Evaluation of a Guideline by Formal Modelling of
Cruise Control System in Event-B

Sanaz Yeganefard Michael Butler Abdolbaghi Rezazadeh
University of Southampton University of Southampton University of Southampton
United Kingdom United Kingdom United Kingdom
sanaz_yeganeh@yahoo.com mjbQecs.soton.ac.uk ra3Qecs.soton.ac.uk
Abstract

Recently a set of guidelines, or cookbook, has been developed for modelling and refinement
of control problems in Event-B. The Event-B formal method is used for system-level modelling by
defining states of a system and events which act on these states. It also supports refinement of models.
This cookbook is intended to systematise the process of modelling and refining a control problem
system by distinguishing environment, controller and command phenomena. Our main objective
in this paper is to investigate and evaluate the usefulness and effectiveness of this cookbook by
following it throughout the formal modelling of cruise control system found in cars. The outcomes
are identifying the benefits of the cookbook and also giving guidance to its future users.

1 Introduction

Systems which consist of parts to interact with and react to the evolving environment continuously are
known as embedded systems. They are complex and often used in life critical situations which means
costs of their failure are usually high. Thus, reliability, safety and correctness in such systems are impor-
tant [7, [11] and techniques such as formal methods can help to examine the behaviour of these systems
in early development stages [12]. However the process of modelling itself can present considerable
challenges and following modelling guidelines [8, 9] and patterns [16]] can be helpful.

One of these is a set of guidelines, or cookbook, which has been developed recently for modelling and
refinement of control problems in Event-B. Event-B formal method is used for system-level modelling.
The main objective of this paper is to investigate how effective and useful having such a set of guidelines
is by applying it to a real application. Cruise control system (CCS) is the chosen real application for the
modelling, since the attempt of this cookbook is to outline the necessary steps of modelling an embedded
system which consists of a controller, a plant and an operator. Also, in order to make this model a good
example for the future users of the cookbook, some of the main points which helped us during the
modelling are explained as tips.

This paper is organised into 5 sections. In Section [2| the background of this work is discussed. Here
we look at Event-B and its tool Rodin. After that an outline of CCS and the cookbook are given. In
Section [3| the modelling process is explained in more details. The most abstract level of the model is
described in Section [3.] and the refinement steps in[3.2] and [3.3] The refinement proofs related to these
steps have been verified with Rodin tool. Finally in Section [] and [5| we evaluate the cookbook and
consider limitations and future work.

2 Background

2.1 Event-B and Refinement

Formal methods are mathematical based techniques which are used for describing the properties of a sys-
tem. They provide a systematic approach for the specification, development and verification of software
and hardware systems and because of the mathematical basis we can prove that a specification is satisfied

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

by an implementation [[19]. The formal method used in our work is Event-B [5]] which is extended from
B-method [2]]. It has simple concepts within which a complex and discrete system can be modelled. The
main reasons for choosing Event-B are firstly that it is the language used in the cookbook and secondly,
it has advantages such as simplicity of notations and extendibility and thirdly its tool support.

Structure of Event-B Event-B models consist of two constructs, contexts and machines [5,[13]]. Con-
texts which specify the static part of a model and provide axiomatic properties, can contain the following
elements: carrier sets, constants and axioms. Machines represent the dynamic part of a model and can
contain variables, invariants and events. An event consists of two elements, guards which are predicates
to describe the conditions need to hold for the occurrence of an event, and actions which determines
how specific state variables change as a result of the occurrence of the event. A context may extend an
existing context and a machine may refer to one or more contexts.

Event-B Tool Unlike programming languages, not all formal methods are supported by tools [19]].
However, one of the advantages of Event-B is availability of an open source tool which is implemented
on top of an extension of the Eclipse platform. This tool, known as RODIN, provides automatic proof
and a wide range of plug-ins such as the ProB model checker and Camille Text Editor which were used
in our work [l1} 16} 13]].

Refinement Insome systems because of the size of states and the number of transitions, it is impossible
to represent the whole system as one model. Here, refinement can help us to deal with the complexity
in a stepwise manner by working in different abstract levels [19]. There are two forms of refinement;
firstly, feature augmentation refinement (also known as horizontal refinement [[10]]) where in each step
new features of the system are introduced. Secondly, data refinement (also known as vertical or structural
refinement [[10]) which is used to enrich the structure of a model to bring it closer to an implementation
structure.

2.2 Cruise Control System

In order to have a better understanding of CCS an overview of its external observation is given in FigureT]
(based on [4]]). This figure shows the relation between cruise control with the driver and the car. The role
of the cruise control that we are interested in is maintaining the car speed as close as possible to the target
speed which is set by the driver. The ways a driver and the car can interact with CCS are categorised as:

e Driver can switch CCS on or off, define a target speed for the system and increase or decrease this
target speed. Also, the driver can regain the control of the car by using the accelerator, brake, or
clutch.

e The car sends the actual speed as a feedback to the cruise control system.

e CCS signals the desired acceleration to the motor.

