
Multi-Threaded Circuit Simulation using OpenMP
Mark Zwolinski

School of Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ, UK
Email:mz@ecs.soton.ac.uk

Abstract—Circuit-level simulation is a computationally-
intensive problem that has proven to be particularly difficult
to parallelize. While device evaluation can be performed in
parallel in conventional circuit simulators, the execution overhead
is high. We show that, by partitioning a circuit, OpenMP
can be used to solve sub-circuits in different threads, without
compromising accuracy. It is shown that execution time can be
reduced proportionally to the number of threads.

Index Terms—Circuit simulation, Parallel algorithms, SPICE.

I. INTRODUCTION

One application that is very demanding of computing re-
sources, but which has proved to be very resistant to par-
allelization is circuit-level simulation. The basic SPICE-type
algorithm [1] has stood the test of time in terms of accuracy.
Attempts to accelerate this algorithm have either compromised
accuracy (or generality) or have used specialized hardware that
has been eclipsed by advances in general purpose processors,
e.g. [2].

There is a very clear need to accelerate circuit-level simu-
lation, because of the growing size of circuits and the need
to verify them with parametric variations [3], [4]. Instead
of designing custom hardware, any such acceleration needs
to use standard components – conventional multi-cores or,
perhaps, graphics card accelerators. Some recent advances
have been made in that direction [5]. Further, for portability,
maintainability, etc. any such acceleration should be based
upon standards [6].

OpenMP [7] is being adopted as a programming standard for
multi-core systems with shared memory across a wide variety
of hardware platforms and operating systems. As with many
parallel programming standards, early versions of OpenMP
assume regular, array-type data structures and enumerated
looping constructs. Version 3.0 was published in May 2008
and added a much more general task model that is applicable to
a much wider range of data structures and iterative or recursive
looping schemes.

The simulator described here uses OpenMP to parallelize
an existing circuit simulator [8]. Unlike many SPICE-type
simulators, the sub-circuit structure is maintained. The original
motivation for maintaining this hierarchy was to allow each
subcircuit to choose its own time step, but the structure
also lends itself to a relatively coarse-grained parallelism. By
adding a number of OpenMP directives to the code and making
a very small number of other changes to reorganize the existing

code, parallel execution can be demonstrated, without loss of
accuracy.

It is observed that the creation of threads does incur a
computational cost. Therefore there is a minimal size of sub-
circuit, below which there is no benefit to using a separate
thread. Moreover for small sub-circuits, there is a significant
penalty in creating a separate thread. It is shown that for large
sub-circuits (1000 transistors), the cost of thread creation is
insignificant compared with the computational effort required
to evaluate the MOS models and to factorize the matrix
equations and that the run time decreases proportionally with
the number of processors available.

II. CIRCUIT SIMULATION

In general terms, the equations for a nonlinear circuit may
be expressed as a function [9]:

f (x, ẋ, t) = 0 (1)

where x is the vector of unknown circuit variables, ẋ is the
time derivative of x and t is time. This equation cannot be
solved analytically and therefore it is discretized in time, such
that a nonlinear set of equations is solved at each time point:

g (xn) = 0 (2)

where xn = x(tn).
The nonlinear equation (2) is linearized using the Newton-

Raphson (N-R) method:

Jmxm+1 = Jmxm − g(xm) (3)

where Jm is the matrix of partial derivatives of g with respect
to x at iteration m at time point tn. xm+1 is the vector
of unknown circuit variables. The iteration proceeds until
convergence, xm+1 ≈ xm.

For simplicity, let us rewrite equation (3) solely in terms of
node voltages:

Gmvm+1 = Im. (4)

Equation (4) can be constructed (at each N-R iteration at
each time point) by including the voltages from the previous
iteration, vm, in transistor and other model equations to
derive the terminal currents and the partial derivatives of these
currents with respect to the terminal voltages to give entries for
Im and Gm, respectively. Gm, known as the Jacobian matrix,
can be thought of as a matrix of conductances and Im as a
vector of current sources.



Equation (4) is solved by factorizing Gm into lower and
upper triangular matrices, L and U , and forward and back
substituting to give xm+1. G is usually very sparse (because
in general, electronic components are connected to only 2 or 3
other components) and therefore the solution time is typically
O(N1.5) or better, where N is the number of circuit nodes.

