
38	 This article has been peer-reviewed.� Computing in Science & Engineering

1521-9615/08/$25.00 © 2008 IEEE

Copublished by the IEEE CS and the AIP

C o m p u t a t i o n a l
P r o v e n a n c e

Provenance: The Bridge
Between Experiments and Data

Simon Miles
King’s College London
Paul Groth, Ewa Deelman, Karan Vahi,
and Gaurang Mehta
University of Southern California
Luc Moreau
University of Southampton

Scientific applications are often structured as workflows compiled from abstract experiment
designs. However, the automation of the compilation step often hides details about how
results were produced. The authors investigate how provenance helps scientists connect
their results with the original experiment’s formulation.

M ore than ever before, managing
data today is increasingly difficult
in the scientific and business do-
mains. Many projects such as the

Laser Interferometer Gravitational Wave Obser-
vatory1,2 and the Earth System Grid3 are collect-
ing petabyte-scale data sets. For this data’s users,
however, interpretation issues aren’t related only
to raw data descriptions but also to the description
of the derived data products and the processes
that created them. An additional complexity is in-
troduced by execution systems, which can be very
heterogeneous and distributed across many loca-
tions. To understand data, scientists must there-
fore be able to interpret metadata about it as well
as its provenance (how the data came to be).

The latest trend is to use workflow technologies
to manage data processing. Scientific workflows

describe computations, their parameters, I/O
data, and data or control dependencies between
them, and software systems manage these work-
flows by following dependencies and executing
computations on the desired data. Workflow tech-
nologies not only help automate complex scientific
analyses, but they also provide the opportunity to
capture transformations performed on the data.

To illustrate the complexity of today’s analy-
ses, we examine a popular astronomy application,
called Montage,4 which produces science-grade
mosaics of the sky on demand. We can structure
this application as a workflow that takes several
images, projects them, adjusts their backgrounds,
and adds the images together. A mosaic of 6-
degrees square would involve processing 1,444
input images, require 8,586 computational steps,
and generate 22,850 intermediate data products.
To verify the final mosaic’s quality, a scientist
might need to check that, for the workflow that
produced the mosaic, a particular input image
was retrieved from a specific archive, that the pa-
rameters for the reprojections were correctly set,
that the execution platforms didn’t include pro-
cessors with a known floating-point processing
error, and so on.

Given the complexity of workflows with thou-
sands of computational steps, possibly executing
across multiple distributed resources, it’s infeasi-

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

May/June 2008 � 39

ble for users to directly define an executable work-
flow. Resources are often shared with other users
and might become suddenly unavailable because
of network failures or policy changes. Thus, re-
searchers often use workflow compilers such as Peg-
asus5,6 to generate an executable workflow based
on a high-level, resource-independent descrip-
tion of the end-to-end computation (a so-called
abstract workflow). This approach gives scientists a
computation description that’s portable across ex-
ecution platforms and that can be mapped to any
number of resources. However, additional work-
flow mapping can also increase the gap between
what users define and what the system actually
executes, thus complicating result interpretation
by dropping the connection between the results
and the original experiment.

We present a solution that not only describes
how computations were executed but also how
they were generated and how they relate to the
scientist-provided description. In particular, we
focus here on the broad principles behind our
approach and its benefits for scientist users; a
preliminary paper with a prototype-based perfor-
mance evaluation appears elsewhere.7 Specifically,
we augment the compilation of workflows by Peg-
asus and their subsequent enactment by Condor
DAGMan by recording the steps taken and the
connections between them. This augmentation,
using technology from the Provenance-Aware
Service Oriented Architecture (PASOA; www.
pasoa.org) project, allows scientists to determine,
for a given data item, what process produced it,
what abstract workflow led to its execution, and
every stage in between.