2.3 Overview of Cookbook

As mentioned the focus of the cookbook is on control systems which consist of plants, controllers and
in some cases operators who can send commands to the controller (Figure . The modelling steps
suggested in the cookbook are based on the four-variable model of Parnas [18]] and can be divided into

IThe diagram uses Jackson’s Problem Frame notation [[15].

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

+ ROAD FRICTION

N/

CAR

Target
Speed DRIVER

CRUISE
CONTROL

Figure 1: Interaction between driver, cruise control and car (based on [4]]).

two major categories. Firstly, identifying the phenomenon in the environment and secondly representing
the phenomena used for interaction between the controller and the environment (plant and operator) [8,
9.

Variables shared between a plant and a controller, labelled as ‘A’ in Figure [2] are known as en-
vironment variables [8] and are categorised into monitored variables whose values are determined by
the plant and controlled variables whose values are set by the controller. There are also environment
events and control events which update/modify monitored and controlled variables respectively. Also,
in order to add design details the cookbook defines two steps of vertical refinement for introducing in-
ternal controller variables. Firstly adding sensed variables which defines how a controller receives the
value of monitored variable. Secondly, adding actuation variables which sets the value of controlled
variable [8.9].

Operator

Controller

Plant

Figure 2: A control problem system [8} 9].

In addition to the variables introduced in four-variable model, the cookbook suggests the identifica-
tion of the phenomena shared between controller and the operator in the cases where the system involves
an operator, labelled as ‘B’ in Figure[2| These phenomena are represented by command events which are
the commands from an operator and commanded variables whose values are determined by command
events and can affect the way other events behave. The refinement step for defining when a controller
receives a request from the operator is through introducing buttons [8,(9]).

3 Cruise Control Model

The process of modelling CCS is divided into 3 main sections; First of all, in Section [3.T]MO as the most
abstract machine is defined. In order to do this we start with identifying the monitored, controlled and
some of the commanded variables and also their corresponding events as suggested in the cookbook. In
Section[3.2)we discuss horizontal refinements which represent the requirement specification of the system
by introducing the remainder of the command events and commanded variables. Lastly, in Section

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

vertical refinements are defined to introduce the design steps through sensing, actuation and operator
requests.

3.1 Initial Model (MO0)

The process of modelling in the most abstract level starts with identifying the monitored, controlled and
commanded variables. As was mentioned the role of the CCS which we are interested in is maintaining
the actual speed of the car as close as possible to the target speed by controlling the acceleration of the
car.

Monitored Variable and Environment Event Based on the role of the CCS, we identified the actual
car speed as the monitored variable. This variable is represented by sa. Since the value of sa cannot
be bigger than the maximum car speed, a constant named n was defined to represent the maximum car
speed (n € N). Therefore, sa can be defined as sa € 0..n. It is also necessary to add the environment
event UpdateActualSpeed which can update or modify the value of the monitored variable sa.

Tip 1: The source which determines the value of a variable is important and a variable will be cate-
gorised as monitored, if the environment determines its value.

Commanded Variables and Command Events One of the identified commanded variables is st which
represents the target speed determined by the driver. Based on the requirement, the target speed must
be within a specific range. To model this the two [b and ub constants were defined to demonstrate
the minimum and maximum of target speed. This results in having the invariant stFlg = TRUE =
st € Ib..ub, showing that when st is defined it must be within the accepted range. The variable stFig
shown in the previous invariants is a boolean variable which turns to TRUE when st is set by the driver
(stFlg € BOOL). This flag is defined to represent whether the target speed has been defined or not. This
is necessary as the CCS will control the car speed only when it has been switched on (status = ON) and
the target speed has been defined (stFlg = TRUE).

The other commanded variable is named stafus. This variable is an element of a set called STATUS
and shows the current status of CCS (status € STATUS). The set STATUS represents the three possible
statuses that CCS can be in at one moment of time. These three statuses are ON, OFF and SUSPEND
which means CCS does not control the car speed as the result of the driver using one on the pedals. This
is discussed in more details in Section

Tip 2: Variables such as target speed can also be seen as monitored variables. However, we suggest
defining them as commanded variables. This is because firstly these variables are internal to the controller
and secondly their values are determined by an operator rather than environment.

Corresponding to these commanded variables the following command events were defined:

o SetlargetSpeed: when cruise control is on, driver can set st to the actual speed of the car.

o ModifylargetSpeed: modifying st when CCS is on and stFlg is TRUE. Notice that at this level of
abstraction we do not separate increment and decrement.

o StatusOn, Suspend, and SwitchOff: update status variable. In this level of abstraction we consider
the relation between different values of status variable regardless of what causes changes (Fig-
ure [3] (a)). For instance, it is possible to get to ON from status OFF. This is shown in Figure 3] (b)
where we added the guard grdl that status can be OFF and the action is status := ON.

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

StatusOn in MO
event StatusOn
where
@grdl status € {OFF, SUSPEND}
then
Gactl status = ON
end

(a) (b)

Figure 3: (a) The relation between different statuses of the cruise control system and (b) event StatusOn.

