
An Agile Development Methodology Applied to Embedded
Control Software under Stringent Hardware Constraints

Lucas Cordeiro1,2, Carlos Mar1, Eduardo Valentin1,4, Fabiano Cruz1,4

Daniel Patrick1, Raimundo Barreto1, and Vicente Lucena3

1Departamento de Ciência da Computação - Universidade Federal do Amazonas (UFAM), Brazil
{caam, dpo, rbarreto}@dcc.ufam.edu.br

2Centro de Ciências, Tecnologia e Inovação do Pólo Industrial de Manaus (CTPIM), Brazil
lucas@ctpim.org.br

3Centro de P&D em Tecnologia Eletrônica e da Informação (CETELI/UFAM), Brazil
vicente@ufam.edu.br

4Instituto Nokia de Tecnologia (INdT), Brazil
{eduardo.valentin, fabiano.cruz}@indt.org.br

ABSTRACT
In recent years, discrete control systems play an important
role in the development and advancement of modern civi-
lization and technology. Practically every aspect of our life
is affected by some type of control systems. This kind of
system maybe classified as an embedded real-time system
and requires rigorous methodologies to develop the software
that is under stringent hardware constraints. Therefore, the
proposed development methodology adapts agile principles
and patterns in order to build embedded control systems
focusing on the issues related to the system’s constraints
and safety. Strong unit testing is the foundation of the pro-
posed methodology for ensuring timeliness and correctness.
Moreover, platform-based design approach is used to bal-
ance costs and time-to-market in view of performance and
functionality constraints. We conclude that the proposed
methodology reduces significantly the design time and cost
as well as leads to better software modularity and reliabil-
ity.

Categories and Subject Descriptors
J.7 [Computers in Ohter Systems]: Industrial control,
Process control, Real time; D.2.5 [Software Engineering]:
Testing and Debugging—debugging aids, diagnostics, testing
tools.

Keywords
Agile methodologies, Health Care, Embedded Agile Devel-
opment, Organizational Patterns, Platform-Based Design,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Real-time Software.

1. INTRODUCTION
The micro-controllers becoming cheaper, smaller and more

reliable make them economically attractive to be used as
computer systems in several appliances. Approximately 3
billion of micro-controllers (µC) are sold each year and smaller
µC (4-,8-, and 16-bit) are dominating the market and adding
value to products [10]. Embedded computer systems are
used in a wide range of system from machine condition mon-
itoring to airbag control systems. As the system complexity
increases, its development lifecycle is also affected. Because
of that, system development methodologies must be applied
in order to manage the team size, the product requirement
(scope), and meet the project’s constraints (time-to-market
and costs).

Nevertheless, many development methodologies that are
used to produce software that runs on the personal com-
puters (PC’s) are not appropriate for developing discrete
control systems. These devices share common characteris-
tics with typical embedded real-time systems, i.e. they have
a data acquisition stage, the application of a complex con-
trol algorithm, followed by output of a result. Therefore,
this kind of system contains very different characteristics
such as dedicated hardware and software, and constraints
that are not common to PC’s based systems (e.g. energy
consumption, execution time, memory footprint). Another
important point is that some embedded control systems may
put lives at risk (mission criticality) if some failure occurs.
Therefore, these systems should be treated differently from
the case where the only cost of failure is the project’s invest-
ment.

Based on this context, we propose a development method-
ology named as TXM (The neXt Methodology) based on the
agile principles such as adaptive planning, flexibility, itera-
tive and incremental approach in order to make the develop-
ment of embedded control software easier. To achieve that,
this methodology is composed by practices from Software
Engineering and Agile methods (Scrum and XP) which aim
at minimizing the main problems present on the software de-

velopment context (i.e. requirement volatility and risk man-
agement), and by others practices that are needed to achieve
hardware and software development (i.e. platform-based de-
sign [20]). With this goal in mind, we focus our attention
on hardware-bound embedded software that imposes several
challenges to the software design methodology.

From the point of view of embedded software design method-
ologies, the proposed work aims to: (i) tradeoff flexibility
and performance by adopting highly programmable plat-
forms, (ii) adopt processes and practices to develop em-
bedded software (ESW) that is under stringent hardware
constraints, (iii) support a software driven hardware devel-
opment approach through a comprehensive flow from speci-
fication to implementation, (iv) propose test techniques in a
combination we have not seen before, (v) make use of the it-
erative and incremental approach in order to offer clearly an
iterative process where the designer can validate the system
specification, and (vi) provide experimental results of the
application of the proposed methodology in the embedded
control systems domain.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes the related works. Section 3 overviews
the agile methods and patterns that were integrated into
the proposed methodology. Section 4 is concerned with de-
scribing the proposed agile development methodology and
its main componentes (processes, lifecycle, roles and respon-
sibilities). Section 5 shows the application of the proposed
methodology by focusing on the processes that were applied
to the digital soft-starter and induction motor simulator pro-
totypes. Section 6 shows the experimental results of our
proposed methodology. Finally, section 7 summarizes this
paper and identifies the next steps of this research.

2. RELATED WORKS
There are few works available in the literature about agile

development methodologies for embedded systems. How-
ever, there is an interesting paper that describes the ex-
perience of applying Agile approaches to the development
of firmware for the Intel Itanium processor family [8]. In
this paper, they identified the agile practices that the Intel
team successfully applied, but they did not take into account
the hardware related development. Moreover, this work did
not mention how to address the non-functional requirements
(e.g., code size and real-time) and did not provide any ex-
perimental results of their work.