Abstract vs. Executable Workflows
The abstract workflow provided by the user, por-
tal, or some other workflow composition system8
is resource independent, so it specifies the com-
putations, their input and output data, and the in-
terdependencies between them without indicating
where the computations occur or where the data
is located. A very simple workflow description,
for example, could define computing function
F on input x, generating output Y, and storing it
on storage system resource S (see Figure 1). The
basic process of generating the workflow involves
the following steps:

Find x, which can be located at 0 or more stor-
age system resources {S1, S2, …}.
Find where to compute F, given that the com-
puting site resources are {C1, C2, …}.
Choose a computation site c and a storage sys-

•

•

•

tem s subject to constraints (performance, space
availability, and so on).

As a result, we construct the following executable
workflow:

Copy x from s to c.
Move F to c.
Compute F(x) at c, obtaining Y at c.
Move Y from c to S.
Register Y in data registry.

Once the workflow is generated, the descriptions
in the workflow-generation process give us the
provenance for the executable workflow, and once
the workflow is executed, the descriptions and ex-
ecution details in steps one through five give us
the provenance of the workflow’s output, Y.

Understanding the provenance of Y requires
understanding its connection to the original work
flow, especially when problems occur. Even with
this simple workflow, things can go wrong—say,
we didn’t find x at s, F(x) failed, c crashed, or there
wasn’t enough space at S. Given these four error
messages, the user might only understand the
second and last ones because they relate to the
original request. But the fact that x wasn’t at s is
harder to interpret, especially if another copy of

1.
2.
3.
4.
5.

(b)

Move F to C

F (x)

Copy x to C

(a)

F (x)

x

Y at S

F

Y at C

Move Y to C

Register Y

x

C

Y at SF: Computing function
x: Input
Y: Output
S: Storage system resource
C: Computing site resource

Figure 1. Workflows. (a) The abstract workflow excludes a lot of
details found in (b) the concrete version. Ovals denote workflow
components, document icons denote data, and silos denote resources.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

40� Computing in Science & Engineering

x exists elsewhere. The “c crashed” message can
be particularly hard to interpret. Obviously, the
workflow mapping and execution system can try
to shield the user from some of these failures and
try to recover from them autonomously, but at
some point this might not be possible, which is
when understanding a data item’s provenance be-
comes important.

Pegasus
We’ve just looked at an example of mapping
from an abstract to an executable workflow, so
let’s look at the steps we must follow to com-
pile an abstract workflow description into an ex-
ecutable workflow. This process is also known
as refinement, because we’re refining the infor-
mation in the abstract workflow to the point of
execution. Our approach uses the Pegasus work-
flow compiler system, which maps high-level,
abstract workflow descriptions onto available
distributed resources. To illustrate the changes
made to the workflow as part of the refinement
process, we use part of the Montage workflow
in Figure 2, which reprojects images and takes
their differences, and then refine it in Figure 3.
Although, we use Pegasus as an illustrative ex-
ample of workflow compilation, other workflow
systems, such as Askalon,9 also perform work-
flow restructuring.

Pegasus has five primary refinement steps:

Reduction eliminates processing steps when
intermediate data products have already been
generated in another workflow or can be re-
used from a previous execution. In Figure 3a,
the files “Projected 1” and “Diffed 1” already
exist in a storage system, so we don’t need to
recompute them.
Site selection chooses the computational resourc-
es on which to execute the jobs described in the
workflow, including finding available resources
and determining where the required executables
are already installed or can be staged. Pegasus
then annotates the workflow nodes with their
target execution sites. In Figure 3b, resources
R1 and R2 are available, so Pegasus uses them.
Data staging selects sources of input data for
computations after consulting a data registry
and then adds nodes to the workflow to stage
this data in or out of specific computation
sites. Pegasus also adds nodes to transfer out-
put data back to the storage sites. In Figure 3c,
for example, it has added a node to transfer the
intermediate result between execution sites R2
and R1 so that a workflow engine can invoke
the computation at R1. We can also see that
the intermediate result “Projected 1” from the
workflow’s first branch is staged for the mdiff
computation.
Registration adds registration nodes to the
workflow to register final and intermediate data
products in a data registry. Pegasus then adds
data registration nodes to the workflow’s final
output data. Registration enables workflow-
level check-pointing in case of failures, as well
as for helping find data later.
Clustering bundles workflow nodes together
so that an execution site can handle them in
one execution. This is because the granular-
ity of computations (many short-run jobs) or
the granularity of data staging (many small
data transfers) is too fine in some cases, caus-
ing execution inefficiency. In Figure 3d, Pro-
jected 1 and Projected 2 are at the same site,
thus Pegasus clusters the two transfers together
to resource R1, as denoted by the box encasing
those nodes.