Calculating the entries of G and I can be done in parallel
for each device in the circuit, because there is no interaction
between the devices. Techniques exist for the parallel solution
of matrices. The device evaluation phase must complete before
matrix solution can start and the matrix solution must complete
before the device evaluation in the next iteration can begin.
So there are two barriers that limit the amount of parallel
execution that may be performed, Fig. 1.

Fig. 1. Parallel thread execution

A. Hierarchy

The idea of maintaining the hierarchical partitioning of a
circuit for simulation was first proposed in the mid-1970s [10].
The basic idea is that of node-tearing. From equation (4), the
network equations for one sub-circuit may be stated as:(

G11 G12

G21 G22

) (
v1

v2

)
=

(
I1

I2

)
+

(
i1
0

)
(5)

where v1 is the vector of voltages for the torn (external)
nodes; i1 is the vector of currents flowing into those torn
nodes; v2 are the internal node voltages; G is the Jacobian
matrix for the sub-circuit, with four sub-matrices and I is the
vector of current sources. The iteration count, m, has been
omitted for clarity. Although equation (5) is stated in terms of
nodal analysis for the purposes of this explanation, it may
be extended for modified nodal analysis [11]. This matrix
equation applies at each Newton-Raphson iteration at each
time step in a transient analysis.

By applying partial Gaussian Elimination, the G12 sub-
matrix may be elminated and the G22 matrix transformed to
a lower diagonal form:(

G′
11 0

G′
21 G′

22

) (
v1

v2

)
=

(
I ′

1

I ′
2

)
+

(
i1
0

)
(6)

In effect, this generates a macromodel of the subcircuit, in
terms of its external voltages (v1) and currents (i1), with the

internal node voltages (v2) suppressed. This macromodel can
then be embedded in a sub-circuit in the next higher level of
the hierarchy.

Once the external node voltages (v1) are known, the internal
voltages (v2) are calculated by a simple back substitution.

The sub-circuit hierarchy can be represented as binary tree.
Solving the circuit equations at one N-R iteration at one time
point requires two traversals of this tree. This can be done
using recursive procedures as illustrated in the following two
algorithms.

Algorithm 1 ForwardElim(subcct *ptr)
1: if ptr− >child then
2: ForwardElim(ptr− >child)
3: end if
4: EvaluateDevices(ptr)
5: GaussFore(ptr)
6: if ptr− >sibling then
7: ForwardElim(ptr− >sibling)
8: end if

Algorithm 2 BackSubst(subcct *ptr)
1: GaussBack(ptr)
2: if ptr− >child then
3: BackSubst(ptr− >child)
4: end if
5: if ptr− >sibling then
6: BackSubst(ptr− >sibling)
7: end if

Algorithm 3 Simulation(subcct *maincircuit)
1: while t < tMAX do
2: repeat
3: ForwardElim(maincircuit)
4: BackSubst(maincircuit)
5: until convergence
6: UpdateTimestep
7: end while

The two algorithms are called, in turn, for the main, top-
level circuit until convergence is reached at each time point,
Algorithm 3. EvaluateDevices calculates the contribution of
each device to the sub-circuit matrix equation. GaussFore
performs the forward phase of the Gaussian Elimination for
each sub-circuit and GaussBack does the back substitution. It
can be seen, therefore, that the overwhelming majority of the
computation effort is expended in Algorithm 1.

This hierarchical solution approach has been implemented
in a circuit simulator. If all subcircuits use a common timestep,
the results obtained from a hierarchically partitioned simu-
lation are mathematically the same as for a non-partitioned
circuit. There may, however, be numerical differences because
of a different evaluation order. It should also be noted that



in order to perform the internal node supression, Gaussian
Elimination is used, in contrast to LU factorization, as in
SPICE.

III. SIMULATOR ACCELERATION

The application of OpenMP to the hierarchical circuit
simulator is motivated by a simple observation: the processing
for one sub-circuit can be done at the same time as that for
any of its siblings. Therefore, in principle, a new thread can
be created for each sibling at each level of the hierarchy. It
is, however, true that a child must be processed before its
parent during the Forward Elimination phase (Algorithm 1).
Therefore, there is no useful purpose in creating a new thread
for the first child of any parent.

As has been noted, there is a cost to creating a new thread.
The application of OpenMP has therefore been restricted to
the Forward Elimination phase. This allows parallelization of
both the model evaluation and marix factorization.

Algorithm 1 is therefore rewritten as Algorithm 4.

