
A Model of Process Documentation to Determine
Provenance in Mash-ups

Paul Groth

University of Southern California

Simon Miles

Kings College London

Luc Moreau

University of Southampton

Through technologies such as RSS (Really Simple Syndication), Web Services, and AJAX (Asyn-
chronous JavaScript And XML), the Internet has facilitated the emergence of applications that

are composed from a variety of services and data sources. Through tools such as Yahoo Pipes,

these “mash-ups” can be composed in a dynamic, just-in-time manner from components provided
by multiple institutions (i.e. Google, Amazon, your neighbour). However, when using these ap-

plications, it is not apparent where data comes from or how it is processed. Thus, to inspire trust

and confidence in mash-ups, it is critical to be able to analyse their processes after the fact. These
trailing analyses, in particular the determination of the provenance of a result (i.e. the process

that led to it), are enabled by process documentation, which is documentation of an application’s

past process created by the components of that application at execution time. In this paper, we
define a generic conceptual data model that supports the autonomous creation of attributable,

factual process documentation for dynamic multi-institutional applications. The data model is in-
stantiated using two Internet formats, OWL and XML, and is evaluated with respect to questions

about the provenance of results generated by a complex bioinformatics mash-up.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—Distributed Data Structures;

J.3 [Computer Applications]: Life and Medical Sciences—Biology and genetics; D.2.12 [Soft-
ware Engineering]: Interoperability—Data mapping; D.2.5 [Software Engineering]: Testing

and Debugging—Distributed debugging; H.2.1 [Database Management]: Logical Design—Data

models

General Terms: Design, Documentation, Standardization

Additional Key Words and Phrases: process, process documentation, provenance, data model,

concept maps, mash-ups

1. INTRODUCTION

In both scientific and commercial endeavours, processes have become of critical
importance. Businesses wish to understand both their physical and software pro-
cesses better, so as to improve the efficiency, effectiveness and timeliness of their
design, manufacturing, or commercial activities. Likewise, understanding processes
is fundamental to science: scientists must be able to repeat other scientists’ or their
own experiments, and they need to analyse and conceive new processes in order to
validate their hypotheses.

The Oxford English Dictionary defines a process as a continuous and regular
action or succession of actions, taking place or carried on in a definite manner, and
leading to the accomplishment of some result. Two different and complementary
perspectives can be taken on the notion of process. On the one hand, when con-

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007, Pages 1–0??.

2 ·

sidering a future, prospective process, we may make use of tools to model such a
process so that it can be analysed and simulated, in order to understand its prop-
erties, and decide whether it meets requirements [Booch 1999]. Being satisfied with
a process model, we may then make use of notations that describe the model and
that are processable by computers [Lavana et al. 1997]. Such notations can also be
optimised or compiled to ensure that computers can execute them efficiently. In
other cases, we may not be interested in identifying all the different steps that must
be followed, but instead we may specify broad goals, from which we expect a com-
puter system to infer the necessary actions to take, so that goals become satisfied
[Dean 1996]. All these process-related activities — modeling, simulating, verifying,
analysing, planning, optimising — all have in common that they are undertaken
without ever needing the process to actually take place.

On the other hand, there is a whole set of activities that pertain to past processes,
such as understanding how a carcinogen dye ended up in the food chain, finding
evidence and building the case to arrest a criminal suspect, and understanding the
cause of a natural phenomenon. In computer systems, it is critical to understand
what files were modified, stolen, or deleted after a computer was hacked or infected
with a virus to allow users to recover and ensure the validity of their information.
Likewise, it is important to be able to validate that both credit card transactions
and computer-based scientific simulations were conducted according to what the
business regulations or experiment design expected.

In this article, instead of looking at future, prospective processes, we describe
mechanisms to analyse processes after they have taken place. Hence, in such a
context, we define a process as a set of past events that led to a result; we also use
the term trailing analysis to denote the analysis of a process, after the fact, based
on the evidence left by its execution. Such trailing analysis is to be contrasted to
the kind of analysis performed on programs or workflows, aiming at predicting the
properties of future processes.

Trailing analyses are particularly suited to processes that are dynamic, in which
actions are executed at runtime based on variable parameters or possible changes
in the environment. Such dynamic processes are the essence of a new set of Internet
applications that combine data, storage, and computation from a range of sources
provided by multiple institutions. Examples of these “mash-ups” include:

—BBC News Maps (www.benedictoneill.com/content/newsmap/) combines RSS
feeds provided by the BBC and Google Maps to show the location of news items.

—iSpecies.org combines data from Google Scholar, genome processing from the
National Center For Biotechnology Information and images from Yahoo to auto-
matically generate a web page for a given species.

—Salesforce.com now integrates with Google AdWords to allow business to use
their customer relationship data in their Web-based ad campaigns.

—Virtual Van (www.thevirtualvan.com) provides interoperability between busi-
nesses in a supply chain using Amazon storage, processing, and queuing web
services (www.amazon.com/aws/).

These examples show how a variety of domains are using Internet infrastruc-
ture (RSS, Web Services, AJAX, XML, and HTTP) to achieve new functionality
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 3

with a minimum of duplication. Furthermore, workbenches such as OpenKapow
(open kapow.com) and Yahoo Pipes (pipes.yahoo.com) are encouraging the rapid
development of these complex dynamic applications. As users become reliant on
these applications, they would like to understand where, why, and how their results
were produced. Such questions can be answered by performing a trailing analysis
that would determine the provenance of the result in question, where provenance
is defined as the process that led to a result.

To facilitate trailing analysis and particularly the ability to answer questions
related to the provenance of results, so called provenance questions, we introduce
the notion of process documentation. Process documentation is information that
describes a process that has occurred. To ensure that process documentation can
be created by multiple software components, across multiple institutions, in multi-
ple domains and then used in trailing analyses, we have developed a generic data
model for process documentation. This model facilitates the sharing of process doc-
umentation between institutions; it allows for the development of tools that work
across domains and applications and allows for the creation of future-proof pro-
cess documentation by independent application components running on a variety
of platforms. These properties have been evidenced by the model’s use in a variety
of domains, including healthcare [Kifor et al. 2006], fault tolerant systems [Townend
et al. 2005], aerospace engineering [Kloss and Schreiber 2006], and bioinformatics
[Groth et al. 2005; Miles et al. 2007].

This paper focuses on describing this generic data model, its contributions are
twofold:

(1) A precise conceptual definition of a generic data model for process documenta-
tion.

(2) An evaluation of the model with respect to a use case from the bioinformatics
domain.

Our previous work has focused on the architecture, performance, and uses of
provenance systems not on a detailed description of the data model that makes
these systems possible. Furthermore, while previous work has discussed an XML
instantiation of the data model, it has not described fundamental principles and
design rationale behind the data model. This paper describes a conceptual data
model for process documentation that is independent from any one implementation
or instantiation.

The rest of the paper is organised as follows. First, we motivate a generic data
model for process documentation and enumerate a number of non-functional re-
quirements that such a model should take into account. We then describe a bioin-
formatics mash-up that foreshadows the direction of future scientific and business
applications and enumerate a number of provenance questions that arise from it
[DeRoure 2007]. Next, the data model and the concepts that underpin it are pre-
sented with various examples given from the use case. A qualitative evaluation of
the data model with respect to the enumerated requirements and the use case’s
provenance questions is then given. Finally, we discuss related work and conclude.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

4 ·

2. DATA MODEL MOTIVATION

In the study of fine art, provenance refers to the documented history of a piece of
art. This documented history provides weight and authority to the piece and gives
scholars, collectors, and viewers a context with which they can understand the value
of the work. Without this documented history, the piece would have less value in
terms of its importance within the art community. This concept of provenance is
of practical use in computer systems. If the provenance of digital objects could
be determined like it can for some art pieces, then users could understand how
documents were produced, how simulation results were generated, and why business
decisions were made.

Just as the provenance of a work of art may include multiple owners, institutions,
and handlers, the provenance of a particular digital object may include processes
that occurred at different sites, at different institutions, and at different times.
Because these processes may be different in terms of domain focus, underlying
assumptions, and implementation technology, it is helpful to have a generic data
model for their documentation so that the provenance of results can be traced back
through these various interconnected processes.