The workflow is now ready for execution, so the
scientist sends it to a workflow engine. In our ap-
proach, we use Condor DAGMan, which follows
workflow dependencies and executes the workflow
node directives.

Motivating Questions
A range of scientists and engineers have both

•

•

•

•

•

mproject

Image
1

Projected
1

mdiff

Diffed
1

mproject

Image
2

Projected
2

mdiff

Diffed
2

Figure 2. Montage workflow. Two images are
reprojected using the mproject procedure, and
then the differences between these images and
others are found using mdiff (other image inputs to
the mdiff operations are excluded for brevity).

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

May/June 2008 � 41

used and trialed the Pegasus system and PASOA
project. Pegasus is being used for experiments
that simulate earthquakes in the Southern Cali-
fornia Earthquake Center,13 in the Laser Inter-
ferometer Gravitational Wave Observatory2 and
Montage4 physics projects, and in neuroscience
experiments.14 PASOA has been integrated into
the aerospace simulation systems of Deutsches
Zentrum fur Luft-und Ramfahrt e.V.16 and is part
of a system being developed for the Organ Trans-
plant Authority in Catalunya to track decisions
made regarding organ transplants.15

Once the workflow has executed, a scientist
might want to ask several questions related to the
provenance of the workflow execution’s result.
Based on our collaborations with the scientists
working on the projects we just mentioned, we’ve
found some basic questions to be important:

Which data items generated a particular data
product?
What computations generated these data items?
Where did the computations occur?

Scientists also have questions related to the work-
flow’s evolution from abstract to executable:

What happened to the node in my abstract
workflow? Why isn’t it in the executable
workflow?
Which intermediate data product was substi-
tuted for the actual computation?
Why, given that the data was at R2, did the
workflow use the data at R1?
Which abstract node does a particular execut-
able node correspond to?
Why did the amount of disk at location X di-
minish so much?
Why is this intermediate data not in the
registry?

Many provenance systems can answer the first
set of questions,10,11 but to answer the second set,
we must have information recorded during the re-
finement process in a form suitable for responding
to those questions.

Process Documentation
Because the resources used to execute a workflow
can change between the actual execution time
and when someone requests its provenance, it’s
often impossible to determine from the resources
themselves what exactly occurred. Obviously, data
provenance is important in a wide range of appli-
cation areas,12 but we can’t predict all its potential

•

•
•

•

•

•

•

•

•

in advance. We therefore need a generic software
system for determining data provenance. We
developed such a system in the PASOA project,
which we describe in more detail later.

We can broadly split the functionality that such

Transfer
to R1

Register
diffed 2

mproject

Image
2

Projected
2

mdiff

Diffed
2

(b)

R2

R1

Transfer
to R2

mproject

Image
2

Projected
2

mdiff

Diffed
2

(c)

Transfer
to R1

Register
diffed 2

Transfer
to R1

Projected
1

Transfer
to R2

mproject

Image
2

Projected
2

mdiff

Diffed
2

(d)

R2

mproject

Image
2

Projected
2

mdiff

Diffed
2

(a)