Manhart and Schneider [11] also related a successful in-
dustrial experience when partially adopting agile methods
in the production of software for embedded systems. Indeed
they made slight modifications in a well established soft-
ware development process for the automotive branch adopt-
ing some agile elements in order to adequate their process to
new needs as flexibility and high speed software production.
As pointed out in the paper many other application areas
may benefit from their experiments, nevertheless the authors
did not presented any measurement results that could prove
their expectations.

The conceptual framework proposed by Ronkainen e Abra-
hamsson, evaluate the possibility to use agile development
practices in embedded software environment [13]. There-
fore, they define requirements for new agile methods with
the purpose of making the embedded software development
process easier. These requirements include (i) special em-
phasis on hardware/software architecture, (ii) refactoring

must be integrated into the configuration management sys-
tem, (iii) techniques to measure the code mature in different
development phase, and (iv) techniques to design test cases
that take into account not only the correctness but also the
timeliness of the application. Although this paper is totally
conceptual, the requirements for new agile methods served
as basis for our proposed methodology.

Vicentelli and Martin propose a rigorous methodology
that aims to (i) deal with integration problems among intel-
lectual property (IP) creators, semiconductor vendors, and
design house, (ii) consider metrics to measure embedded
system design, (iii) work from conception to software imple-
mentation, and (iv) favor reuse by identifying requirements
for real plug-and-play operation [20]. Nevertheless, they did
not provide any concrete guidance and they rely on abstract
rules of thumb only. Although the methodology proposed
by them is totally conceptual, it also served as basis for the
development of our proposed methodology.

The hardware/software co-design methodology proposed
by Gajski [7] aims to develop embedded systems by formally
describing the system’s functionalities in an executable lan-
guage rather than a natural language. The executable spec-
ification is refined through the system-design tasks of alloca-
tion, partition, and refinement. Estimators are also used in
order to explore design alternatives. However, this method-
ology does not provide any project management activity and
assumes that most of the requirements are captured before
applying the partitioning algorithms. The next section de-
scribes the Scrum and XP agile methods as well as the orga-
nizational patterns that were integrated into the proposed
methodology.

3. A BRIEF LOOK AT THE AGILE METH-
ODS AND PATTERNS

In this section, a brief look at the agile principles, meth-
ods, and patterns that were used in the proposed methodol-
ogy is presented. It identifies the main product development
and management practices of the XP and Scrum methods
respectively.

3.1 Extreme Programming
The most recognizable agile method is eXtreme Program-

ming (XP) which is very communication-oriented and team-
oriented [2]. XP is composed of 12 core practices and some
of its main characteristics that were integrated into the pro-
posed methodology include: Refactoring practice (i) which
is the process of changing a software system in such a way
that it does not alter the external behavior of the code and
at the same time improves its internal structure.

In the Continuous Integration practice (ii), the code is
compiled and tested in an automated process every time it
is checked-in. Test-driven development practice (iii) means
that the unit tests are written by the developers before cod-
ing. These unit tests are automated tests that test the func-
tionality of pieces of the code. In the Coding Standard prac-
tice (iv), everyone involved in the project needs to follow the
same code style. It specifies a consistent format for source
code, within the chosen programming language.

XP promotes an evolutionary approach to design the sys-
tem by using the first three practices described above. The
main benefit of this approach is that the system grows in an
incremental way and it aims to reduce project’s risk and un-

certainty too early (risk management). Section 4 describes
how these XP practices were adapted into the proposed
methodology.

3.2 Scrum
Scrum is a simple and straightforward approach to man-

age the software development process based on the assump-
tion that environmental (i.e. people) and technical (i.e.
technologies) variables are likely to change during the pro-
cess [15]. Scrum is composed of 14 practices and some of its
main characteristics that were integrated into the proposed
methodology include: Sprint practice (i) is the iteration or-
ganized in 30-calendar-day. The Sprint Planning practice
(ii) consists of two meetings.

In the first meeting, the product backlog which contains a
list of features, use cases, enhancements, and defects of the
system is refined and re-prioritized by the product owner,
stakeholders and goals for the next iteration are chosen.
In the second meeting, the Scrum team figures out how to
achieve the requests and creates the sprint backlog that con-
tains detailed tasks to be accomplished in the current iter-
ation. In the Sprint Review practice (iii), the Scrum team
presents the results obtained at the end of each iteration by
showing the working software for the product owner, cus-
tomers and other stakeholders. In the Daily Scrum practice
(iv), daily meetings are held at the same place and time with
special questions to be answered by the Scrum team.

Scrum employs the empirical process control model, i.e.
the practices aim to inspects the condition of activities and
empirically determines what to do next in order to pro-
duce the expected outcomes (product). The productivity
and quality strongly depend on both skills and motivation
of the people involved in the process. Section 4 shows how
the Scrum practices were adapted into the proposed method-
ology.

3.3 Patterns for Agile Software Development
The agile patterns described by [5] can be combined with

XP and Scrum agile methods with the purpose of structur-
ing the software development process of the organizations.
These patterns are split into four different pattern languages
as follows: The project management pattern language pro-
vides a set of patterns that help the organization manage
the product development, clarify the product requirements,
coordinate project’s activities, generate system’s build, and
keep the team focus on the project’s primary goals.

The piecemeal growth pattern language provides a set of
patterns that help the organization define the high-level
management and amount of team members per project, en-
sure and maintain customer satisfaction, communicate the
system requirements, and ensure a common vision for all
people involved in the product development team. The or-
ganizational style pattern language provides a set of patterns
that help the organization eliminate project’s overhead and
latency, ensure that the organization structure is compati-
ble with the product architecture, organize work to develop
products by geographically distributed teams, and ensure
that the market needs will be met.