Take the example of a mathematical calculation performed on some data, I,
from a database that produces a result R. This process is the composition of
two sub-processes: Process A, the mathematical calculation, and Process B, the
means by which I came into the database. The process documentation for Process
A would document actions of addition, subtraction, and formula evaluation. On
the other hand, the process documentation for Process B would document the
entry of I into the database, for example, by documenting who was responsible
for storing I in the database, what institution I was from, and whether I was
produced experimentally or was synthesised from publications. The documentation
for these two sub-processes differ in their level of detail and the kind of information
included. However, using a generic model, we can still obtain the provenance of R
that includes the whole of the process.

A model that is applicable to multiple processes could be generated on a case-
by-case basis. However, a number of benefits arise from a data model that is not
only generic but also shared across applications and application components. The
benefits of a generic, shared model of process documentation are enumerated below.

(1) Future proofing: It allows application developers to be sure that the process
documentation that their applications create today will be understandable by
future applications and usable with process documentation generated by those
applications. This is vital since today’s process documentation will be part of
the provenance of tomorrow’s results.

(2) Sharing: It allows different institutions to share their process documentation
without the need for conversion between models.

(3) Common tools: Using it, tools can be designed that allow for the visual-
isation, reasoning, and filtering of process documentation irrespective of the
domain.

(4) Independent creation: Using it, process documentation created indepen-
dently by application components can be integrated together, which allows

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 5

trailing analyses to be performed over unanticipated groupings of process doc-
umentation.

(5) Clear guidelines: Application developers may want their applications to cre-
ate process documentation, however, they may not know what data belongs
in process documentation and what the structure of it should be. A generic,
shared model provides a set of guidelines that help developer’s determine what
data should be part of process documentation and how that data should be
structured.

(6) Platform independence: Internet applications are often developed using a
variety of platforms (i.e. operating systems, programming languages, architec-
tures). Such a model allows for trailing analysis to be performed across process
documentation generated by application components running on any platform.

In this paper, we present a generic, shared model of process documentation
termed the p-structure.

3. REQUIREMENTS

To develop a data model that is both general and usable across applications, we took
into account a number of non-functional requirements derived from our analysis of
use cases from several domains [Miles et al. 2007]. These requirements will be
revisited in the evaluation section of the paper. These requirements are as follows:

(1) Factual Process documentation must be factual and not based on inferences,
so that it is interpreted as what happened in a system. Indeed, if process docu-
mentation were to be based on guesses or inferences, a user could not ascertain
whether the process characterised in the documentation actually occurred as
described.

(2) Attributable Process documentation must be attributable. If a user deems
that process documentation is somehow erroneous, the user must know who is
responsible for the creation of the documentation so that the party can be held
accountable.

(3) Autonomously Creatable The systems we consider consist of multiple com-
ponents in distributed settings. Therefore, each component should be able to
create process documentation at a convenient point in time without having
to synchronise with any other component. Furthermore, process documenta-
tion created in an autonomous manner should be able to be collated together
to present a complete representation of processes that occur across multiple
components.

Before detailing the p-structure, we introduce a concrete use case from the bioin-
formatics domain that will help illustrate the model’s concepts.

4. A BIOINFORMATICS USE CASE

4.1 Biology

Proteins are the essential functional components of all known forms of life; they
are linear chains of typically a few hundred building blocks taken from the same
set of about 20 different amino acids. Protein sequences are assembled following

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

6 ·

a code sequence represented by a polymer (mature messenger RNA). During and
following the assembly, the protein will curl up under the electrostatic interaction
of its thousands of atoms into a defined but flexible shape of typically 58 nm size.
The resulting 3D-shape of the protein determines its function.

Amino acids can be grouped together by their chemical or physical properties.
Those in the same group can often be substituted for one another in a protein
sequence and the sequence will, in many cases, fold in the same manner. The
ability to substitute amino acids is useful when trying to change or modify protein
function. The aim of the Amino acid Compressibility Experiment (ACE) is to find
other possible groups of amino acids that can be substituted for one another.

4.2 Experiment Description

In this experiment, it is assumed that protein sequences that occur in nature are
efficient, i.e. they use the least number of amino acids possible to represent their
function. Based on this assumption, a group is tested for interest by substituting
the amino acids specified by the group with a symbol representing the group and
then measuring the efficiency of the recoded sequence.The efficiency of a protein
sequence can be quantified in a computational setting through compression. If a
sequence compresses well then it is not efficient, whereas if the compression causes
little reduction then the sequence is efficient.The ACE, therefore, uses compression
to attempt to find possible groups of interest.

The workflow for the experiment is shown in Figure 1. It starts with the creation
of a sample, which is composed from individual sequences obtained from sequence
databases made available on the Web (see www.ebi.uniprot.org). This collation
provides enough data for the statistical methods employed by the compression
algorithms. The experiment requires that the samples be composed from dissim-
ilar sequences. This dissimilarity is determined by using a culling service such as
PISCES [Wang and R. L. Dunbrack 2003]. Once a sample is created, the symbols
in it are substituted with those of a given group (Encode). This recoded sequence is
then compressed with compression algorithms, e.g., gzip, bzip2 or ppmz, to obtain
the length of the compressed sequence (Compress). The Shannon entropy is then
computed on the recoded sequence to provide a standard for comparison (Compute
Entropy). This standard removes the influence of two factors from the calculation
of compressibility: the particular data encoding used to represent the groups, and
the non-uniform frequency of groups. From the results, an information efficiency
value is computed for the sample that is relative to both the compression method
and group coding employed and takes into account the size of the sample (Cal-
culate Efficiency). The information efficiency values for different groups can then
be plotted to find those that are largest and thus are good candidates for further
investigation.

Because there are a vast number of possible groups (roughly 474 trillion), for the
experiment to investigate a sufficiently sized sample, large scale computational re-
sources are necessary. Thus, the experiment is implemented using Grid technology
[Foster and Kesselman 1999] and is run using resources from multiple institutions.
Furthermore, scientific analysis is increasingly done using mash-ups [Butler 2006].
Thus, the ACE is a good example mash-up for the evaluation of the p-structure
because its reliance on services provided by multiple institutions where those insti-
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 7

Compute EntropyCompress

Calculate

Efficiency
Collate Sample

Sequence

Database

Workflow

Enactment

Engine

Encode

I1

I4

I2 I3

I5

I6
I7

I8 I9
I10

I11

I12

I1: collate sample request

I2: database request

I3: sequences

I4: collated sample response

I5: calculate efficiency request

I6: sample

I7: encoded sample

I8: encoded sample

I9: compressed sample

I10: encoded sample

I11: entropy

I12: information efficiency value

Fig. 1. ACE workflow.

tutions may dynamically change and the increasingly use of mash-up . For example,
data is provided by two different Web Services and computing is dynamically allo-
cated using the Grid. Whereas today’s consumer mash-ups rely on one or two Web
Services, future applications especially in business and science will require resources
from a variety of sources, which may in turn rely on other institutions to provide
their functionality. With its multi-step workflow, the ACE is an example of a future
mash-up.

4.3 Use Case Questions

The bioinformatician who developed the ACE posed several provenance questions,
which are enumerated below. These questions will be revisited in the evaluation of
our data model.

(1) What were the original sequences used in generating an information efficiency
value?

(2) Which institutions were involved in the production of a particular information
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

8 ·

efficiency value?

(3) What were the common steps in the production of two information efficiency
values?

(4) Were references or pointers used when documenting this experiment run?

5. CONCEPT MAPS

The above use case questions, as we will later show, can be answered using our
generic model of process documentation, the p-structure. We now present the
various concepts that underpin the p-structure using examples from the ACE. First,
we define a specific notion of process represented by the p-structure. Next, we detail
the data model and its constituent parts. After which, requirements on component
behaviour are defined. Finally, we describe how provenance can be determined from
process documentation organised using the model.