Transfer
to R1

Projected
1

Projected
1

Projected
1

R1

R2

R1

Figure 3. Montage workflow refinement. Moving from (a) reduction
to (b) site selection to (c) data staging and registration to (d)
clustering, we’ve produced a refinement of the original Montage
workflow in Figure 2 that’s now ready for execution.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

42� Computing in Science & Engineering

a system must support into three stages. First, as an
application executes, it also creates a description of
its execution (process documentation), which takes the
form of a set of assertions about what’s happening.
Once the documentation is created, the application
then records it in tailored persistent storage, called a
provenance store. Finally, after an application produces
a data item, users can obtain its provenance by query-
ing the provenance store. To support querying, each
independent source of process documentation must
use the same data model. Workflows can bring to-
gether a range of resources that use a variety of tech-
nologies to tackle a given problem, so we need a data
model that’s independent of execution technology
and application domain.

We can achieve this independence by viewing
applications in terms of the service-oriented ar-
chitecture (SOA) style adopted in many business
and science applications. In technology-indepen-
dent terms, a service is a component that takes
inputs and produces outputs. In a SOA, clients in-
voke services, which may themselves act as clients
for other services; actor denotes either a client or
a service in a SOA. Actors communicate by ex-
changing messages, with the exchange of at least
one message called an interaction. Thus, we can
describe an application’s execution as the exchange
of messages between actors. In process documen-
tation, each actor creates assertions about the data
exchanged between itself and the other actor in an
interaction, and about what processing was done
on a service’s inputs to produce the outputs. We
call these interaction and relationship assertions, re-
spectively, and taken together, they causally con-
nect the data produced in an application. Thus,
unlike other mechanisms for debugging applica-
tions, process documentation provides explicit

causal connections between data items to help us
track the process that led to an item’s existence.

Provenance in Pegasus
Following the PASOA approach, we first consid-
ered the Pegasus system in terms of interacting
actors. In this section, we separately address the
refinement phase, in which Pegasus refines an ab-
stract workflow into an executable one, and the
enactment phase, in which Condor DAGMan en-
acts the executable workflow.

Refinement Process Documentation
In the refinement phase, we modeled Pegasus as
a single actor interacting with five refiners (also
actors) in turn. Figure 4 shows the model of Pega-
sus as actor: the interactions are the exchange of
partially refined workflows between Pegasus and
each refiner until the final refiner’s output is an
executable workflow passed to DAGMan.

For each refinement step, five recording actions
occur. Figure 5 shows an expanded view of the
site selection refinement step and Pegasus’s invo-
cation of it. Recording actions are labeled A to E
in Figure 5b:

Prior to each refinement, Pegasus records the
current partially refined workflow that it’s about
to refine further (A).
Pegasus then records relationship assertions
linking this workflow to the previous refine-
ment’s output (B); these are identical because
Pegasus itself doesn’t alter the workflow.
The refiner records the workflow it receives
prior to its refinement (C).
After refinement, the refiner records the refined
workflow (D).

•

•

•

•

Pegasus Condor
DAGMan

Re
du

ce
w

or
k�

ow

Compile abstract work�ow

W
or

k�
ow

W
or

k�
ow

W
or

k�
ow

W
or

k�
ow

W
or

k�
ow

Run
executable
work�ow

Se
le

ct
 s

ite
s

A
dd

 d
at

a-
st

ag
in

g
jo

bs

A
dd

re
gi

st
ra

tio
n

jo
bs

C
lu

st
er

 jo
bs

Reduction
re�ner

Site selection
re�ner

Data-staging
re�ner

Registration
re�ner

Clustering
re�ner

Figure 4. Pegasus. We modeled the workflow refinement process as a series of exchanges among
interacting actors.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

May/June 2008 � 43

The refiner also records relationship assertions
from each node after refinement to the original
nodes (E).

As mentioned in the last step, each refiner docu-
ments the relationships between nodes in the
workflow as they were before and after refinement.
The type of relationship gives anyone querying
the provenance more information about how the
refinement took place.