The people and code pattern language provides a set of
patterns that help the organization define and keep the ar-
chitecture style of the product, ensure that the architect is
materially involved in implementation, and assign feature

development to people in nontrivial projects. The software
configuration management pattern language is not part of
the organizational patterns but they were integrated into the
proposed methodology. These patterns were defined by [3]
and they offer patterns that help the development team de-
fine mechanisms for managing different versions of the work
products, develop code in parallel with other developers and
join up with the current state of development line, and iden-
tify what versions of code make up a particular component.
The next section describes the proposed methodology and
its main components.

4. PROPOSED DEVELOPMENT METHOD-
OLOGY

The proposed methodology aims to define roles and re-
sponsibilities and provide processes, lifecycle, practices and
tools to be applied in embedded real-time system projects.
It contains three different processes groups that should be
used during the system development: system platform, prod-
uct development and management.

The system platform processes group aims to instantiate
the platform for a given product. It means that the system
designer must choose the system components that will be
part of the architecture and API platforms from a platform
library. After that, the system designer has still the possibil-
ity to customize the architecture and API platforms in order
to meet the application constraints. The customization pro-
cess is carried out by programming the designer-configurable
processors and runtime-reconfigurable logic integrated into
the platform. The customization process is carried out by
successive refinements in an iterative and incremental way
into the proposed methodology.

The product development processes group offers practices
to develop the application’s components and integrate them
into the platform. The functionalities which make up the
product are partitioned into either hardware or software el-
ements of the platform. Our partitioning algorithms used to
carry out this task takes into account the energy consump-
tion, execution time, and memory size of the application’s
components. In addition, the partitioning technique is also
applied in an iterative and incremental way. The mechani-
cal design is also part of this processes group, but it is out
of the scope of this paper.

The product scope, time, quality, and costs parameters
are monitored and controlled by the product management
processes group. These parameters also influence the system
platform and product development processes groups. When
the project starts with an infeasible project plan which needs
corrective actions to be carried out then this processes group
aims to get the project back on the track and ensure that
the project’s parameters are met. The product management
processes group consists of the practices promoted by the
Scrum agile method as well as the agile patterns described
in [5, 15]. The next subsections are concerned with describ-
ing the processes groups, roles and responsibilities, and the
processes lifecycle of the proposed methodology.

4.1 System Platform Processes Group
The system platform processes group is composed of the

following processes: product requirements, system platform,
product line, and system optimization. The product require-
ments process aims to obtain the system’s requirements (func-

tional and non-functional) that are relevant to determine
the system platform in which the product will be built. The
platform instance process helps the development team define
the system platform by making use of a set of design tools
and benchmarks.

After defining the system platform, the product line pro-
cess helps the development team setup the repository in
which the system platform components will be available to
the product development. This process also allows the de-
velopment team to implement and integrate system’s func-
tionalities into the system and release new product versions
into the market. After implementing and integrating the
system’s functionalities into the product development line,
the system optimization process provides activities to ensure
that system’s variables such as execution time, energy con-
sumption, program size and data memory size satisfy the
application constraints.

4.2 Product Development Processes Group
The product development processes group is composed of

the following processes: functionality implementation, task
integration, system refactoring, and system optimization. The
functionality implementation process ensures that test cases
are created for every product’s functionality. This process
helps increase the product quality and reduce the creation
of complex functions. Moreover, it also helps create a com-
prehensive test suite for testing and validating that the API
Platform layer will function properly for the software appli-
cations.

The task integration process provides means to integrate
new implemented functionalities into the development line
of the product without forcing the other team members to
work around it. The system refactoring process helps the de-
velopment team identifies opportunity to improve the code
and changing it without altering its external behavior. After
refactoring the code, the system optimization process allows
the development team to optimize small part of the code by
making use of profiler tools that monitor the program and
tells where, for instance, it is consuming time, energy, and
memory space [12]. This process guarantees that software
metrics meets the system constraints.

4.3 Product Management Processes Group
The product management processes group is composed of

the following processes: product requirements, project man-
agement, bug tracking, sprint requirements, product line,
and implementation priority. The product requirements pro-
cess (that also belongs to the system platform processes
group) aims to obtain the system’s requirements (functional
and non-functional) that must be part of the product. The
project management process allows the development team
to implement the system’s requirements by managing the
product and sprint backlog, coordinating activities, gener-
ating system’s build, and tracking the product’s bug.

The bug tracking process allows the product leader to
manage the lifecycle of the project’s issues (bug, task, and
enhancement) and provide the needed information about
the product quality through the release notes for the end
user. The sprint requirements process allows the develop-
ment team to analyze, evaluate, and estimate the system’s
functionalities before starting a new project’s sprint. This
information is included into the sprint backlog which will
help the development team partition the system function-

alities into either hardware or software before starting the
sprint.

The product line process guarantees that the system func-
tionalities implemented during the sprint will be integrated
into the product development line. This process also helps
the development team to release new product versions into
the market. The implementation priority process helps the
product leader manage any kind of interruptions that may
impact the project’s goals. This process guarantees that the
project’s tasks are 100 percent completed after initiated.

4.4 Roles and Responsibilities
The proposed methodology involves four different roles

and the responsibility of each role is described as follows:
Platform Owner: Platform owner is the person who

is officially responsible for the products that derive from
a given platform. This person is responsible for defining
quality, schedule and costs targets of the product. He/she
must also create and prioritize the product backlog, choose
the goals for the sprints, and review the product with the
stakeholders.

Product Leader: Product leader is responsible for the
implementation, integration and test of the product ensur-
ing that quality, schedule, and cost targets defined by the
platform owner are met. He/she is also responsible for me-
diating between management and development team as well
as listening to progress and removes block points.

