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Scientific applications are often structured as workflows compiled from abstract experiment 
designs. However, the automation of the compilation step often hides details about how 
results were produced. The authors investigate how provenance helps scientists connect 
their results with the original experiment’s formulation.

M ore than ever before, managing 
data today is increasingly difficult 
in the scientific and business do-
mains. Many projects such as the 

Laser Interferometer Gravitational Wave Obser-
vatory1,2 and the Earth System Grid3 are collect-
ing petabyte-scale data sets. For this data’s users, 
however, interpretation issues aren’t related only 
to raw data descriptions but also to the description 
of the derived data products and the processes 
that created them. An additional complexity is in-
troduced by execution systems, which can be very 
heterogeneous and distributed across many loca-
tions. To understand data, scientists must there-
fore be able to interpret metadata about it as well 
as its provenance (how the data came to be).

The latest trend is to use workflow technologies 
to manage data processing. Scientific workflows 

describe computations, their parameters, I/O 
data, and data or control dependencies between 
them, and software systems manage these work-
flows by following dependencies and executing 
computations on the desired data. Workflow tech-
nologies not only help automate complex scientific 
analyses, but they also provide the opportunity to 
capture transformations performed on the data. 

To illustrate the complexity of today’s analy-
ses, we examine a popular astronomy application, 
called Montage,4 which produces science-grade 
mosaics of the sky on demand. We can structure 
this application as a workflow that takes several 
images, projects them, adjusts their backgrounds, 
and adds the images together. A mosaic of 6-
degrees square would involve processing 1,444 
input images, require 8,586 computational steps, 
and generate 22,850 intermediate data products. 
To verify the final mosaic’s quality, a scientist 
might need to check that, for the workflow that 
produced the mosaic, a particular input image 
was retrieved from a specific archive, that the pa-
rameters for the reprojections were correctly set, 
that the execution platforms didn’t include pro-
cessors with a known floating-point processing 
error, and so on.

Given the complexity of workflows with thou-
sands of computational steps, possibly executing 
across multiple distributed resources, it’s infeasi-
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ble for users to directly define an executable work-
flow. Resources are often shared with other users 
and might become suddenly unavailable because 
of network failures or policy changes. Thus, re-
searchers often use workflow compilers such as Peg-
asus5,6 to generate an executable workflow based 
on a high-level, resource-independent descrip-
tion of the end-to-end computation (a so-called 
abstract workflow). This approach gives scientists a 
computation description that’s portable across ex-
ecution platforms and that can be mapped to any 
number of resources. However, additional work-
flow mapping can also increase the gap between 
what users define and what the system actually 
executes, thus complicating result interpretation 
by dropping the connection between the results 
and the original experiment.

We present a solution that not only describes 
how computations were executed but also how 
they were generated and how they relate to the 
scientist-provided description. In particular, we 
focus here on the broad principles behind our 
approach and its benefits for scientist users; a 
preliminary paper with a prototype-based perfor-
mance evaluation appears elsewhere.7 Specifically, 
we augment the compilation of workflows by Peg-
asus and their subsequent enactment by Condor 
DAGMan by recording the steps taken and the 
connections between them. This augmentation, 
using technology from the Provenance-Aware 
Service Oriented Architecture (PASOA; www.
pasoa.org) project, allows scientists to determine, 
for a given data item, what process produced it, 
what abstract workflow led to its execution, and 
every stage in between.

Abstract vs. Executable Workflows
The abstract workflow provided by the user, por-
tal, or some other workflow composition system8 
is resource independent, so it specifies the com-
putations, their input and output data, and the in-
terdependencies between them without indicating 
where the computations occur or where the data 
is located. A very simple workflow description, 
for example, could define computing function 
F on input x, generating output Y, and storing it 
on storage system resource S (see Figure 1). The 
basic process of generating the workflow involves 
the following steps:

Find x, which can be located at 0 or more stor-
age system resources {S1, S2, …}.
Find where to compute F, given that the com-
puting site resources are {C1, C2, …}.
Choose a computation site c and a storage sys-

•

•

•

tem s subject to constraints (performance, space 
availability, and so on).