Refiners record the following types of relation-
ship, corresponding to the refinement stages just
described:

identicalTo denotes that a workflow node hasn’t
changed in refinement. Its absence from a
node in the pre-refinement workflow indicates
that the node changed or was removed during
refinement.
siteSelectionOf denotes that, for the workflow
node site, a compute job has been chosen and
specified. This relationship is documented by
recording action E in Figure 5b.
stagingIntroducedFor denotes that the post-
refinement workflow node is a data-staging op-
eration introduced to stage data in/out for the
job in the pre-refinement workflow.
registrationIntroducedFor denotes that the post-
refinement workflow node is a registration op-
eration introduced to follow a stage-out in the
pre-refinement workflow.
clusteringOf denotes that the post-refinement
workflow node is a cluster that combines several
jobs in the pre-refinement workflow.

Figure 6 summarizes these relationships visu-
ally. We see the fragment through six states of
refinement, from abstract to concrete; workflow
nodes (ovals showing input and output data) at
each stage are related (double-headed arrows) to
those in the previous stage, with the relation-
ship type (arrow label) describing the function
the refiner performed to transform the work-
flow. By tracing relationships, a person querying
this data can determine the provenance for each
concrete job and how it relates to the original
abstract workflow.

Enactment Process Documentation
The PASOA model for documenting enactment
is the same as for documenting refinement. We
modeled Condor DAGMan as an actor interacting
with each job in the workflow. DAGMan sends in-
vocation messages that contain command-line ar-
guments, including input filenames, to executable

•

•

•

•

•

•

jobs and receives completion messages returned
from the jobs that contain the names of output
files produced.

As with refinement, relationships link together
nodes from one step to the next, so that anyone
can determine the provenance at a later point.
However, the nodes here are the data items that
the jobs process, referred to by filename, rather
than the workflow’s job nodes. The relationships
between data items depend on the type of job
enacted—for example, a job that invokes “gzip”
would assert a relationship of type “gzip” between
its output and input.

Refinement and Enactment Connected
The combination of the documentation for work-
flow refinement and enactment gives scientists
detailed provenance for data items, including the
executable workflow steps that produced it and
any other data items that contributed to those
steps, as well as helping them find the connection
to abstract workflow jobs.

Let’s revisit our initial questions and answer
them:

Which data items generated a particular data prod-
uct? For the Montage workflow, a scientist could
ask what data items generated Diffed 2 and find
that Image 2 and Projected 1 were used.
What computation generated these data items?
mproject and mdiff.
Where did the computations occur? The mproject
computation occurred at computational resource
R2 and the mdiff computation occurred at R1.

•

•

•

Pegasus

W
or

k�
ow

W
or

k�
ow

Se
le

ct
 s

ite
s

Site selection
re�ner

Pegasus
B

A

W
or

k�
ow

W
or

k�
ow

Se
le

ct
 s

ite
s

Site selection
re�ner

Site selection Documentation
of site selection

C D

E

(a) (b)

Figure 5. One refiner’s documentation. (a) The interactions
between Pegasus and site selection. (b) How these interactions are
documented: each message is recorded when sent or received, and
causal relationships connect the interactions.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