Feature Leader: Feature leader is responsible for man-
aging, controlling and coordinating subsystem projects, pre-
integration projects, external suppliers that contribute to a
defined set of features. The feature leader also tracks the
progress and status of the feature development (deliverables,
integration and test status, defects, and change requests)
and reports the status to the product leader.

Development Team: The development team which may
consist of programmers, architects, and testers are responsi-
ble for working on the product development. They have the
authority to make any decisions, do whatever is necessary
to do (according to the project’s guidelines), and ask for any
block points to be removed.

If the product to be developed is small, i.e. it is com-
posed of few components (less than 50 KLOC) and does not
require other development teams to implement the prod-
uct’s functionalities then one product leader and the de-
velopment team are enough for the product development.
On the other hand, if the product is composed by several
components (more than 50 KLOC) and requires other de-
velopment teams to implement the product’s functionali-
ties then the Feature Leader role must be involved in the
processes. In this context, one product leader requires fea-
ture leaders to manage, control and coordinate components’
projects. Therefore, for medium and larger projects, one
product leader and several feature leaders and development
teams may be involved in the processes.

4.5 Processes Lifecycle
The proposed agile methodology consists of five phases:

Exploration, Planning, Development, Release, and Mainte-
nance. In the Exploration phase, the customers provide re-
quirements for the first product release. These requirements
are included into the product backlog by the platform owner.
After that, the platform owner and product leader estimate
the requirements with no item larger than 3 person-days of

effort. In this phase, the development team identifies the
platform and application constraints and estimates the sys-
tem’s metrics based on the product backlog items. With
this information at hand, the development team is able to
define the system platform that will be used to develop the
product in the next phases.

In the Planning phase, the platform owner and customers
identify more requirements and prioritize the product back-
log. After that, the development team spends one day to
estimate the sprint backlog items and decompose them into
tasks. The tasks that make up the sprint backlog must take
from 1 to 16 hours to be completed. Explanatory design and
prototypes may also be developed at this phase in order to
help clarify the system’s requirements.

In the development phase, the team members implement
new functionalities and enhance the system based on the
items of the sprint backlog. The daily meetings are held
at the same time and place with the purpose of monitoring
and adapting the activities to produce the desired outcomes.
At the end of the each iteration, unit and functional tests
are executed in a continuous integration build. System opti-
mization also takes place during this phase. The last sprint
provides the product to be deployed in the operational en-
vironment.

In the Release phase, the product is installed and put into
practical use. During this phase, it usually involves the iden-
tification of errors and enhancement in the system services.
Therefore, the platform owner and customers decide if these
changes will be included in the current or subsequent re-
lease. This phase aims to deliver the release product and
needed documentation to the customer. The Maintenance
phase may also require more sprints in order to implement
new features, enhancement and bug fixes raised in the re-
lease phase.

The next subsections describe only a subset of processes
of the proposed methodology that focuses on achieving the
aims of the embedded control systems.

5. APPLYING THE PROPOSED METHOD-
OLOGY

This section is concerned with describing the application
of the proposed methodology in the development of the dig-
ital soft-starter and induction motor simulator equipments.
We chose these equipments as case studies because they im-
pose several challenges to develop the ESW that is under
stringent hardware requirements (e.g., real-time and code
size) and also require a close interaction among the engi-
neers in order to develop the products.

Both projects were split into 2 different sprints and devel-
oped by four embedded system engineers (each project had
two engineers), one product leader, and one platform owner.
The next subsections describe the characteristics and archi-
tecture as well as the processes of the proposed methodology
and the build infrastructure.

5.1 System’s Characteristics and Architecture
Generally speaking, the digital soft-starter is an equip-

ment that makes use of an efficient method for starting mo-
tors. Efficient here means low energy consumption levels
obtained by the automatic (adaptive) adjust of its working
parameters. A detailed description on the functioning of the
soft-starter may be found at [19]. A widely adopted method

used to control induction motors which was implemented
in our digital soft-starter equipment is the so called PWM
(Pulse Width Modulation). Summarizing its functionality
the output signal of the inverter is controlled by the vari-
ation of the pulse width of another signal in every voltage
cycle [1].

Therefore, the main system’s requirements that were im-
plemented to the digital soft-starter include: (i) the sys-
tem should be able to automatically control the start of the
induction motor, (ii) the system should read the voltage
signal provided by the sensor through an analog-to-digital
converter, (iii) the PWM signal generated by the micro-
controller should meet all timing requirements of the appli-
cation, and (iv) the user interface of the equipment should
have a keyboard and a graphical display.

In order to validate the digital soft-starter equipment and
also the proposed methodology, we have constructed an in-
duction motor simulator. An important characteristic that
distinguishes the induction motors is that they are machines
with a single excitement. Although such machines are equipped
with a field winding and with armature winding, in normal
conditions of use the source of energy is connected to a single
field winding. It is important to point out that the induc-
tion motor needs a device departure starter, so that it can
be used. Such devices act basically in the sense of creating
an unbalance in the field of the estator.

In general, the main characteristics implemented for our
induction motor simulator include: (i) the system should
simulate the behavior of the motor through a mathemati-
cal model; (ii) the system should reproduce the signal sup-
plied PWM (for the digital soft-starter) through I/O micro-
controller ports; (iii) the system should calculate and show
in the display the voltage and current values based on the
PWM signals supplied by the soft-starter; and (iv) a man-
machine interface (display and keyboard) should be present
in the final solution. Figure 1 presents an overview of the
connection between the induction motor and digital soft-
starter equipments.

Figure 1: Induction Motor Simulator Overview.

As can be seen in this figure, the soft-starter sends the
PWM signals through the microcontroller’s general purpose
I/O (GPIO) to the induction motor simulator. The GPIO
provides flexible software-controlled digital signal between
both platforms. The mathematical model that represents
the induction motor is implemented in another platform that
has the same configuration (microprocessor and peripherals)
as the digital soft-starter.