As a result, we construct the following executable 
workflow:

Copy x from s to c.
Move F to c.
Compute F(x) at c, obtaining Y at c.
Move Y from c to S.
Register Y in data registry.

Once the workflow is generated, the descriptions 
in the workflow-generation process give us the 
provenance for the executable workflow, and once 
the workflow is executed, the descriptions and ex-
ecution details in steps one through five give us 
the provenance of the workflow’s output, Y. 

Understanding the provenance of Y requires 
understanding its connection to the original work
flow, especially when problems occur. Even with 
this simple workflow, things can go wrong—say, 
we didn’t find x at s, F(x) failed, c crashed, or there 
wasn’t enough space at S. Given these four error 
messages, the user might only understand the 
second and last ones because they relate to the 
original request. But the fact that x wasn’t at s is 
harder to interpret, especially if another copy of 
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Move F to C
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Copy x to C
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Y at SF: Computing function
x: Input
Y: Output
S: Storage system resource
C: Computing site resource

Figure 1. Workflows. (a) The abstract workflow excludes a lot of 
details found in (b) the concrete version. Ovals denote workflow 
components, document icons denote data, and silos denote resources.
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x exists elsewhere. The “c crashed” message can 
be particularly hard to interpret. Obviously, the 
workflow mapping and execution system can try 
to shield the user from some of these failures and 
try to recover from them autonomously, but at 
some point this might not be possible, which is 
when understanding a data item’s provenance be-
comes important. 

Pegasus
We’ve just looked at an example of mapping 
from an abstract to an executable workflow, so 
let’s look at the steps we must follow to com-
pile an abstract workflow description into an ex-
ecutable workflow. This process is also known 
as refinement, because we’re refining the infor-
mation in the abstract workflow to the point of 
execution. Our approach uses the Pegasus work-
flow compiler system, which maps high-level, 
abstract workflow descriptions onto available 
distributed resources. To illustrate the changes 
made to the workflow as part of the refinement 
process, we use part of the Montage workflow 
in Figure 2, which reprojects images and takes 
their differences, and then refine it in Figure 3. 
Although, we use Pegasus as an illustrative ex-
ample of workflow compilation, other workflow 
systems, such as Askalon,9 also perform work-
flow restructuring.

Pegasus has five primary refinement steps:

Reduction eliminates processing steps when 
intermediate data products have already been 
generated in another workflow or can be re-
used from a previous execution. In Figure 3a, 
the files “Projected 1” and “Diffed 1” already 
exist in a storage system, so we don’t need to 
recompute them.
Site selection chooses the computational resourc-
es on which to execute the jobs described in the 
workflow, including finding available resources 
and determining where the required executables 
are already installed or can be staged. Pegasus 
then annotates the workflow nodes with their 
target execution sites. In Figure 3b, resources 
R1 and R2 are available, so Pegasus uses them. 
Data staging selects sources of input data for 
computations after consulting a data registry 
and then adds nodes to the workflow to stage 
this data in or out of specific computation 
sites. Pegasus also adds nodes to transfer out-
put data back to the storage sites. In Figure 3c, 
for example, it has added a node to transfer the 
intermediate result between execution sites R2 
and R1 so that a workflow engine can invoke 
the computation at R1. We can also see that 
the intermediate result “Projected 1” from the 
workflow’s first branch is staged for the mdiff 
computation.
Registration adds registration nodes to the 
workflow to register final and intermediate data 
products in a data registry. Pegasus then adds 
data registration nodes to the workflow’s final 
output data. Registration enables workflow-
level check-pointing in case of failures, as well 
as for helping find data later.
Clustering bundles workflow nodes together 
so that an execution site can handle them in 
one execution. This is because the granular-
ity of computations (many short-run jobs) or 
the granularity of data staging (many small 
data transfers) is too fine in some cases, caus-
ing execution inefficiency. In Figure 3d, Pro-
jected 1 and Projected 2 are at the same site, 
thus Pegasus clusters the two transfers together 
to resource R1, as denoted by the box encasing 
those nodes.