For each set of concepts, we provide a concept map [Novak 1998] that provides an
overview of the concepts and the relationships between them. Concept maps were
chosen for this article because they are designed for human consumption. Com-
puter parsable representations are available as XML [Munroe et al. 2006] and OWL
(http://www.pasoa.org/schemas/ontologies/pstruct025.owl). The concept maps,
shown in Figures 2, 3, 7 and 9, contain concepts represented by shaded rounded
rectangles and relationships linked by lines between concepts. The words in the
middle of a line denote the kind of relationship between the linked concepts. Maps
are read downward, or if an arrow is present, in the direction which the arrow
points. For example, the top portion of Figure 2 can be read as “Actors play a
role”, “Actors have communication endpoints”. In the text, we italicise the first
occurrence of concepts that appear in a concept map.

6. PROCESS

The concepts discussed in this section are summarised by Figure 2. Applications are
developed to address a variety of problems using different programming languages,
design approaches and execution environments. To represent this dynamic range of
situations, we take a particular perspective on all applications, which embraces the
principles of encapsulation and abstraction to enable process documentation to be
created at varying levels of detail while still preserving coherence across applications
and their components.

The perspective we take is to view applications as composed of entities, called ac-
tors, each of which represents a set of functionality within the application and inter-
act with other actors by the sending and receiving of messages through well-defined
communication endpoints. Such a view naturally fits with service oriented archi-
tectures, one of the primary software engineering approaches for complex multi-
institutional applications [Foster and Kesselman 2006]. The view also works well
with object-oriented, functional and process calculi approaches. Our decomposi-
tion of applications is conceptual and is not restricted to applications already based
on message passing. For example, as we view messages as information exchanged
by actors, two threads communicating by a shared memory can also be viewed as
actors.
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 9

Fig. 2. Concept Map describing process.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

10 ·

To aid developers in the mapping of their applications to this conceptual per-
spective, a software engineering methodology for the decomposition of applications
into actors has been created [Munroe et al. 2006]. For example, using this method-
ology, the ACE application was decomposed into actors that map to each step in
the workflow i.e. Encode, Collate Sample, Compress etc.. Actors represent a set of
functionality at some level of abstraction. This means that through the addition
of actors application functionality can be represented at a greater level detail. For
instance, some of the functionality encapsulated by the Calculate Efficiency actor is
represented in more detail by the Encode, Compute Entropy, and Compress actors.

When decomposing an application, specific communication endpoints are pin-
pointed and given an identifier which is called a message sink or message source
that respectively denote where messages enter and exit the actor. An actor may
have any number of endpoints; the only restriction is that they are clearly identi-
fied. For example, in a Web Services context, a message sink would be the endpoint
reference of an actor. Using communication endpoints, we define the boundary of
an actor, or its scope. The scope of an actor is all data reachable by an actor, where
reachability is derived from the eponym concept in memory management [Jones and
Lins 1996]. Concretely, data is reachable by an actor after it is received through
a message sink, before it is sent through a message source, after it is created by
the actor, and when it is being processed by the actor. We note that once data
transits through a message source (i.e. data is sent in a message), it is no longer
reachable by the actor. Thus, the scope defined here is not a static scope defined
by software components but a dynamic notion of scope in the space of execution.
As an illustration, an actor that represents a procedure would contain within its
scope not only all the inputs to the procedure and all the output data the procedure
returns, but also all the data it may read or store in memory.

From scope, we define the notion of being inside an actor. Data is said to be
inside an actor when it is part of a message that is an element of an actor’s scope.
Symmetrically, being outside an actor is defined as not being inside it.

We define inside and outside occurrence for an event in terms of the data the
event acts upon. Thus, if an event happens to data inside an actor, then the event
is said to occur inside the actor. Correspondingly, if an event happens to data
outside an actor, then the event said to occur outside the actor. Thus, both receive
and send events are inside an actor when the message being sent or received is also
inside that actor. For example, if we defined a Java Web Service, JWS, as an actor,
all of the Java executing code and data being accessed (such as messages received)
by that code would be inside JWS. On the other hand, data and code making up
other Web Services or being transmitted to JWS would be outside JWS.

Scope provides a mechanism that allows data or events to be located within an
application. However, a mechanism is also needed to express how events and data
are connected together to form a process within an application execution. Given
our message passing perspective, all data is contained within messages and the
basic events that we consider are the sending and receiving of messages. Therefore,
we define how these primitives are connected.

From distributed systems theory [Lynch 1996], the receipt of a message is caused
by the sending of that same message. According to Lynch, this relationship is
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 11

referred to as the “cause” relation and is part of Lamport’s “happened-before” re-
lation [Lamport 1978], which also considers the dependency between events within
an actor. Later, we will revisit causal connnections within actors. The combina-
tion of a send and receive event along with the message exchanged is termed an
interaction. Therefore, an interaction expresses both a causal connection between
a sending event and a receiving event as well as the contents of the message being
exchanged. Specifically, an interaction describes an external causal connection, a
logical connection formed where, for a given actor, the event inside the actor is
caused by an event outside the actor. An interaction matches this definition be-
cause the internal receive event is caused by a send event outside the receiving
actor. An example of an interaction is the sending of a database request from the
Collate Sample actor to the Sequence Database actor.

With respect to interactions, actors can also play different roles. An actor may
have the role of a sender of messages in one interaction and may play the role of a
receiver of messages in another. An interaction can have metadata associated with
it to help with the documentation of process. This metadata is usually embedded
within the message being exchanged typically in the message header. However, it
may be associated in some other manner. For example, metadata associated with
a message could be stored in a database keyed on a hash of the message. Actors
could then use a hash of the message to find and store metadata. Using metadata
associated with an interaction, a sender can share information with a receiver that
enables process documentation produced by these separate actors to be collated
together.

Specifically, a sender can generate a unique key for an interaction, termed an
interaction key, and send it to the receiver. Thus, the sender and receiver share
the same identifier for an interaction, which allows process documentation created
separately by these actors to be easily combined. An interaction key contains the
sender and receiver in the interaction identified by their message source and message
sink respectively as well as a field that distinguishes this interaction from any other
interaction happening between the same message source and sink. Together these
three pieces of information allow an interaction to be uniquely identified. Based on
the interaction key both the sending and receiving events can be identified by event
identifiers. As we later show, these identifiers are crucial to organising process doc-
umentation as they provide the central mechanism by which process documentation
is referenced (i.e. indexed) in the data model. Therefore, actors must exchange in-
teraction key metadata in some manner whether it is through embedding within
messages or some other mechanism. We assume that implementations sharing a
common instantiation of the data model (e.g. XML, OWL, or Java Objects) will be
able to extract interaction keys from metadata. We do not consider how metadata
defined outside the p-strucuture can be processed and emphasise that the meta-
data we do consider is not arbitrary but is there to support the documentation of
processes.

Interactions express the causal connection between the sending and receiving of a
message. However, they do not express the causal connection between the receiving
of a message and the sending of another message within the scope of an actor. While
Lamport’s “happened-before” relationship enables the expression of a partial order

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

12 ·

of events (i.e. sending and receiving) within an actor, it is not designed to provide
the causal information necessary to provide a detailed description of the provenance
of data [Lamport 1978]. First, it does not describe the causal connections between
data. Second, it does not provide the information as to how the sending of a
message by an actor is caused by the execution of some functionality within the
actor and this, in turn, is caused by the receipt of a set of messages.

We term the causal connection between the receiving of messages and the sending
of messages caused by an actor’s functionality a transformation.1 This causal con-
nection is termed an internal causal connection because the events being connected
are both inside the actor.

Consequently, in an application, the receiving of data by an actor may cause
a transformation to occur. This transformation may cause the sending of data,
which itself causes the receipt of data in another actor, which in turn may cause
a transformation and so on. Thus, a causally connected set of interactions and
transformations defines a process for which precise organised process documentation
can be created. We now describe a model, the p-structure, tied to this definition
of process.