In order to check this mathematical algorithm of the in-
duction motor in our embedded software, we could use the
Matlab to simulate the behavior and generate the test data
for comparison. As described in Subsection 5.4, this tech-

nique allows us to easily implement and test changes and
carry out integration and unit tests of the algorithm simul-
taneously. These test data files are of great benefit to ex-
ercise the code paths and the effort to set up them can be
paid back many times over.

Our architecture platform for both projects contains a RS-
232 serial converter, a microcontroller AT89S8253 which has
an 8051-like architecture with code and data memory inte-
grated on a chip, a real-time clock PCF8583, four channels
A/D converter and one channel D/A converter. Addition-
ally the platform has 12 KB of flash memory and 32 KB
of RAM. The communication between the converters and
the embedded software is carried out by the communication
protocol I2C [16].

The API platform is composed of a set of helpful compo-
nents which include: the Services subsystem (System Log,
PWM Generator and Unity Converter components) and the
Platform Drivers (RS-232 Serial, Timer, LCD 16X2, Key-
board and A/D Converter). This API can be seen as an
abstraction layer that hides several details of the platform’s
resources [20]. Therefore, we chose this platform because
it has already a set of interconnected HW/SW components
that together implements a set of functionalities and de-
creases significantly the development speed and costs.

5.2 Process for Managing the Product Require-
ments

This process helped us identify the market needs for the
digital soft-starter product line and manage the product re-
quirements. At the beginning of the project, we arranged
a brainstorming meeting in order to capture high-level re-
quirements of the product. After that, we created an initial
product backlog with the purpose of capturing more require-
ments and creating a first product prototype.

The first project iteration allowed us to answer questions
such as whether the technology needed for the system exists,
how difficult it would be, check the platform performance
from different vendors, and implement a couple of system’s
functionalities. In further iterations, we implemented more
system’s requirements by focusing on the items with highest
business values (the business values range from 1 lowest to
5 highest). After that, the final configuration of our devel-
opment platform would dispense unneeded components and
combine everything on one board for economical production
costs.

As a requirement management strategy, we put much em-
phasis on delivering the system’s functionalities (i), (ii), and
(iii) in the beginning of the sprints for the digital soft-starter
project and system’s functionalities (i) and (iii) for the mo-
tor simulator project. Delivering these functionalities with
highest business value, helped our customer and platform
owner get feedback on functionality earlier and allow them
to spot any misunderstanding more quickly. At the end of
each iteration, the product leader and customer verified if
the product was still feasible or not. If the project would
not be feasible then it could be canceled just after the end
of the iteration (risk management).

5.3 Process for Managing the Project
This process helped us refine and prioritize the product

backlog that contains the system’s functionalities. In the
sprint planning, the product leader and our customer chose
the goals of the next sprint based on the highest business

value and risks of the product backlog items. After that, we
had a meeting to consider how to achieve the sprint’s goals
and to create the sprint backlog. The sprint backlog should
contain only tasks in the 4-16 hour range in order to make
the management activities easier (risk reduction).

During the system development, the sprint backlog was
updated regularly as the activities were being accomplished.
The product leader held two meetings per week with the
team members in order to monitor and control the com-
plexity of the tasks. These daily meetings provided a great
feedback to the product leader and created the habit of
sharing the knowledge. After starting the sprint, we imple-
mented first the functional requirements and then focused
on the non-functional requirements of the system. This ap-
proach helped us obtain better optimization results because
we optimized the global system instead of only parts of the
system which sometimes might not lead to the global opti-
mization [6].

During this phase, system’s builds were also generated on
a weekly basis which helped our customer clarify the require-
ments and asses the risks earlier in the development process.
At the end of the sprint, the product leader and development
team showed the results of the work to the customers. This
meeting aimed to present the product increment, technology
and business situation. These artifacts helped the product
leader and customers decide the goals of the next sprint.
In addition, after each sprint review there was a retrospec-
tive meeting which had the purpose of collecting the best
practices used in the sprint and identifying what could be
improved for the next sprint.

5.4 Process for Implementing New System’s
Functionalities

This process supported us for implementing the system’s
functionalities of the digital soft-starter and induction motor
simulator prototypes in a systematic way. According to the
business value of the systems functionalities defined in the
Section 5.2, we started implementing the requirements re-
sponsible for generating and handling the PWM signals. In
order to implement these systems functionalities, we strove
to write first the unit test for each stage of computation.
However, this kind of activity required certain level of ex-
perience from the embedded system engineers. Nonetheless,
we had to successfully compile the unit test before really
writing the functionality’s code.

In order to test each computation stage of the systems
functionalities, we had to run the embedded software on the
PC and target platform. We used this approach throughout
the development cycle in order to avoid debugging hardware
and software simultaneously. By running the embedded soft-
ware on the PC platform, we could exercise all code paths
and gain confidence in our code before running it on the tar-
get platform. Another way to gain confidence in the code is
to use the JTAG debug capability.

After that, we could run the embedded software on the
target platform to verify the application’s timeliness. For
both projects, we created data files on the PC that had all
possible parameters combinations that make sense for the
system’s functions inputs. In this way, we could provide
these data to our unit tests to exercise the code’s paths
of the functions. Figure 2 depicts an example of unit test
applied to PWM signal generator of the soft-starter device
by using the embUnit framework test tool [18].

1 static void setUp(void) {
2 fillData(“signal01.txt”, signalData01);
3 }
4 static void testGenerateSignalNormal(void) {
5 Q1 = 0; Q2 = 1; Q3 = 0; Q4 = 1

6
.
..