The workflow is now ready for execution, so the 
scientist sends it to a workflow engine. In our ap-
proach, we use Condor DAGMan, which follows 
workflow dependencies and executes the workflow 
node directives. 

Motivating Questions
A range of scientists and engineers have both 

•

•

•

•

•
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Figure 2. Montage workflow. Two images are 
reprojected using the mproject procedure, and 
then the differences between these images and 
others are found using mdiff (other image inputs to 
the mdiff operations are excluded for brevity). 
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used and trialed the Pegasus system and PASOA 
project. Pegasus is being used for experiments 
that simulate earthquakes in the Southern Cali-
fornia Earthquake Center,13 in the Laser Inter-
ferometer Gravitational Wave Observatory2 and 
Montage4 physics projects, and in neuroscience 
experiments.14 PASOA has been integrated into 
the aerospace simulation systems of Deutsches 
Zentrum fur Luft-und Ramfahrt e.V.16 and is part 
of a system being developed for the Organ Trans-
plant Authority in Catalunya to track decisions 
made regarding organ transplants.15

Once the workflow has executed, a scientist 
might want to ask several questions related to the 
provenance of the workflow execution’s result. 
Based on our collaborations with the scientists 
working on the projects we just mentioned, we’ve 
found some basic questions to be important:

Which data items generated a particular data 
product?
What computations generated these data items?
Where did the computations occur?

Scientists also have questions related to the work-
flow’s evolution from abstract to executable:

What happened to the node in my abstract 
workflow? Why isn’t it in the executable 
workflow?
Which intermediate data product was substi-
tuted for the actual computation?
Why, given that the data was at R2, did the 
workflow use the data at R1?
Which abstract node does a particular execut-
able node correspond to?
Why did the amount of disk at location X di-
minish so much?
Why is this intermediate data not in the 
registry?

Many provenance systems can answer the first 
set of questions,10,11 but to answer the second set, 
we must have information recorded during the re-
finement process in a form suitable for responding 
to those questions. 

Process Documentation
Because the resources used to execute a workflow 
can change between the actual execution time 
and when someone requests its provenance, it’s 
often impossible to determine from the resources 
themselves what exactly occurred. Obviously, data 
provenance is important in a wide range of appli-
cation areas,12 but we can’t predict all its potential 

•

•
•

•

•

•

•

•

•

in advance. We therefore need a generic software 
system for determining data provenance. We 
developed such a system in the PASOA project, 
which we describe in more detail later. 

We can broadly split the functionality that such 
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Figure 3. Montage workflow refinement. Moving from (a) reduction 
to (b) site selection to (c) data staging and registration to (d) 
clustering, we’ve produced a refinement of the original Montage 
workflow in Figure 2 that’s now ready for execution.
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a system must support into three stages. First, as an 
application executes, it also creates a description of 
its execution (process documentation), which takes the 
form of a set of assertions about what’s happening. 
Once the documentation is created, the application 
then records it in tailored persistent storage, called a 
provenance store. Finally, after an application produces 
a data item, users can obtain its provenance by query-
ing the provenance store. To support querying, each 
independent source of process documentation must 
use the same data model. Workflows can bring to-
gether a range of resources that use a variety of tech-
nologies to tackle a given problem, so we need a data 
model that’s independent of execution technology 
and application domain.