44� Computing in Science & Engineering

R2

Reduction

ID

ID

ID

ID

IDSSID

ST

ST

ST

ST

mproject

Img 1

Img 2

mproject

Prj 2

Prj 1

mdiff

Dif 1

Img 2

ID
mproject

Prj 2

Img 2

SS
mproject

Prj 2 Prj 2

Prj 2

mproject

mdiff

Transfer

Img 2

Img 2

Prj 1 Img 2

Transfer

Prj 2

Prj 1

Transfer

Prj 2Prj 1

Prj 1

Dif 2

ID

RE

ID

Prj 2

Prj 2

mproject

mdiff

Transfer

Img 2

Img 2

Img 2

Transfer

Prj 2

Prj 1

Transfer

Prj 2Prj 1

Prj 1

Dif 2

ID

ID

CL

CL

ID

Prj 2

mproject

mdiff

Transfer

Img 2

Img 2

Img 2

Transfer

Prj 2Prj 1

Dif 2

R1R1R1

R2 R2R2

R2R2R2

R1R1

R1R1

mdiff

Prj 2Prj 1

Dif 2

Dif 2 Dif 2

Register

Data
staging

Register ClusteringSite
selection

ID
Register

R1

mdiff

Prj 2

Dif 2

R1

Prj 1

mdiff

Prj 2

Dif 2

R1

Prj 1

Prj 2Prj 1

Prj 2Prj 1

R1

Relationship type key
ID: identicalTo
SS: siteSelectionOf
ST: stagingIntroducedFor
RE: registrationIntroducedFor
CL: clusteringFor

Figure 6. Relationships recorded during refinement. Each column depicts the example workflow at one stage of refinement.
Moving left to right, the workflow has more refinements applied to it, and between workflows, relationships are recorded to
denote exactly how the workflow nodes have changed.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

May/June 2008 � 45

We can also answer questions related to the work-
flow’s evolution from abstract to executable:

What happened to this node in my abstract work-
flow? Why isn’t it in the executable workflow? In
the Montage example, a scientist could specifi-
cally ask what happened to the mproject node
that takes Image 1 as input and learn from the
documentation that this node was eliminated
during workflow reduction.
Which intermediate data product was substituted
for the actual computation? After the data-staging
step in Figure 5, Pegasus added a transfer node
that stages in Projected 1 rather than running
mproject on Image 1.
Which abstract node does a particular executable
node correspond to? In Figure 5, for example, we
can determine that the mproject node that takes
Image 2 as input corresponds to the mproject
node running on R2.
Why is this intermediate data not in the registry?
We can determine by analyzing the documen-
tation that Projected 2 wasn’t in the registry
because Pegasus failed to add a corresponding
data registration node.

The following two questions are left for future
work, so we describe how extensions to our cur-
rent system could help answer them:

Why did the amount of disk at location X diminish so
much? Answering this question requires knowl-
edge of the causality between staging data to a
resource and the amount of disk space available
at a resource. We envision that models could an-
swer these questions, but it’s not clear how a user
might formulate such a query.
Why, given that the data was at R2, did the workflow
use the data at R1? We intend to extend our system
not only to capture the workflow system’s deci-
sions but also the reason behind those decisions.

We’ve shown that our system can answer ques-
tions about workflow refinement and execution,
but it’s important that the costs of using such a
system don’t outweigh the benefits. Recently,
we’ve analyzed the performance costs of record-
ing process documentation during execution and
found them to be sufficiently minor.7

U nderstanding the process that ulti-
mately produced a result is critical
to correctly interpreting it, and it’s
particularly important when execu-

•

•

•

•

•

•

tion steps aren’t apparent in the original process
design. Provenance is a key ingredient of scientific
reproducibility: colleagues can share this type of
information and thereby reproduce and validate
each other’s results.

Future work in the area of provenance must
address both low- and high-level issues. Our
approach’s scalability—although adequate for
the problems tackled so far—requires additional
techniques for coping with very large data sets, in
which recording copies of all data passing through
the system is infeasible. Other issues include the
connection between a physical experiment’s elec-
tronic data and physical components, each of
which has its own interconnected provenance. By
keeping the connection between experiment and
data, even in complex distributed environments,
our work provides a solid basis for future direc-
tions. The component for recording refinement
documentation as described here is included as
an option in the latest publicly available release of
Pegasus (version 2.1.0); we’re continuing to work
on mechanisms to aid scientists in best exploiting
the information recorded.�

References
B.C. Barish and R. Weiss, “LIGO and the Detection of
Gravitational Waves,” Physics Today, vol. 52, no. 10, 1999,
pp. 44–50.