7. PROCESS DOCUMENTATION

The concepts discussed in this section are summarised by Figure 3. Thus far, we
have discussed process documentation in the abstract. We now distinguish be-
tween the whole of process documentation and its individual parts. A p-assertion
is an assertion that is made by an actor and pertains to a process. Process doc-
umentation then consists of a set of p-assertions. Actors that create p-assertions
are termed asserters. We place a restriction on all asserters that they only create
p-assertions for events and data that are inside their scope. Thus, asserters only
create process documentation about what they know to be the case, which supports
the requirement of factuality. Furthermore, every p-assertion contains an asserter
identity. This is the identity of the responsible party or parties for the p-assertion.
Thus, the asserter identity will always contain the identity of the actor but may
also contain, for example, the identity of the owner of the actor.

We now define two p-assertions that can be used to document the causal connec-
tions previously discussed.

7.1 Interaction P-assertions

Interactions are represented by interaction p-assertions, which contain four parts:

(1) An asserter identity.
(2) An event identifier.
(3) A representation of the message exchanged in the interaction.
(4) A documentation style describing how the representation was generated.

1Our model of process does not allow sequences of connected transformations inside an actor. This

restriction ensures a simple decomposition rule: if more detail is needed about a transformation,

the actor must be decomposed into more actors. Furthermore, the introduction of transformation
sequences within an actor would necessitate the introduction of more primitives, thus, adding

complexity to the model.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 13

Fig. 3. Concept Map describing process documentation

As with all p-assertions the interaction p-assertion contains an assertor identity.
The event identifier uniquely identifies an event through a combination of a role
identifier and an interaction key. The role identifier denotes whether the actor
creating the p-assertion was the sender or receiver in the interaction and thus
whether the event being documented is the sending or receiving of a message.

The representation of the message contained in the interaction p-assertion often
contains an exact duplicate of the message, but, in some instances it may not be
feasible to have such a representation, for example, when the data being transferred
needs to remain anonymous to users of process documentation or is of a large

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

14 ·

size. In the ACE, this occurs when sequence sample data generated by the Collate
Sample actor is replaced with a reference to save storage space. To allow for these
cases while still preserving an accurate representation, we allow a message to be
transformed in a well-defined manner during the generation of a p-assertion, which
is termed styling the p-assertion. The styling that is performed is defined explicitly
by a documentation style. Causal dependencies are not tracked for these styling
transformations because they pertain to the creation of process documentation as
opposed to the production of application results. Likewise, the created p-assertions
are not seen as application data and are not in the scope of an actor.

Interaction p-assertions document both the data within applications as well as
the external causal connections between the actors within those applications.

7.2 Relationship P-assertions

Unlike interaction p-assertions, relationship p-assertions represent internal causal
connections between occurrences, which are defined as events or data items involved
in events. For example, in the ACE, an occurrence is the reception of an encoded
sample by the Encode actor. The data items in question can be entire messages
or parts of messages. To locate a part of a message within process documentation
data accessors are introduced, which are descriptions of how to find parts within p-
assertions that document messages. Therefore, an occurrence within a relationship
p-assertion is identified by locating the p-assertion where the event is documented
and, if necessary, a data accessor.

A relationship p-assertion identifies one or more occurrences that are causes and
one occurrence that is the effect of those causes. We limit a relationship p-assertion
to one effect to make it easier to find the provenance of a particular occurrence:
with this approach, there is no need to disambiguate which causes are associated
with a particular effect. The specific relationship between these causes and the
effect is described by a relation. The two types of causal relationships that are
allowed between occurrences are listed below:

(1) Structural. Relationships of this type describe the composition of a data item
from its constituent parts. They do not describe how a data item was composed
from other data items, only that there exists a causal dependency between
the data item and its parts. For example, one might want to express that a
particular sequence database is causally dependent on the sequences it contains.
If one of the sequences in the database changed then the database itself would
change. Relationships of this type can only be created between data items at
the same event.

(2) Transformational. This type of relationship describes, at some level of abstrac-
tion, a transformation and represents the internal causal connection from the
receiving to the sending of messages. For example, a transformational relation-
ship could represent the PPMZ compression algorithm applied to some input
data within a received message (cause) to get compressed data within a sent
message (effect).

Relationship p-assertions document both the data flow and control flow within
an actor and thus are critical to understanding the process within an application.
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 15

7.3 Levels of Abstraction

The combination of interaction p-assertions and relationship p-assertions provide
the information necessary to document processes. Furthermore, they allow process
documentation to be created at different levels of abstraction. Figure 4 shows the
documentation for the collation process of the ACE application at two different
levels of abstraction. Relationship p-assertions are shown by dotted arrow-capped
lines with labels. Interaction p-assertions are shown with solid-arrow capped lines
with labels. The arrows represent the direction of causation from cause to effect.

The left side of the figure shows documentation of the collation process at high
level of abstraction. It states that the collate sample response was generated from
the collate sample request. The relationship p-assertion provides an abstract de-
scription of the functionality the Collate Sample actor executed to achieve the
response from the request. This level of abstraction may be useful for some users
of process documentation who are interested in a “summary” of this activity. How-
ever, other users may need a more detailed picture of the collation process. To
provide such a view, the actors used by the Collate Sample actor can be exposed.
On the right hand side of the figure, process documentation is shown that includes
the Collate Sample actor using the Sequence Database actor. This documentation
states that on the receipt of a collate sample request, a set of sequences is retrieved
from the Sequence Database, which are then collated together in to the collate
sample response.

is caused by collated from

retrieved by

generated from

Collate Sample

Sequence

Database

Collate Sample

collate sample

response

collate sample

response

collate sample

request

collate sample

request

database

request sequences

Fig. 4. An example of documenting process at different levels of abstraction.

If even further detail is required, more actors can be exposed that model progres-
sively more detailed functional components within the application. No matter what
level of abstraction is required, process documentation for each level can coexist
and supplement one another to facilitate trailing analyses.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

16 ·

7.4 Internal Information P-assertions

We now discuss one final type of p-assertion that facilitates abstraction. It is often
the case that a piece of data plays an important role in a process but the manner
of its generation is not of interest. Examples of this include, the time, the memory
usage of an actor or the original configuration of an actor. All of these data items
can be represented using relationship p-assertions and interaction p-assertions. For
example, Figure 5(a) represents a time stamp on the sending of the collate sample
response. The retrieval of the time by the Collate Sample actor is one of the causes
of the sending of the response. Likewise, Figure 5(b) represents a time stamp on
the receipt of the collate sample request because the request causes the retrieval of
the time from the clock actor.

is caused by

retrieve time

time request time response

Clock

Collate Sample

generated from

collate sample

request

collate sample

response

(a) Modelling the time when a message
was sent.

is caused by

retrieve time

time request time response

Clock

Collate Sample

generated from

collate sample

request

collate sample

response

(b) Modelling the time when a message
was received.

Fig. 5. Modelling message send and receive times.

Using internal information p-assertions, the detail of how the time was obtained
can be abstracted away and we are left with just the time and its basic causal con-
nection to the process. An internal information p-assertion represents the receipt
of data by an actor from some other unidentified actor and is causally connected
to the sending or receiving of a message by the former actor. The causal connec-
tions represented by internal information p-assertions are different for sending and
receiving events and are as follows:

(1) Sending: The sending of a message is caused by the receipt of the data within
the internal information p-assertion.

(2) Receiving: The receipt of the data documented by an internal information p-
assertion is caused by the sending of a message to some unidentified actor which

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 17

is in turn caused by the receiving of another message. In this case, an internal
information p-assertion can only be made where the actor can determine that
such a causal chain exists.

We note that because internal information p-assertions represent the receipt of
messages they can be used to represent causes within relationship p-assertions.
Also, an actor can style the data during the creation of the internal information
p-assertion. Thus, an internal information p-assertion consists of three parts: the
data, the documentation style of the data, and the event identifier of the event to
which the data is causally connected. Internal information p-assertions allow data
items to be made explicit without, the sometimes unnecessary, overhead of creating
documentation for their generation. This is exemplified by Figure 6, which shows
how Figure 5 can be abstracted using internal information p-assertions.

generated from

collate sample

request

collate sample

response

receive

time

send

time

is caused by
is caused by

Fig. 6. Example of 5 abstracted using two internal information p-assertions.