We can achieve this independence by viewing 
applications in terms of the service-oriented ar-
chitecture (SOA) style adopted in many business 
and science applications. In technology-indepen-
dent terms, a service is a component that takes 
inputs and produces outputs. In a SOA, clients in-
voke services, which may themselves act as clients 
for other services; actor denotes either a client or 
a service in a SOA. Actors communicate by ex-
changing messages, with the exchange of at least 
one message called an interaction. Thus, we can 
describe an application’s execution as the exchange 
of messages between actors. In process documen-
tation, each actor creates assertions about the data 
exchanged between itself and the other actor in an 
interaction, and about what processing was done 
on a service’s inputs to produce the outputs. We 
call these interaction and relationship assertions, re-
spectively, and taken together, they causally con-
nect the data produced in an application. Thus, 
unlike other mechanisms for debugging applica-
tions, process documentation provides explicit 

causal connections between data items to help us 
track the process that led to an item’s existence.

Provenance in Pegasus
Following the PASOA approach, we first consid-
ered the Pegasus system in terms of interacting 
actors. In this section, we separately address the 
refinement phase, in which Pegasus refines an ab-
stract workflow into an executable one, and the 
enactment phase, in which Condor DAGMan en-
acts the executable workflow.

Refinement Process Documentation
In the refinement phase, we modeled Pegasus as 
a single actor interacting with five refiners (also 
actors) in turn. Figure 4 shows the model of Pega-
sus as actor: the interactions are the exchange of 
partially refined workflows between Pegasus and 
each refiner until the final refiner’s output is an 
executable workflow passed to DAGMan. 

For each refinement step, five recording actions 
occur. Figure 5 shows an expanded view of the 
site selection refinement step and Pegasus’s invo-
cation of it. Recording actions are labeled A to E 
in Figure 5b:

Prior to each refinement, Pegasus records the 
current partially refined workflow that it’s about 
to refine further (A).
Pegasus then records relationship assertions 
linking this workflow to the previous refine-
ment’s output (B); these are identical because 
Pegasus itself doesn’t alter the workflow.
The refiner records the workflow it receives 
prior to its refinement (C).
After refinement, the refiner records the refined 
workflow (D).
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Figure 4. Pegasus. We modeled the workflow refinement process as a series of exchanges among 
interacting actors.
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The refiner also records relationship assertions 
from each node after refinement to the original 
nodes (E).

As mentioned in the last step, each refiner docu-
ments the relationships between nodes in the 
workflow as they were before and after refinement. 
The type of relationship gives anyone querying 
the provenance more information about how the 
refinement took place.

Refiners record the following types of relation-
ship, corresponding to the refinement stages just 
described:

identicalTo denotes that a workflow node hasn’t 
changed in refinement. Its absence from a 
node in the pre-refinement workflow indicates 
that the node changed or was removed during 
refinement.
siteSelectionOf denotes that, for the workflow 
node site, a compute job has been chosen and 
specified. This relationship is documented by 
recording action E in Figure 5b.
stagingIntroducedFor denotes that the post-
refinement workflow node is a data-staging op-
eration introduced to stage data in/out for the 
job in the pre-refinement workflow.
registrationIntroducedFor denotes that the post-
refinement workflow node is a registration op-
eration introduced to follow a stage-out in the 
pre-refinement workflow.
clusteringOf denotes that the post-refinement 
workflow node is a cluster that combines several 
jobs in the pre-refinement workflow.

Figure 6 summarizes these relationships visu-
ally. We see the fragment through six states of 
refinement, from abstract to concrete; workflow 
nodes (ovals showing input and output data) at 
each stage are related (double-headed arrows) to 
those in the previous stage, with the relation-
ship type (arrow label) describing the function 
the refiner performed to transform the work-
flow. By tracing relationships, a person querying 
this data can determine the provenance for each 
concrete job and how it relates to the original 
abstract workflow. 

Enactment Process Documentation
The PASOA model for documenting enactment 
is the same as for documenting refinement. We 
modeled Condor DAGMan as an actor interacting 
with each job in the workflow. DAGMan sends in-
vocation messages that contain command-line ar-
guments, including input filenames, to executable 

•

•

•

•

•

•

jobs and receives completion messages returned 
from the jobs that contain the names of output 
files produced.