Algorithm 4 ForwardElim(subcct *ptr)
1: if ptr− >sibling then
2: #pragma omp task
3: ForwardElim(ptr− >sibling)
4: end if
5: if ptr− >child then
6: ForwardElim(ptr− >child)
7: end if
8: EvaluateDevices(ptr)
9: GaussFore(ptr)

10: #pragma omp taskwait

As can be seen, the changes are minimal. The call to process
any sibling is made at the start of the routine. This does
not affect the functionality in any way. A breadth-first, rather
than a depth-first traversal is made, but children are always
processed before their parent. The change is made to allow a
new thread to be created at the start of the algorithm, so that
it will execute concurrently with the remainder of the routine.

The OpenMP directive #pragma omp task is used to
indicate that the call to ForwardElim for the sibling should
be executed as a separate thread. Because this call will be
executed for all the siblings at one level, all siblings would
therefore be processed concurrently in separate threads. It
is possible to attach attributes to the OpenMP directives to
indicate the data scope and hence to protect data against
corruption by other threads. In this case, because of the design
of the data structures and because of the way in which models
are evaluated and matrix values are updated, there is no
interaction between siblings and hence there is no need to
add extra attributes. Data from siblings is collected by their
parent and hence any interaction between siblings occurs after
they have all completed their execution.

A second OpenMP directive is needed at the end of the rou-
tine to ensure synchronization. #pragma omp taskwait
causes the calling routine to wait until any threads that it has

TABLE I
RUN TIMES FOR MULTIPLIER

Threads Run Time (s)
1 59.2
2 81.8
3 81.3
4 71.8
5 64.5
6 56.4
7 47.9
8 40.6

created have completed. Omitting this directive could allow
processing to start on the parent before the children have
completed and hence lead to incorrect or corrupted data.

In addition to these two directives, the two OpenMP
directives #pragma omp parallel and #pragma omp
serial need to be included in the main calling routine to
set up parallel regions and to ensure that the timing and N-R
loop control statements are only executed once, respectively.

In summary, therefore, the recasting the existing hierarchical
circuit simulator as a multi-threaded requires the addition of
just four OpenMP directives and minor rearrangement of some
pieces of code.

IV. RESULTS

OpenMP 3.0 is included in gcc 4.4 [12]. An evaluation
version of a commercial compiler was also used, which gave
similar results, but which are not reported here. All simulations
were run on a Mac Pro with two quad-core, 2.8GHz processors
under Mac OS 10.5.

The number of threads used by a program can be set by
the environment variable OMP_NUM_THREADS. By default,
this is equal to the number of cores, in this case 8. In all the
experiments reported below, OMP_NUM_THREADS was set to
between 1 and 8 to emulate different numbers of available
cores. There is, of course, a small overhead for including the
OpenMP code, even if it is not used, but this is not quantified.

In all cases, the execution time is measured using the time
command. The “real” time is recorded, as this measures the
elapsed time, which is what parallel processing is designed to
reduce.

A. Example 1

The first example is an analog multiplier wth 33 MOS
transistors. 8 instances of the circuit were simulated in parallel.
It might be argued that this is a case of trivial parallelism, but
as the 8 instances are included in the matrix for the main circuit
(in their reduced form), the 8 instances form one simulation.
The run times for a transient analysis of 500ms using 1 to 8
threads are given in Table I.

It can be seen from Table I that the run time actually
increases as more threads become available and that the break-
even point is not reached until 6 threads are available. When 8
threads are available, the run time is about 68% of that for one
thread, or a speed-up of nearly 1.5 times. It must be pointed out
that there is no load balancing. With, for example, 4 threads,



TABLE II
RUN TIMES FOR PCHIP

Threads Run Time (s)
1 68.0
2 60.9
3 54.0
4 46.8
5 38.9
6 30.7
7 23.0
8 15.2

the first 3 sub-circuits each has its own thread, while the final
5 sub-circuits are all processed on the final thread. So these
figures are perhaps more encouraging than might first appear.
The second observation is that there is clearly a significant
overhead to thread creation. This explains the peak at 2 and
3 threads, but also indicates that sub-circuits need to have at
least a few tens of transistors for any saving to be significant.

B. Example 2
The second example is taken from the CircuitSim90 [13]

collection of benchmark circuits. The pchip circuit has 1029
transistors. The input and output buffers were not considered.
Eight instances of the circuit were used, but this time they were
chained together, to avoid any suggestion of trivial parallelism.
The run times for the operating point analysis are given in
Table II and plotted in Fig. 2.