7.5 The P-Structure

P-assertions contain the elements necessary to represent a process. However, with-
out some organisation it would be difficult to discover distinct processes within
process documentation. Therefore, we introduce the p-structure which is an or-
ganisation of p-assertions that provides several elements to help isolate, find, and
understand sets of p-assertions. The p-structure situates each p-assertion in a con-
tainer termed a view, which is identified by an event identifier. This means that
p-asssertions are grouped together by the event that they are most closely associ-
ated with. The associations for the three types of p-assertions are as follows.

—Interaction p-assertions are associated with the event they document as given by
event identifier within the interaction p-assertion.

—Relationship p-assertions are associated with the event identified in the effect
occurrence of the relationship p-assertion. This allows users of process documen-
tation to find the causes of a particular occurrence; once the occurrence is known
the relationship p-assertion documenting its causes can be found in the same
view.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

18 ·

—Internal information p-assertions are associated with the event that they are
causally related to. Again, this provides a way to easily find data that is funda-
mentally about a given occurrence because the data is in the same view as the
occurrence.

Each p-assertion within a view is given a local p-assertion id that, when com-
bined with the event identifier for the view, allows the p-assertion to be uniquely
identified within the p-structure. This combination is termed a global p-assertion
key. Because actors are only allowed to create p-assertions about events in their
scope, all the p-assertions in a given view will have been asserted by the same ac-
tor. Therefore, the common asserter identity shared between a view’s p-assertions
is also placed within the view.

Views also have a place for links, which point to the location of a p-assertion.
Typically, an actor creates a p-assertion and stores the p-assertion in some repos-
itory. Through links, the p-structure can reference p-assertions stored across mul-
tiple storage devices, which aids in their finding and retrieval. For example, each
component in ACE may store process documentation in a different repository.

Finally, the metadata that is associated with interactions is typically documented
using interaction p-assertions. Because this interaction metadata is helpful for
isolating and demarcating processes within process documentation, the p-structure
allows it to be extracted from p-assertions and placed inside a view as exposed
interaction metadata. Once there, the metadata can be easily found. We now look
briefly at one mechanism, tracers, that is metadata used to demarcate processes.
See Figure 7 for an overview.

Fig. 7. Concept Map describing tracers.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 19

Tracers are tokens associated with interactions that identify the larger process
that a particular interaction belongs to. Tracers distinguish or demarcate processes
from one another in process documentation by identifying a set of interactions,
typically involving several actors, that belong to a particular process. Actors can
inject, i.e. add, tracers into an interaction’s metadata. When an actor receives a
tracer metadata, it can propagate or not propagate the tracer to subsequent messages
that it sends. Injection and propagation are determined via tracer semantics, which
are identified in the token. An actor has a choice as to whether it chooses to make
use of tracers. When exposed interaction metadata contains a tracer, it is known
that interaction documented was part of the process identified by the tracer. Thus,
tracers assist in identifying particular processes within process documentation.

Given our interaction-centric perspective, the p-structure logically groups to-
gether the two views that document an interaction into what we term an interaction
record. By a logical grouping, we mean that two views are associated with each
other by a shared interaction key. The views themselves may be stored in different
repositories or locations. The grouping of views into interaction records has the
added benefit of collating together process documentation created by independent
actors. The p-structure then contains a set of these interaction records.

Figure 8 shows an example of a p-structure. The portions of the interaction
records shown contain the documentation for the encoding of the collated sample.
Each large square is an interaction record labelled with the interaction key and label
from Figure 1 of the interaction it represents. The label is in the upper-right hand
corner of the square. The interaction key is shown by the name of the actor sending
the message (acting as a message source) followed by an arrow pointing to the name
of the actor receiving the message (acting as a message sink). Each p-assertion in
Figure 8 is also followed by its local p-assertion identifier in parenthesis. The
following abbreviations are used in the Figure: pa denotes p-assertion, ik denotes
interaction key, lpid denotes local p-assertion identifier, da denotes data accessor.

8. ACTOR BEHAVIOUR

P-assertions are created autonomously by actors that document the items within
their scope. However, the p-structure does rely on actors following three rules that
allow p-assertions to be correctly collated. These rules revolve around the correct
creation and usage of interaction keys. They are as follows:

Unique Interaction Key Rule A sender asserting actor (i.e. a sender in
the role of an asserting actor) must assign a globally unique interaction key to an
interaction.

There are many ways actors can obtain interaction keys. For example, an actor
could generate an interaction key itself or obtain an interaction key from a naming
service. The interaction key assigned to an interaction by a sender must be passed
to the receiver in an interaction so that the receiver may also create p-assertions
about the same interaction. For example, by passing the interaction key in a
message header. To guarantee that this takes place, we introduce the interaction
key transmission rule.

Interaction Key Transmission Rule A sender asserting actor must make
the interaction key it assigns to an interaction available to the receiver in that

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

20 ·

Receiver View

internal information pa (2)

 receive time = 9:05:82

interaction pa (1)

 documentation style =

 standard

 message

 tracer = efficiencyTracer1

 collated sample =

 MVKLNFSL...

 group =

 n:MSN,o:LK,p:FS,q:V

 Encode Calculate

Efficiency

exposed interaction

metadata

 tracer = efficiencyTracer1

assertor

 IAM Group / Peter Smith /

 Encode Actor

I6

Sender View

relationship pa (2)

 effect
 ik = Encode ->

 Calculate Efficiency I7

 view = sender

 lpid = 1

 da = /recoded sample

 relation = encoded from

 cause
 ik = Calculate Efficiency

 -> Encode I6

 view = receiver

 lpid = 1

 da = /collated sample

 cause

 ik = Calculate Efficiency

 -> Encode I6

 view = receiver

 lpid = 1

 da = /group

Calculate Efficiency Encode

interaction pa (1)

 documentation style =

 reference

 message

 tracer = efficiencyTracer1

 recoded sample =

 file://exp1/recode.sam

Receiver View

internal information pa (2)

 receive time = 9:05:82

interaction pa (1)

 documentation style =

 reference

 message

 tracer = efficiencyTracer1

 recoded sample =

 file://exp1/recode.sam

...

exposed interaction

metadata

 tracer = efficiencyTracer1

assertor

 IAM Group / Peter Smith /

 Compute Entropy Actor

I7

Fig. 8. An example of the contents of a p-structure that documents the interactions I6 and I7
from Figure 1.

interaction.
In order for the provenance of a piece of data to be retrieved, p-assertions must be

associated with a particular interaction. The appropriate interaction rule governs
how p-assertions should be associated with a particular interaction.

Appropriate Interaction Rule An asserting actor must use the interaction
key associated with an interaction, I, when asserting p-assertions about I.

These rules are simple and have been kept to a minimum so that actors can create
process documentation as independently as possible.

9. PROVENANCE

The concepts discussed in this section are summarised by Figure 9. Thus far we
have discussed how to create and organise documentation of an application’s past
processes. We now discuss how that documentation can be used to find the prove-
nance of occurrences.

The documentation generated by an application will encompass many different
events and data items. However, in the case of provenance, only the process leading
to a selected event or data item is of interest. Therefore, it is necessary to extract
a particular set of p-assertions from the p-structure which together describe that
process (i.e. the provenance of that occurrence). In Section 6, we described a
process as a set of causally connected interactions and transformations. These
interactions and transformations are described by p-assertions. Starting from a
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 21

Fig. 9. Concept Map describing provenance.

particular occurrence, its causes can be obtained from the p-assertions where it is
documented. Once these causes have been obtained, their causes can also be ob-
tained from the process documentation and so on until the extraction mechanism
is finished. Thus, a graph of causal connections leading back to a particular oc-
currence can be extracted from the p-structure. Such a causality graph describes
the provenance of an occurrence. Different forms of causality graphs can be ex-
tracted from the p-structure depending upon usage. Here, we use a simple form for
illustration purposes.