7 for (i = 0; i < SIGNAL NUMBER; i++) {
8 generateSignal();
9 counterQ1 += TICK;
10 counterQ3 += q3Enable;
11 ASSERT EQUAL INT(signalData01[4 ∗ i], Q1);
12 ASSERT EQUAL INT(signalData01[4 ∗ i] + 1, Q2);
13 ASSERT EQUAL INT(signalData01[4 ∗ i] + 2, Q3);
14 ASSERT EQUAL INT(signalData01[4 ∗ i] + 3, Q4);
15 }
16 }

Figure 2: Unit test for the generateSignal function

This generateSignal function uses the counter values to
generate the control signals in pins Q1, Q2, Q3 and Q4 of
the target platform. In order to verify the timeliness and
correctness, we had to: (i) fill in the integer array signal-
Data01 with all possible combinations that make sense to
the control pins, (ii) initialize the control pins Q1 and Q3
with the angle α to be triggered (the other pins Q2 and
Q4 are complementary), (iii) call generateSignal function to
simulate the PWM signal generation, and finally (iv) com-
pare the actual value of Q1, Q2, Q3 and Q4 with the value
expected into array signalData01.

To evaluate the correctness of this function, it was neces-
sary to create the setUp function (line 5) with the purpose
of providing the signalData01 array with all possible val-
ues to Q1, Q2, Q3 and Q4 control pins. Moreover, we had
to declare the counterQ1, counterQ3 and q3Enable as global
variables and initialize them with defined value in the begin-
ning of test case execution. It is important to mention that
we exercised the “happy” path, error conditions, and corner
cases. To evaluate the timeliness, we had to perform this test
case in the target platform. Therefore, we obtained a worst
case execution time (WCET) of approximately 107.415 µs.

For those software components that touch the hardware,
we just used the #if and #else statements while running
the embedded software on the PC platform. Later on, we
developed and run application tests on the target platform
in order to stress the hardware dependent code. To imple-
ment all systems’ functionalities, we followed the product’s
coding standard defined at the beginning of the project with
the purpose of keeping consistence throughout the system’s
code. An important point to take into account is that if
there is the need for splitting a given system’s functionality
into different functions then the unit tests should be created
for each system’s function.

5.5 Process for Refactoring the Code
After implementing the system’s functionalities, we iden-

tified in further sprints opportunities to improve an exist-
ing code. For instance, we identified during the digital
soft-starter and induction motor simulator projects that the

functionalities could be split into different modules. More-
over, we also identified duplicated code in both projects.
Therefore, the application of this process led to elimination
of duplicated code, reduction of the amount of system’s func-
tions, and improve the system performance. However, be-
fore improving the code for those tasks in common, we first
created branches in the system repository for not breaking
an existing working code.

After that, we verified if there was some need for updat-
ing the unit test of the functionality. If there was no need
to update the unit tests then we could start improving the
code without altering its external behavior. After refactor-
ing the code, we run the unit test in order to verify if the
changes were working correctly. If there was no compilation
problem and the unit test would not fail then we could inte-
grate our changes into the product development line. After
integrating the code, the regression tests could also be run
in order to check if there was no compilation and semantic
problems. If there was no problem then the refactoring was
completed.

5.6 Process for Choosing the Sprint Require-
ments

This process helped us choose the system’s functionalities
for the sprint based on the following criteria: (i) splitting
system’s functionalities depending on its estimates and on
the load of each iteration and (ii) splitting by across data
boundaries, for example, selecting a subset of operations
(e.g. fill in and sort array) supported for a given function-
ality [4]. Coding stubs and mock objects were used in order
to compensate for the absence of component’s functionality.

Because system’s components (e.g., LCD or keyboard driver)
have little coupling to the rest of the system, it is easier to
build mock objects to cover those inputs and outputs of the
components. In addition, when seen from the whole, hav-
ing such mock objects timely available to other subsystems
might be essential for allowing the rest of the system to grow
optimally. Therefore, in order to enable incremental integra-
tion to happen in embedded real-time projects, the notion
that subsystems should expect a level of rework between
iterations should be introduced.

5.7 Process for Managing the Product Line
This process allowed us to set up the system repository by

populating it with the system platform components which
consists of the API platform. Collection of components that
comprises the architecture platform were also chosen based
on the application constraint’s. The repository contained
only the system components that were needed to derive new
product lines. In other words, the development team derived
the product line (or the platform instance) from the platform
just by choosing a set of components from the platform li-
brary or by setting parameters of the library’s reconfigurable
components.

After that, they created in the system repository the de-
velopment line in which the product would be built. This
product development line allowed the team members to de-
velop and optimize the product components. In order to
implement new system’s tasks (which may include new re-
quirements, enhancements and bug fixes), each team mem-
ber should create a branch in the product development line.
This branch would help the team member implement the
task without forcing the other team members to work around

it. After implementing and optimizing all system’s com-
ponents that make up the product, the development team
could create a release branch of the product with the pur-
pose of not interfering with the current system development.

5.8 Process for Tracking the Product Bugs
This process for tracking the product’s bugs provides ac-

tivities to manage the lifecycle of the project’s issues (e.g.,
bug, task, and enhancement). Therefore, this process al-
lowed us to identify a new issue during the product develop-
ment by using a log system as depicted in Figure 3. This log
system is an extension of the idea put forth by [14] which
aims to eliminate the overhead caused by the printf call.
Therefore, this log system uses a circular buffer in RAM to
hold brief fixed-length text messages. In order for the devel-
opment team to carry out the system diagnostic, they wrote
the log statement at the start and finish of an Interrupt Ser-
vice Routine (ISR) and then subtract the timer to see how
long the ISR took to execute.