Fig. 2. Run time vs. No. Threads

The trend in Fig. 2 clearly shows that the run time decreases
monotonically with the number of available threads. In this
case, the complexity of the computation far outweighs the cost
of thread creation, so there is no peak at 2 or 3 threads. Again,
there is no load balancing, so, in effect, this shows the time
required to process 8 sub-circuits down to one sub-circuit per
thread. The speed-up is now 4.47 times for 8 threads.

C. Discussion
The results for the second example clearly demonstrate that

it is possible to achieve a significant speed-up in circuit simu-
lation by partitioning the circuit and distributing the processing

across threads running on different cores. The examples given
here use replicated sub-circuits to demonstrate the concept, but
ideally a circuit already partitioned into multiple sub-circuits
would be used. There are very few (if any) such benchmarks
available. Thus, some form of automatic partitioning could
be employed. This is, however, another manifestation of the
clique problem, which is known to be NP-complete.

By working at the sub-circuit level, both device model
evaluation and matrix factorization are performed in parallel.
Amdahl’s Law [14] still applies, of course. Within each
Newton-Raphson iteration, there is still a need to implement
part of the processing as a single thread - the factorization and
solution of the main circuit’s matrix, if nothing else. This will
therefore limit the speed-up that can be achieved and this will
always be less than the maximum implied by the number of
processors.

V. CONCLUSIONS

We have presented an approach to exploiting parallelism
on multi-core, shared memory systems in the context of
circuit-level simulation. By taking a circuit-level simulator that
maintains a hierarchy of sub-circuits internally, we use the
new OpenMP standard to fork sub-circuit processing off to
threads, each of which is running on a separate processor.
Provided that each sub-circuit is complex enough for its
processing to outweigh the cost of creating a new thread, we
have demonstrated significant speed-up over a single threaded
simulation.

REFERENCES

[1] L. Nagel, SPICE2: A Computer Program to Simulate Semiconductor
Circuits. University of California, Berkeley, USA, 1975.

[2] R. Saleh, K. Gallivan, M.-C. Chang, I. Hajj, D. Smart, and T. Trick,
“Parallel circuit simulation on supercomputers,” Proceedings of the
IEEE, vol. 77, no. 12, pp. 1915–1931, Dec 1989.

[3] Y. Ye, F. Liu, S. Nassif, and Y. Cao, “Statistical modeling and sim-
ulation of threshold variation under dopant fluctuations and line-edge
roughness,” Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE, pp. 900–905, June 2008.

[4] D. Sylvester, K. Agarwal, and S. Shah, “Variability in nanometer cmos:
Impact, analysis, and minimization,” Integration, the VLSI Journal,
vol. 41, no. 3, pp. 319 – 339, 2008.

[5] W. Dong, P. Li, and X. Ye, “Wavepipe: Parallel transient simulation
of analog and digital circuits on multi-core shared-memory machines,”
Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE, pp.
238–243, June 2008.

[6] T. Mattson and M. Wrinn, “Parallel programming: Can we PLEASE get
it right this time?” Design Automation Conference, 2008. DAC 2008.
45th ACM/IEEE, pp. 7–11, June 2008.

[7] http://www.openmp.org.
[8] M. Zwolinski and K. Nichols, “The design of a hierarchical circuit-level

simulator,” Electronic Design Automation, 1984.
[9] V. Litovski and M. Zwolinski, VLSI Circuit Simulation and Optimiza-

tion. Chapman and Hall, 1997.
[10] N. Rabbat and H. Hsieh, “A latent macromodular approach to large-scale

sparse networks,” Circuits and Systems, IEEE Transactions on, vol. 23,
no. 12, pp. 745–752, Dec 1976.

[11] C.-W. Ho, A. Ruehli, and P. Brennan, “The modified nodal approach to
network analysis,” Circuits and Systems, IEEE Transactions on, vol. 22,
no. 6, pp. 504–509, Jun 1975.

[12] http://gcc.gnu.org/.
[13] http://www.cbl.ncsu.edu:16080/benchmarks/.
[14] G. Amdahl, “Validity of the single processor approach to achieving

large-scale computing capabilities,” in AFIPS Conference Proceedings,
(30), 1967, pp. 483–485.