Figure 10 shows the provenance of an information efficiency value. The nodes
in the graph are occurrences, in the role of causes, effects or both. The edges in
the graph are hyper edges and represent the causal connections extracted from
relationship p-assertions. All arrows on the edges point from effect to cause. The
external causal connections represented by interaction p-assertions are collapsed
into the numbers shown to the bottom right of each node. These numbers map to
the interactions shown in Figure 1. Internal information p-assertions are shown as
annotations connected to the interactions by double-arrow headed lines. To save
space, not all of these p-assertions are shown. The relationship p-assertions shown
in Figure 8 are found in this figure.

Figure 10 evinces the claim that the provenance of an occurrence can be explained
at different levels of detail. For example, the edge labelled as efficiency calculation
from abstracts the six nodes and seven hyper edges to its left.

10. EVALUATION

In prior work, we identified three core components of an architecture for determining
the provenance of data produced by dynamic systems [Miles et al. 2007]. The first
component is the recording of process documentation into the a separate repository,
called a provenance store. The second component is the querying of stored process

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

22 ·

information

efficiency

value

compressed

sample
entropy

calculated on compressed
version of

encoded

sample

collated

sample

response

sequences

collated from

database

request

retrieved by

collate

sample

request

is caused by

sample

calculate

efficiency

request

is caused by

is contained
in

calculated
from

I12

I9I11

I7

I6

I5

encoded

sample

encoded

sample

encoded from

same assame as
I10 I8

I4

I3

I2

I1

generated from

efficiency
calculation

from

Institution 2

Institution 2

Institution 1

Institution 1

group

I6

Fig. 10. Causal graph describing the provenance of an information efficiency value.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 23

documentation to determine the provenance of a data item. The third component
is the data model that enables the separation of concerns between the recording
and querying components of the architecture.

Prior work presented the design, implementation and evaluation of both the
recording and querying components. The recording component’s implementation
and performance has also been presented elseswhere [Groth et al. 2005; Simmhan
et al. 2006]. Likewise, the querying component has been evaluated in a number
of domains including including organ transplant management [Kifor et al. 2006],
aerospace simulation [Kloss and Schreiber 2006], fault tolerant systems [Townend
et al. 2005], and bioinformatics [Miles et al. 2007].

In this paper, we detail and evaluate the data model component of the archi-
tecture. Our evaluation of the data model consists of analysis of how the data
model fulfils the initial requirements presented in Section 3 and a description of
how the data model can be used to address the four use case questions from the
ACE mash-up. We begin by addressing the initial requirements.

(1) Factual This requirement is the basis of our notion of actors and thus is at
the core of our data model. If application developers follow the data model
specification, actors will only assert what is in their scope and thus process
documentation will be factual. Furthermore, we can detect when actors have
conflicting views of the messages they exchange in interactions. This encourages
actors to create factual documentation.

(2) Attributable The requirement of attribution is supported through each p-
assertion containing an asserter identity. Therefore, users of process documen-
tation can identify who is responsible for a particular p-assertion and hold them
to account for any information contained within the p-assertion. Cryptographic
techniques such as digital signatures can be used to ensure that asserter iden-
tities are accurate and correctly associated with p-assertions. A more detailed
discussion of the use of such security primitives is outside the scope of this
paper. However, a complete discussion can be found in Tan et al. [Tan et al.
2006].

(3) Autonomously Creatable Actors can create p-assertions in an autonomous
manner through the use of sender generated interaction keys. Because the
interaction key is a tuple based on information the sender has, the sender can
guarantee its uniqueness without external dependencies. Thus, once an actor
has either created or received an interaction key (via metadata which typically
can be passed in message headers), it can then create p-assertions about that
interaction without contacting an outside entity and at the time of its choosing.

Having shown how our original requirements are addressed by the p-structure,
we now show how the use case provenance questions can be answered using process
documentation organised by the p-structure. First, we briefly discuss how process
documentation is created in ACE and how it can then be retrieved.

Each workflow component (Collate Sample, Compress, Calculate Efficiency) rep-
resents an actor and is responsible for creating the interaction, relationship, and
internal information p-assertions necessary to document its portion of the process.
Collate Sample was implemented as a Java based Web Service. Compress and Cal-
culate Efficiency were run as jobs on the Grid. The actors create p-assertions for

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

24 ·

incoming messages either from external or internal components and then create re-
lationship p-assertions connecting incoming and outgoing messages. After creation,
process documentation can be recorded into a provenance store. There are two in-
dependent but compatible provenance stores [Ibbotson and Jiang 2006; Groth et al.
2005] that make use of an XML instantiation of the p-strucuture [Munroe et al.
2006] . Both implementations of provenance stores currently available offer XQuery
[Boag et al. 2006] and a provenance specific graph traversal query function [Miles
2006]. Using these query mechanisms, the use case questions were answered. We
used the PReServ provenance store in our tests [Groth et al. 2005].

(1) What were the original sequences used in generating an informa-
tion efficiency value? To find the answer to this question, the provenance of
the particular information efficiency value needs to be known. The following is a
simplified algorithm for finding the provenance of a given occurrence, in this case
it would be a particular information efficiency value.

(1) All the relationship p-assertions where a given occurrence, X, was an effect are
found.

(2) From these relationship p-assertions, all the occurrences that were the causes
of the effect can be found.

(3) For each of the occurrences found in Step 2, find the provenance of those items
using this algorithm.

This algorithm runs until there are no more relationship p-assertions and the entire
causality graph for the information efficiency value is generated as shown in Figure
10. Then it is a matter of locating the relationship p-assertion of interest, which in
this case is the p-assertion that has the relation “collate sample from”, the causes
identified in the p-assertion would be the original sequence. Even though the process
documentation that contains the provenance of the information efficiency value was
created by different actors, the p-structure allows the process documentation to be
brought together enabling the provenance of the value to be determined.

(2) Which institutions were involved in the production of a particular
information efficiency value? Because the ACE is performed in a dynamic
multi-institutional environment, the bioinformatician would like to know what in-
stitutions participated. The p-structure allows p-assertions produced by multiple
institutions to be collated together. Once process documentation has been assem-
bled, this question can be answered in the same manner as the previous question,
however, in this instance, the data held within internal information p-assertions
is used. At every node in the causal graph, the internal information p-assertion
can be found that contains the institution name. This is made possible because
each internal information p-assertion is contained in a view, which connects the
p-assertion to an interaction and to the actor who created it. The institution name
was modelled as an internal information p-assertion because the data is important
but not how the data was obtained by the actor.

(3) What were the common steps in the production of these two in-
formation efficiency values? To answer this question, a notion of a process
that can be differentiated from other processes is required. For example, computa-
tions that collate sequences into a sample are often part of the production of several
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 25

information efficiency values. Knowing the provenance of the results of multiple ex-
perimental runs and being able to differentiate and compare them is fundamental
to answering this question.

Therefore, the solution to this question involves finding the provenance of each
information efficiency value, which generates two causal graphs. The common in-
teractions between these two causal graphs are then found by comparing the inter-
action keys of the interactions. These interactions are the common steps asked for
in the use case. Using tracers, we can then determine if the interactions belong to
larger processes.

(4) Were references or pointers used when documenting this experi-
ment run? When ACE creates process documentation, the bioinformatician often
wants to know if it contains the actual application data or just references (file paths
or URLs) to those data items. If the documentation of the run contains the actual
data, less work is necessary to analyse the data because it is in one place. Further-
more, the bioinformatician might have moved, deleted or modified his original data
mistakenly or on purpose. Thus, the knowledge, as to whether the documentation
of a particular experiment contains original data, can inform the bioinformatician
about the types of trailing analysis that can be performed. Our data model for pro-
cess documentation takes this concern into account by using documentation styles
to label p-assertions that contain references.

Therefore, the solution to this use case relies on documentation styles. First,
the provenance of a particular experiment run is found, then for every interaction
p-assertion contained in the returned causality graph, the documentation style is
retrieved. If the style retrieved is a reference documentation style, an identifier
for the corresponding interaction p-assertion can be returned demonstrating that
references were used in the run.

Each of these provenance questions was answered through the extraction of a
causality graph from process documentation enabled by the p-structure. More-
over, the extra facilities provided by the p-structure such as documentation styles
were necessary to answer some of the provenance questions. Lastly, the various ap-
proaches used to answer these questions are reusable in applications across domains
and have been integrated into common web-based tools [Deora et al. 2006].