Figure 3: Log Output Sample.

After identifying bugs in the code through either the log
system or the test strategy described in the Section 5.4, the
issue could be open in the bug tracking tool by any team
member. He/She should only provide the needed informa-
tion in order to reproduce the bug such as: summary, plat-
form, product, software version, functional cluster, compo-
nent, log, and issue description. After that, the issue could
be automatically assigned to the person responsible for the
functional cluster in which the bug was open. If the person
responsible for fixing the issue was not able to reproduce
the bug then he/she could talk directly with the person who
opened the bug in order to get more information on how to
reproduce it.

5.9 Build Infrastructure and Tools
Figure 4 shows our proposed build infrastructure that

aims to support the processes of our proposed methodology.
This infrastructure allows the team members to integrate
new tasks into the system and hence manage the product
development line as described in Subsection 5.7. The CVS
repository has the purpose of controlling the system’s code
version. In our projects, this repository is hosted in the
sourceforge website.

Our proposed build infrastructure for continuous test and
integration works as follows: (i) firstly we must check out the
code that is in the repository to a local workspace. There-
fore, it allows us to implement new system’ functionalities,
fix bugs and improve the system’ code. Moreover, we are
also able to generate new product’ builds in the local repos-
itory. (ii) after implementing and testing the code by fol-
lowing the activities described in the Subsections 5.4 and
5.5, we can make the code available in the repository.

(iii) After that, the Cruise Control tool looks for code
modifications in the repository. If the file date/time changes

Figure 4: Continuous test and integration process.

then the Cruise Control starts the build process in an au-
tomated way. If there is a compliation error then Cruise
Control tool sends an e-mail to the person responsible for
breaking the code. Otherwise, it generates the .hex file that
will be loaded into the flash memory of the embedded device
and it runs other tools (e.g., CCCC and EmbUnit) in order
to capture the metrics and test the code. The next sub-
section describes the experimental results of our proposed
methodology applied to the digital soft-starter and induc-
tion motor.

6. EXPERIMENTAL RESULTS
In this section we present the results of our proposed

methodology. As described in Section 5.2, we created a list
of new features and requirements in order to gather all our
needs (product backlog). Based on the business value, we
chose from the product backlog a set of features and require-
ments to be implemented in the project’s sprints. Therefore,
we put much emphasis on delivering the systems function-
alities with highest business value in the beginning of the
sprints. Table 1 shows the measured effort, business value,
and development speed for each sprint of both projects.

Table 1: Measured Effort (in hours)
Sprint 1 Sprint 2

Digital Soft-Starter − −
Measured Effort 70 84

Business value 11 16
Sprint Velocity 0.1571 0.1904

Motor Simulator − −
Measured Effort 125 219

Business value 13 21
Sprint Velocity 0.104 0.0958

As can be seen in Table 1, the sprint velocity of the
soft-starter increased as the system was being developed.
This situation took place due to the fact that we were still
learning the involved technology, development environment,
and the application domain. On the other hand, the sprint
velocity of the motor simulator decreased due to the fact
that a team member was moved from the soft-starter to
another project. Therefore, the tasks that were allocated to

him had to be transferred to an engineer of the induction
motor simulator.

As mentioned in Section 5.4, we had hardware indepen-
dent code and hardware specific code for the digital soft-
starter and induction motor simulator projects. For hard-
ware independent code, we applied our proposed test tech-
niques which checks not only the logic but also the timing.
But for hardware specific code, we had to skip over it when
running on the PC desktop. For this kind of embedded soft-
ware, our approach was to develop and run the test applica-
tions that aim to exercise all code paths of the function in the
target platform manually. Therefore, we had approximately
one test line for each two code lines using these proposed
test techniques to ensure the timeliness and correctness of
the prototypes.

Table 2 shows the relationship between the test and code
lines of both projects. The final size of the digital soft-starter
and motor simulator embedded software was approximately
1615 and 854 lines of code respectively. We also used the
CCCC tool to count the effective source lines of code (ES-
LOC) of our embedded software. This tool counted 589 and
385 lines of code and 220 and 101 lines of test for the digital
soft-starter and motor simulator respectively. This tool did
not include blank lines, comment lines, and lines with a sin-
gle brace “}”. Source files with long preambles are mainly
the cause for the high percentage of non-code lines.

Table 2: Total LOC (Application and Test)
Project Application Test

Digital Soft-Starter 1615 854
Motor Simulator 957 243

The digital soft-starter and induction motor simulator em-
bedded software had to run in a constrained environment.
Our development platform had just 12KBytes of flash mem-
ory. Therefore, we used the Big Visible Chart (BVC) pro-
posed by [2] with the purpose of tracking the memory usage
and power consumption metrics. Both charts were regularly
updated and kept visible in order to look for trends. Table 3
and 4 show the memory usage and power dissipation values
for both projects. The current consumption was measured
by connecting a multimeter in series with the energy source.
The final power dissipation was then obtained by multiply-
ing the current consumption by the supplied voltage. This
power is dissipated in the whole system by the digital and
analog components.

Table 3: Memory Usage (Bytes)
Project RAM Flash

Digital Soft-Starter 3631 3252
Motor Simulator 600 6398

The test techniques described in the Section 5.4 were
the perfect vehicle for software design and modularity of
the digital soft-stater and motor simulator embedded soft-
ware. Table 5 shows the average cyclomatic complexity of
the systems. Cyclomatic complexity (v(G)) is a measure of
the complexity of a module’s decision structure that indi-
cates the number of linearly independent paths [9]. Data

Table 4: Power Dissipation (mW)
Project Power

Digital Soft-Starter 855
Motor Simulator 774

on source code size, number of functions and cyclomatic
complexity were obtained using CCCC tool which analyzes
C/C++ files and generates a report on HTML format [17].