D.A. Brown et al., “A Case Study on the Use of Workflow
Technologies for Scientific Analysis: Gravitational Wave
Data Analysis,” Workflows for e-Science, I. Taylor et al., eds.,
Springer, 2006, pp. 39–59.

D. Bernholdt et al., “The Earth System Grid: Supporting the
Next Generation of Climate Modeling Research,” Proc. IEEE,
vol. 93, no. 3, 2005, pp. 485–495.

G.B. Berriman et al., “Montage: A Grid Enabled Engine for
Delivering Custom Science-Grade Mosaics On Demand,”
Proc. SPIE Conf., SPIE, 2004; http://montage.ipac.caltech.
edu/publications/2004SPIE/Montage_SPIE_2004_paper.pdf.

E. Deelman et al., “Pegasus: A Framework for Mapping
Complex Scientific Workflows onto Distributed Systems,”
Scientific Programming J., vol. 13, no. 3, 2005, pp. 219–237.

E. Deelman et al., “Pegasus: Mapping Large-Scale Work-
flows to Distributed Resources,” Workflows in e-Science, I.
Taylor et al., eds., Springer, 2006, pp. 376–394.

S. Miles et al., “Connecting Scientific Data to Scientific Ex-
periments with Provenance “ Proc. 3rd IEEE Int’l Conf. e-Science
and Grid Computing, IEEE CS Press, 2007, pp. 179–186.

Y. Gil et al., “Wings for Pegasus: A Semantic Approach
to Creating Very Large Scientific Workflows,” Proc. OWL:
Experiences and Directions (OWL-ED), CEUR-WS.org, 2006;
http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS//Vol-216/submission_29.pdf.

M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of
Scientific Workflows in the ASKALON Grid Environment,”
SIGMOD Record, vol. 34, no. 3, 2005, pp. 56–62.

L. Moreau et al., “The First Provenance Challenge,” Concur-
rency and Computation: Practice and Experience, vol. 20, no.
5, 2008, pp. 400–418.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

46� Computing in Science & Engineering

Y. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science,” SIGMOD Record, vol. 34, no. 3,
2005, pp. 31–36.

S. Miles et al., “The Requirements of Using Provenance in
e-Science Experiments,” J. Grid Computing, vol. 5, no. 1,
2007, pp. 1–25.

E. Deelman et al. “Managing Large-Scale Workflow Execu-
tion from Resource Provisioning to Provenance Tracking:
The CyberShake Example,” Proc. e-Science 2006, IEEE Press,
2006, p. 14.

A. Lathers et al., “Enabling Parallel Scientific Applications
with Workflow Tools,” Challenges of Large Applications in Dis-
tributed Environments (CLADE), IEEE Press, 2006, pp. 55–60.

S. Álvarez et al., “Applying Provenance in Distributed Organ
Transplant Management,” Proc. Int’l Provenance and Annota-
tion Workshop (IPAW 2006), Springer, 2006, pp. 28–36.

11.

12.

13.

14.

15.

G. K. Kloss, and A. Schreiber, “Provenance Implementa-
tion in a Scientific Simulation Environment,” Proc. Int’l
Provenance and Annotation Workshop (IPAW 06), Springer,
2006, pp. 37–45.

Simon Miles is a lecturer in computer science at King’s
College London. His research interests include e-sci-
ence, agent-oriented software engineering, electron-
ic contracting, and distributed systems. He co-led the
international provenance challenges, bringing to-
gether researchers from 20 disparate teams in two
six-month exercises to compare their systems using a
single, medical application. Miles has a PhD in com-
puter science from the University of Warwick, UK.
Contact him at simon.miles@kcl.ac.uk.

Paul Groth is postdoctoral research associate in the
Information Sciences Institute at the University of
Southern California. His research focuses on prov-
enance, multi-institutional and distributed systems,
and e-science. Groth has a PhD in computer science
from the University of Southampton. Contact him at
pgroth@isi.edu.