11. RELATED WORK

The subject of provenance has not gone without notice in the literature. Under the
heading of lineage, Bose and Frew present a comprehensive overview of provenance
related systems [Bose and Frew 2005]. Likewise, Simmham et al. give a survey of
provenance in the domain of e-Science [Simmhan et al. 2005]. A compilation of the
current state of the art is given by Moreau and Foster [Moreau and Foster 2006].
From an analysis of these works, we assert that the focus of provenance research
has been on the implementation of concrete systems for provenance in the context
of either specific domains (i.e. geographic information systems, chemistry, biology)
or technologies (i.e. databases). In contrast, this work focuses on a conceptual
organisation of process documentation independent of technology or domain.

Work in the database community has focused on the data lineage problem, which
can be summarised as: given a data item, determine the source data used to produce

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

26 ·

that item. Cui et al. present a number of algorithms for determining the lineage
of data in relational databases [Cui et al. 2000] and data warehouse environments
[Cui and Widom 2003]. Buneman et al. also develop a formal model of provenance
for database systems that applies to both hierarchical and relational databases
[Buneman et al. 2001]. Our data model differs from these approaches because it
can be used to represent processes that occur both inside and outside database
environments.

In the e-Science community, work has focused on provenance for workflow-based
environments. For example, Zhao et al. present a model for provenance in the
Virtual Data System (VDS), which uses the workflow graph to tie together various
data elements recorded during the execution of the workflow [Zhao et al. 2006]. The
benefits of this approach over the p-structure is that information stating causal de-
pendencies is inferred from the workflow and thus must not be created by the actors
within the workflow. However, because a workflow is a plan and not what actually
occurred, there exists the possibility that users will make use of causal connections
that were not actually present in the running system. The p-structure also differs
from workflow centric systems like VDS, myGrid [Zhao et al. 2003], and Kepler
[Altintas et al. 2006] in that it supports any type of execution environment. For
example, process documentation compatible with the p-structure can be generated
by Java programs, shell scripts or workflow enactment engines.

Developments in the Semantic Web community have concentrated on adding
annotations to Resource Description Framework (RDF) graphs that describe the
provenance of the nodes of the graph [Carroll et al. 2005; Futrelle 2006]. As with
the other systems presented, these approaches are technology dependent as they
rely wholly on RDF. Comparatively, the p-structure, because of its conceptual
definition, can be represented using multiple technologies including RDF.

Our approach differs from all of these systems in that it conceptually separates
the documentation of a process and finding the provenance of an item from that
documentation. This distinction is vital because it allows the results returned form
provenance queries to evolve and become more comprehensive as more documenta-
tion is created.

The notion of solving problems through the analysis of a documentation of execu-
tion in a distributed environment resembles work in distributed debugging [Bates
1995; Ho and Hand 2005]. However, these systems are designed to help debug
distributed programs not to answer questions at a user level. The p-structure’s
support of multiple levels of abstraction means that the answers to questions are
not restricted to a programatic or code level. Aguilera et al. present a distributed
debugging solution that divides distributed systems into black-boxes and infers the
causality between the receiving and sending of messages [Aguilera et al. 2003]. This
approach is similar to ours with its emphasis on causality and the division of appli-
cations into functional components. However, unlike our approach, theirs relies on
inferences. This is beneficial in that applications do not need to be modified but
makes the enforcement of attribution difficult. Furthermore, they focus on improv-
ing the performance of distributed systems whereas our approach is designed for
finding the provenance of data and events.

Finally, our approach is designed to work in an environment where applications
ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 27

can be dynamically composed from a variety of services. Thus, we briefly describe
work in service composition. One technique to compose services is to explicitly
combine them using a workflow description language such as BPEL4WS [Curbera
et al. 2003]. Another mechanism to support service composition is the markup of
Web Services with semantic annotations of their interfaces, which specify both the
capabilities of the service as well as the functioning of the service (i.e. data flow,
preconditions and effects) in a machine understandable fashion [Martin et al. 2007].
These annotations can be used for the translation between heterogeneous services
[Szomszor et al. 2006] or for the automated construction of service workflows to
meet a high-level goal [McIlraith and Son 2002]. Recent work has looked at the
flexible provisioning of Web Services in unreliable environments [Stein et al. 2008].
The above work focuses on what we referred to at the beginning of this article as
prospective processes. They are designed to facilitate the construction or execution
of processes. Our work, on the other hand, is designed to represent past processes
to facilitate their validation and analysis after the fact. However, we conjecture
that process documentation could be used as a valuable source of information for
the construction of workflows as well as the description of services.

12. CONCLUSION

As more complex mash-ups are developed that use resources that are dynamically
allocated across multiple cooperating institutions, the ability to perform analyses
after the fact becomes increasingly important. In such dynamic environments, users
cannot predict how an application will execute. Therefore, users need a mechanism
by which they can perform trailing analyses which enable them to understand how
their results were produced.

In this paper, we proposed that such trailing analyses should be performed over
process documentation organised using a generic data model to facilitate interoper-
ability and sharing. Therefore, we have defined the concepts that comprise a generic
data model for process documentation, the p-structure. This description included
several concept maps which unambiguously summarise the various concepts under-
pinning the data model and the relationships between them. The p-structure was
qualitatively evaluated with respect to four provenance questions from a bioinfor-
matics use case. These four questions were answered from process documentation
organised by the p-structure. The data model supports the autonomous creation
of factual, attributable process documentation by separate, distributed application
components.

In the future, we aim to interoperate with other systems through the expansion
of the number of p-structure representations available and by continuing our in-
volvement with the Provenance Challenge [Miles et al. 2007]. One outcome of this
interoperability is that provenance represented in our model could used as input to
trust calculation algorithms [Golbeck and Hendler 2006; Golbeck 2006]. We have
already developed a provenance-aware RSS prototype, which we will combine with
these trust algorithms to provide trust measurements for RSS feeds. Finally, we will
continue to expand the use of the p-structure in a variety of applications including
more consumer focused mash-ups.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

28 ·

REFERENCES

Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., and Muthitacharoen, A. 2003.
Performance debugging for distributed systems of black boxes. In SOSP ’03: Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles. ACM Press, New York, NY,

USA, 74–89.

Altintas, I., Barney, O., and Jaeger-Frank, E. 2006. Provenance collection support in the

kepler scientific workflow system. In International Provenance and Annotation Workshop,

IPAW 2006, L. Moreau and I. Foster, Eds. Lecture Notes in Computer Science, vol. 4145.
Springer-Verlag, 118–132.

Bates, P. C. 1995. Debugging heterogeneous distributed systems using event-based models of

behavior. ACM Transactions on Computer Systems 13, 1, 1–31.

Boag, S., Chamberlin, D., Fernndez, M. F., Florescu, D., Robie, J., and Simon, J. 2006.

Xquery 1.0: An xml query language. Tech. rep., World Wide Web Consortium.

Booch, G. 1999. Uml in action. Communications of the ACM 42, 10, 26–28.

Bose, R. and Frew, J. 2005. Lineage retrieval for scientific data processing: a survey. ACM

Computing Surveys 37, 1, 1–28.

Buneman, P., Khanna, S., and Tan, W. 2001. Why and where: A characterization of data

provenance. In Int. Conf. on Databases Theory (ICDT). Lecture Notes in Computer Science,

vol. 1973. Springer-Verlag, 316.

Butler, D. 2006. Mashups mix data into global service. Nature 439, 6–7.

Carroll, J. J., Bizer, C., Hayes, P., and Stickler, P. 2005. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World Wide Web.

ACM Press, New York, NY, USA, 613–622.

Cui, Y. and Widom, J. 2003. Lineage tracing for general data warehouse transformations. The
VLDB Journal 12, 1, 41–58.

Cui, Y., Widom, J., and Wiener, J. L. 2000. Tracing the lineage of view data in a warehousing

environment. ACM Trans. Database Syst. 25, 2, 179–227.

Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and Weerawarana, S. 2003. The next step in

web services. Communications of the ACM 46, 10, 29–34.