The final solution of the digital soft-starter and motor sim-
ulator prototypes has approximately 35 and 31 functions in
C code respectively. Therefore, all sprints were analyzed and
the result was an average cyclomatic complexity of 1.43 and
1.61 at the end of second sprint for the digital soft-starter
and the induction motor simulator. These low cyclomatic
complexity levels make the white-box testing easier due to
the fact that they decrease substantially the number of paths
that should be tested to reasonably guard against errors. For
more detail on this metric, refer to [9].

Table 5: Cyclomatic Complexity
Project v(G)

Digital Soft-Starter 1.43
Motor Simulator 1.61

The next section concludes this work and provides goals
for future research.

7. CONCLUSIONS
This paper described an agile development methodology

and its application in the development of the digital soft-
starter and induction motor simulator projects. In order to
create the methodology, we chose two agile methods XP and
Scrum as well as organizational patterns named in this paper
as agile patterns. When XP, Scrum and agile patterns are
combined they cover many areas of the system development
life-cycle. However, the combination of Scrum, XP and agile
patterns does not mean that they can directly be used to
develop embedded control software.

Therefore, slightly changes were needed to addreess the
challenges involved to develop such kind of software that
include: (i) adopt processes and tools to optimize the prod-
uct’s design rather than take paths that lead to designs that
have no chance of satisfying the constraints, (ii) support
software and hardware development through a comprehen-
sive flow from specification to implementation, (iii) instanti-
ate the system platform based on the application constraints
rather than overdesign a platform instance for a given prod-
uct, and (iv) use system platform to conduct various design
space exploration analyses for performance.

To illustrate the use of the processes and tools of the pro-
posed methodology, we described how it was applied to de-
velop the hardware-bound embedded software of both con-
trol systems. In these case studies, the development plat-
form reduced substantially development time and costs of
the product. In addition, we also applied a set of test tech-
niques in order to guarantee the timeliness and correctness
of the embedded control software.

These test techniques led to better software design and

modularity. Therefore, we obtained 1.43 and 1.61 average
cyclomatic complexity levels for the digital soft-starter and
motor simulator equipments respectively. For further steps,
we are researching models that can carry enough informa-
tion about the ultimate physical implementation and achieve
better results in terms of functional correctness. Moreover,
we are performing more experimental studies where the method-
ology will be observed while applied.

8. REFERENCES
[1] A. Ahmed. Power Electronics. Prentice Hall, Inc.,

2000.

[2] K. Beck and C. Andres. Extreme Programming
Explained - Embrace Change. Second Edition,
Addison-Wesley, 1999.

[3] S. Berczuk and B. Appleton. Software Configuration
Management Patterns. First Edition, Addison-Wesley,
2002.

[4] M. Cohn. Agile Estimating and Planning. Robert
Martin Series, Prentice Hall, 2005.

[5] J. O. Coplien and D. Schmidt. Organizational
Patterns of Agile Software Development. First Edition,
Prentice Hall, 2004.

[6] P. Cybernetica. Suboptimization Problem. Available at
http://pespmc1.vub.ac.be/SUBOPTIM.html. Last
visit on 26th December, 2007.

[7] D. Gajski, F. Vahid, and S. Narayan. A system-design
methodology: Executable-specification refinement.
European Conference on Design Automation, Paris,
France, 1994.

[8] B. Greene. Agile methods applied to embedded
software development. Proceeding of the Agile
Development Conference (ADC’04)., 2004.

[9] S. E. Institute. Cyclomatic Complexity. Published at
the Carnegie Mellon University, 2007.

[10] P. Koopman. Embedded system design issues (the rest
of the story). Proceedings of the International
Conference on Computer Design (ICCD96), pages
310–317, 1996.

[11] P. Manhart and K. Schneider. Breaking the ice for
agile development of embedded software: An industry
experience report. Proceedings of the 26th
International Conference on Software Engineering
(ICSE04), page 3647, 2004.

[12] M. J. Oliveira, S. Neto, P. Maciel, R. Lima,
A. Ribeiro, R. Barreto, E. Tavares, and F. Braga.
Analyzing software performance and energy
consumption of embedded systems by probabilistic
modeling: An approach based on coloured petri nets.
ICATPN 2006, LNCS 4024, pp. 261281, 2006., page
261281, 2006.

[13] J. Ronkainen and P. Abrahamsson. Software
development under stringent hardware constraints: Do
agile methods have a chance? eXtreme Programming
Conference, 2003.

[14] N. V. Schooenderwoert and R. Moriscato. Taming the
embedded tiger - agile test techniques for embedded
software. Proceeding of the Agile Development
Conference (ADC’04)., 2004.

[15] K. Schwaber and M. Beedle. Agile Software
Development with Scrum. First Edition, Series in
Agile Software Development, Prentice Hall, 2002.

[16] P. Semiconductors. The I2C-bus and how to use it.
Available at http://www.mcc-us.com/i2chowto.htm.
Last visit on 22th October, 2007.

[17] SourceForge. C and C++ Code Counter. Available at
http://sourceforge.net/projects/cccc. Last visit on
18th October, 2007.

[18] SourceForge. embUnit: Unit Test Framework for
Embedded C Systems. Available at
http://embunit.sourceforge.net/. Last visit on 18th
October, 2007.

[19] V. D. Toro. Basic Electric Machines. Prentice Hall,
Inc., 1990.

[20] A. S. Vicentelli and G. Martin. Platform-based design
and software design methodology for embedded
systems. IEEE Design and Test of Computers,
18(6):23–33, 2001.