As with refinement, relationships link together 
nodes from one step to the next, so that anyone 
can determine the provenance at a later point. 
However, the nodes here are the data items that 
the jobs process, referred to by filename, rather 
than the workflow’s job nodes. The relationships 
between data items depend on the type of job 
enacted—for example, a job that invokes “gzip” 
would assert a relationship of type “gzip” between 
its output and input.

Refinement and Enactment Connected
The combination of the documentation for work-
flow refinement and enactment gives scientists 
detailed provenance for data items, including the 
executable workflow steps that produced it and 
any other data items that contributed to those 
steps, as well as helping them find the connection 
to abstract workflow jobs.

Let’s revisit our initial questions and answer 
them:

Which data items generated a particular data prod-
uct? For the Montage workflow, a scientist could 
ask what data items generated Diffed 2 and find 
that Image 2 and Projected 1 were used.
What computation generated these data items? 
mproject and mdiff. 
Where did the computations occur? The mproject 
computation occurred at computational resource 
R2 and the mdiff computation occurred at R1.
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Figure 5. One refiner’s documentation. (a) The interactions 
between Pegasus and site selection. (b) How these interactions are 
documented: each message is recorded when sent or received, and 
causal relationships connect the interactions.
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We can also answer questions related to the work-
flow’s evolution from abstract to executable:

What happened to this node in my abstract work-
flow? Why isn’t it in the executable workflow? In 
the Montage example, a scientist could specifi-
cally ask what happened to the mproject node 
that takes Image 1 as input and learn from the 
documentation that this node was eliminated 
during workflow reduction. 
Which intermediate data product was substituted 
for the actual computation? After the data-staging 
step in Figure 5, Pegasus added a transfer node 
that stages in Projected 1 rather than running 
mproject on Image 1. 
Which abstract node does a particular executable 
node correspond to? In Figure 5, for example, we 
can determine that the mproject node that takes 
Image 2 as input corresponds to the mproject 
node running on R2.
Why is this intermediate data not in the registry? 
We can determine by analyzing the documen-
tation that Projected 2 wasn’t in the registry 
because Pegasus failed to add a corresponding 
data registration node.

The following two questions are left for future 
work, so we describe how extensions to our cur-
rent system could help answer them:

Why did the amount of disk at location X diminish so 
much? Answering this question requires knowl-
edge of the causality between staging data to a 
resource and the amount of disk space available 
at a resource. We envision that models could an-
swer these questions, but it’s not clear how a user 
might formulate such a query.
Why, given that the data was at R2, did the workflow 
use the data at R1? We intend to extend our system 
not only to capture the workflow system’s deci-
sions but also the reason behind those decisions.

We’ve shown that our system can answer ques-
tions about workflow refinement and execution, 
but it’s important that the costs of using such a 
system don’t outweigh the benefits. Recently, 
we’ve analyzed the performance costs of record-
ing process documentation during execution and 
found them to be sufficiently minor.7

U nderstanding the process that ulti-
mately produced a result is critical 
to correctly interpreting it, and it’s 
particularly important when execu-

•

•

•

•

•

•

tion steps aren’t apparent in the original process 
design. Provenance is a key ingredient of scientific 
reproducibility: colleagues can share this type of 
information and thereby reproduce and validate 
each other’s results. 

Future work in the area of provenance must 
address both low- and high-level issues. Our 
approach’s scalability—although adequate for 
the problems tackled so far—requires additional 
techniques for coping with very large data sets, in 
which recording copies of all data passing through 
the system is infeasible. Other issues include the 
connection between a physical experiment’s elec-
tronic data and physical components, each of 
which has its own interconnected provenance. By 
keeping the connection between experiment and 
data, even in complex distributed environments, 
our work provides a solid basis for future direc-
tions. The component for recording refinement 
documentation as described here is included as 
an option in the latest publicly available release of 
Pegasus (version 2.1.0); we’re continuing to work 
on mechanisms to aid scientists in best exploiting 
the information recorded.�
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