Dean, T. 1996. Automated planning. ACM Computing Surveys 28, 1, 85–87.

Deora, V., Contes, A., Rana, O. F., Rajbhandari, S., Wootten, I., Tamas, K., and Z.Varga,

L. 2006. Navigating provenance information for distributed healthcare management. In
IEEE/WIC/ACM Web Intelligence Conference. 859–865.

DeRoure, D., Ed. 2007. Web 2.0 and Grids Workshop at OGF19.

http://www.semanticgrid.org/OGF/ogf19/.

Foster, I. and Kesselman, C., Eds. 1999. The Grid: Blueprint for a New Computing Infras-

tructure, 1st Edition ed. Morgan Kaufmann Publishers, Inc.

Foster, I. and Kesselman, C. 2006. Scaling system-level science: Scientific exploration and it
implications. IEEE Computer 39, 11 (Nov.), 31–39.

Futrelle, J. 2006. Harvesting rdf triples. In International Provenance and Annotation Work-
shop, IPAW 2006, L. Moreau and I. Foster, Eds. Lecture Notes in Computer Science, vol. 4145.

Springer-Verlag, 64–72.

Golbeck, J. 2006. Combining provenance with trust in social networks for semantic web content
filtering. In International Provenance and Annotation Workshop, IPAW 2006, L. Moreau and

I. Foster, Eds. Lecture Notes in Computer Science, vol. 4145. Springer-Verlag, 101–108.

Golbeck, J. and Hendler, J. 2006. Inferring binary trust relationships in web-based social
networks. ACM Transactions on Internet Technology 6, 4, 497–529.

Groth, P., Miles, S., Fang, W., Wong, S. C., Zauner, K.-P., and Moreau, L. 2005. Recording

and using provenance in a protein compressibility experiment. In Proceedings of the 14th IEEE
International Symposium on High Performance Distributed Computing (HPDC’05).

Groth, P., Miles, S., and Moreau, L. 2005. PReServ: Provenance Recording for Services. In
Proceedings of the UK OST e-Science second All Hands Meeting 2005 (AHM’05). Notting-

ham,UK.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

· 29

Ho, A. and Hand, S. 2005. On the design of a pervasive debugger. In AADEBUG’05: Proceedings

of the sixth international symposium on Automated analysis-driven debugging. ACM Press,
New York, NY, USA, 117–122.

Ibbotson, J. and Jiang, S. 2006. D9.3.3: Final Functional Prototype. Tech. rep., IBM United

Kingdom. Nov.

Jones, R. and Lins, R. 1996. Garbage Collection. Algorithms for Automatic Dynamic Memory

Management. Wiley.

Kifor, T., Varga, L. Z., Vzquez-Salceda, J., lvarez, S., Willmott, S., Miles, S., and
Moreau, L. 2006. Provenance in agent-mediated healthcare systems. IEEE Intelligent Sys-

tems.

Kloss, G. K. and Schreiber, A. 2006. Provenance implementation in a scientific simulation

environment. In International Provenance and Annotation Workshop (IPAW), L. Moreau and
I. Foster, Eds. Lecture Notes in Computer Science, vol. 4145. Springer-Verlag, 37–46.

Lamport, L. 1978. Time, clocks and the ordering of events in a distributed system. Communi-

cations of the ACM 21, 7 (July), 558–565.

Lavana, H., Khetawat, A., Brglez, F., and Kozminski, K. 1997. Executable workflows: a

paradigm for collaborative design on the internet. In DAC ’97: Proceedings of the 34th annual

conference on Design automation. ACM Press, New York, NY, USA, 553–558.

Lynch, N. 1996. Distributed Algorithms. Morgan Kaufmann Publishers. page 460.

Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,

McGuinness, D., Sirin, E., and Srinivasan, N. 2007. Bringing semantics to web services
with owl-s. World Wide Web Journal 10, 3 (September), 243–277. Special Issue: Recent

Advances in Web Services.

McIlraith, S. and Son, T. 2002. Adapting golog for composition of semantic web services. In
Proceedings of the Eighth International Conference on Knowledge Representation and Reason-

ing (KR2002). Toulouse, France, 482–493.

Miles, S. 2006. Electronically querying for the provenance of entities. In International Provenance
and Annotation Workshop (IPAW), L. Moreau and I. Foster, Eds. Lecture Notes in Computer

Science, vol. 4145. Springer-Verlag, 37–46.

Miles, S., Groth, P., Branco, M., and Moreau, L. 2007. The requirements of using provenance
in e-science experiments. Journal of Grid Computing 5, 1, 1–25.

Miles, S., Groth, P., Munroe, S., Jiang, S., Assandri, T., and Moreau, L. 2007. Extracting

causal graphs from an open provenance data model. Concurrency and Computation: Practice

and Experience. to appear.

Miles, S., Wong, S. C., Fang, W., Groth, P., Zauner, K.-P., and Moreau, L. 2007.

Provenance-based validation of e-science experiments. Journal of Web Semantics: Science,

Services and Agents on the World Wide Web 5, 28–38.

Moreau, L. and Foster, I., Eds. 2006. Provenance and Annotation of Data — International

Provenance and Annotation Workshop, IPAW 2006. Lecture Notes in Computer Science, vol.

4145. Springer-Verlag.

Munroe, S., Groth, P., Jiang, S., Miles, S., Tan, V., and Moreau, L. 2006.

Data model for process documentation. Tech. rep., University of Southampton.

http://eprints.ecs.soton.ac.uk/13200/.

Munroe, S., Miles, S., Moreau, L., and Vazquez-Salceda, J. 2006. PrIMe: A Soft-

ware Engineering Methodology for Developing Provenance-Aware Applications. In Pro-

ceedings of Sixth International Workshop on Software Engineering and Middleware (SEM
06). ACM Digital, Portland, Oregon, 8. Published electronically by ACM Digital at

http://portal.acm.org/toc.cfm?id=1210525.

Novak, J. D. 1998. Learning, Creating, and Using Knowledge: Concept Maps As Facilitative
Tools in Schools and Corporations. LEA, Inc.

Simmhan, Y. L., Plale, B., and Gannon, D. 2005. A survey of data provenance in e-science.

SIGMOD Record 34, 3, 31–36.

Simmhan, Y. L., Plale, B., Gannon, D., and Marru, S. 2006. Performance evaluation of

the karma provenance framework for scientific workflows. In International Provenance and

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

30 ·

Annotation Workshop, IPAW 2006, L. Moreau and I. Foster, Eds. Lecture Notes in Computer

Science, vol. 4145. Springer-Verlag.

Stein, S., Payne, T. R., and Jennings, N. R. 2008. Flexible provisioning of web service work-
flows. ACM Transactions on Internet Technology 8.

Szomszor, M., Payne, T. R., and Moreau, L. 2006. Automated syntactic medation for web ser-

vice integration. In Proceedings of IEEE International Conference on Web Services (ICWS’06).
Chicago, USA.

Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., and Moreau, L. 2006. Se-

curity issues in a soa-based provenance system. In Proceedings of the International Provenance

and Annotation Workshop (IPAW’06). Springer-Verlag, Chicago, Illinois.

Townend, P., Groth, P., and Xu, J. 2005. A provenance-aware weighted fault tolerance scheme

for service-based applications. In Proc. of the 8th IEEE International Symposium on Object-

oriented Real-time distributed Computing (ISORC 2005). IEEE Computer Society, 258–266.

Wang, G. and R. L. Dunbrack, J. 2003. Pisces: a protein sequence culling server. Bioinformat-
ics 19, 1589–1591.

Zhao, J., Goble, C., Greenwood, M., Wroe, C., and Stevens, R. 2003. Annotating, link-

ing and browsing provenance logs for e-science. In Proc. of the Workshop on Semantic Web

Technologies for Searching and Retrieving Scientific Data.

Zhao, Y., Wilde, M., and Foster, I. 2006. A virtual data provenance model. In International

Provenance and Annotation Workshop, IPAW 2006, L. Moreau and I. Foster, Eds. Lecture

Notes in Computer Science, vol. 4145. Springer-Verlag.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2007.