Ewa Deelman is an assistant research professor in the
University of Southern California’s computer science
department and a project leader in its Information
Sciences Institute. Her research interests include the
design and exploration of collaborative, distributed
scientific environments, with particular emphasis on
workflow management. Deelman has a PhD in com-
puter science from Rensselaer Polytechnic Institute.
Contact her at deelman@isi.edu.

Karan Vahi is a research programmer at the Uni-
versity of Southern California’s Information Sciences
Institute. His research interests include large-scale dis-
tributed computing, workflows, and scheduling. Vahi
has an MS in computer science from the University of
Southern California. Contact him at vahi@isi.edu.

Gaurang Mehta is a research programmer in the
University of Southern California’s Center for Grid
Technologies. His research interests include high-
performance systems, workflows, and scheduling.
Mehta has an MS in electrical engineering from the
University of Southern California. He is a member of
the IEEE. Contact him at gmehta@isi.edu.

Luc Moreau is a professor at the University of South-
ampton. His research interests include distributed
computing, service-oriented computing, and prov-
enance. Moreau has a PhD in computer science from
the University of Liège, Belgium. Contact him at
l.moreau@ecs.soton.ac.uk.

16.

www.aip.org

The American Institute of Physics is a not-for-profit membership corporation

chartered in New York State in 1931 for the purpose of promoting the advance-

ment and diffusion of the knowledge of physics and its application to human

welfare. Leading societies in the fields of physics, astronomy, and related sci-

ences are its members.

In order to achieve its purpose, AIP serves physics and related fields of science

and technology by serving its member societies, individual scientists, educators,

students, R&D leaders, and the general public with programs, services, and publi-

cations—information that matters.

The Institute publishes its own scientific journals as well as those of its member

societies; provides abstracting and indexing services; provides online database

services; disseminates reliable information on physics to the public; collects and

analyzes statistics on the profession and on physics education; encourages and

assists in the documentation and study of the history and philosophy of physics;

cooperates with other organizations on educational projects at all levels; and col-

lects and analyzes information on federal programs and budgets.

The scientists represented by the Institute through its member societies number

more than 134 000. In addition, approximately 6000 students in more than 700 col-

leges and universities are members of the Institute’s Society of Physics Students,

which includes the honor society Sigma Pi Sigma. Industry is represented through

the membership of 37 Corporate Associates.

Governing Board: Louis J. Lanzerotti* (chair), Lila M. Adair, David E. Aspnes, An-

thony Atchley*, Arthur Bienenstock, Charles W. Carter Jr*, Timothy A. Cohn*, Bruce

H. Curran*, Morton M. Denn*, Alexander Dickison, Michael D. Duncan, H. Frederick

Dylla* (ex officio), Janet Fender, Judith Flippen-Anderson, Judy R. Franz*, Brian J.

Fraser, Jaime Fucugauchi, John A. Graham, Timothy Grove, Mark Hamilton, William

Hendee, James Hollenhorst, Judy C. Holoviak, Leo Kadanoff, Angela R. Keyser,

Timothy L. Killeen, Harvey Leff, Rudolf Ludeke*, Kevin B. Marvel*, Patricia Mooney,

Cherry Murray, Elizabeth A. Rogan*, Bahaa E. A. Saleh, Charles E. Schmid, Joseph

Serene, Benjamin B. Snavely* (ex officio), A. F. Spilhaus Jr, Gene Sprouse, Hervey

(Peter) Stockman, Quinton L. Williams.

*Members of the Executive Committee.

Management Committee: H. Frederick Dylla, Executive Director and CEO; Richard

Baccante, Treasurer and CFO; Theresa C. Braun, Vice President, Human Resources;

James H. Stith, Vice President, Physics Resources; Darlene A. Walters, Senior Vice

President, Publishing; Benjamin B. Snavely, Secretary.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 30, 2008 at 20:15 from IEEE Xplore. Restrictions apply.

