. Yum, “Collaborative filtering based on iterative
principal component analysis,”Expert Systems with Applications,
vol. 28, no. 4, pp. 823–830, 2005.

[23] I. H. W. Witten and F. Eibe,Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
October 1999.

[24] A. T. Gediminas Adomavicius, “Toward the next generationof
recommender systems: A survey of the state-of-the-art and possible
extensions,”IEEE Transactions on Knowledge and Data Engineering,
vol. 17, pp. 734–749, 2005.