Controlled Variable and Control Event Based on the role of the CCS we identified acceleration as
the only controlled variable (acceleration € 7). Also, in order to update its value, we added the control
event UpdateAcceleration. To do this a function named accFun, which returns the value of acceleration
based on actual speed and target speed, is defined. This is a total function since there must be a value
defined for every tuple of st and sa (accFun € lb..ub x 0..n — Z). Therefore, the action which sets the
value of acceleration is defined as acceleration := accFun(st — sa).

Tip 3: The source which determines the value of a controlled variable is important and a variable will
be categorised as controlled, if the controller determines its value.

3.2 Horizontal Refinements

In order to simplify the refinement steps, firstly all horizontal refinements were done and then vertical
refinements. Horizontal refinements resulted in adding machines M1 to M3 to the model where every
machine refines its previous machine. In machine M1 the action of increment and decrement of variable
st are separated. According to the requirement document driver can interact with CCS through the pedals.
The pedals are introduced to the model in machine M2. In the final step, the horizontal refinement gear
is added.

Tip 4: Separation of horizontal and vertical refinement simplifies the process of modelling.

3.2.1 First Refinement (M1)

In this step of refinement the event ModifyTargetSpeed has been separated into two increase and decrease
events In order to do this, we add the constant unit which defines the value added to/subtracted from s¢
to increase/decrease it. It was possible to define these two events in the initial model. However we prefer
to keep the initial model as abstract as possible to avoid any complexity.

3.2.2 Second Refinement (M2)

In this machine pedals which are a way for a driver to interact with CCS [4] are introduced to the model.
Notice that all the variables introduced in this section are commanded variables and in the chain of
horizontal refinements we only deal with commanded variables and command events.

Based on the requirement, pressing the accelerator, when CCS controls the car speed, will suspend
the system temporarily and when the driver stops using this pedal, the CCS will regain the control of the
car speed. However, using either brake or clutch causes permanent suspension and this suspension can be
resumed by the driver. To distinguish the two types of permanent and temporary suspension, we defined
a variable which shows sub-states of the super status SUSPEND. This variable, named permanentSusp is
of type of boolean and is set to TRUE when CCS is permanently suspended. The other approach would
be to introduce a new set consists of {on, off, permanentSusp, tempSusp} which refines the set STATUS.

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

However this can make the process of refinement proof slightly more complicated. Also, we defined two
boolean variables brkCltchPdl and accelerationPdl to represent the relevant pedals. These variables are
set to TRUE when their relevant pedals are pressed.

In the first modelling attempt we defined four events to represent actions of pressing and releasing
of each accelerator pedal and brake/clutch pedals when CCS controls the car speed. In order to update
the value of status, some of these events must refine one of the events StatusOn or Suspend from MO.
Firstly, the event PressAcceleratorPdl refines Suspend and causes the value of status to change from
ON to SUSPEND. Also, event StopAcceleratorPdl which represents the release of the accelerator refines
StatusOn and returns the value of status to ON. In order to ensure this event can happen only when CCS
is temporarily suspended, a guard showing permanentSusp must be FALSE is added to the event.

In a very similar way event PressBrkCltchPdl refines event Suspend and causes the value of status to
change from ON or SUSPEND to SUSPEND. Notice that because pressing the brake/clutch is stronger
than pressing the accelerator, using the brake or clutch while accelerator is pressed must cause permanent
suspension. Finally, event StopBrkCltchPdl does not change variable status and only updates the vari-
able brkCltchPdl. This is because CCS stays suspended when the driver releases brake/clutch. The other
event which was defined to model the resume of the CCS from permanent suspension is Resume. This
event allows the CCS to regain the control of the car speed by changing variable status to ON and vari-
able permanentSusp to FALSE. Also this event can only happen when CCS is permanently suspended.
Therefore, the flag permanentSusp must be TRUE in order for this event to be enabled.

3.2.3 Third Refinement (M3)

The last machine of horizontal refinements is M3 where the gear is introduced, because CCS can be
switched on only when the vehicle is in second or higher gear. This is modelled by adding variable gear
whose type is a number from -1 to 5 where -1 represents reverse gear, 0 neutral and 1 to 5 represent first
to fifth gear. Also, event ChangeGear is introduced to be able to change the value of gear.

3.3 Vertical Refinements

M3 was the last machine of feature augmentation (horizontal) refinements. The remainder of our model
consists of machines M4 to M6 which represent the added design details to M3. In the same way as
horizontal refinement every machine refines its previous one. These structural (vertical) refinements are
based on the cookbook [8,[9].

The first vertical refinement suggested in the cookbook is to introduce sensors through which the
controller receives the value of monitored variable. This is modelled in machine M4 by defining an
internal variable which gets the value of sa by sensing it through an event. In the same way, CCS has
an internal variable which sets the value of controlled variable. This internal variable acts as an actuator
for the controlled variable. This design detail is introduced in machine M5. Finally, M6 represents the
design of buttons through which the driver sends a request to the CCS. According to the cookbook every
button is modelled as a boolean variable and the action of pressing that button is modelled as an event.
We will discuss these refinements further in the remainder of this section.

Tip 5: Introduce each of the three steps of vertical refinement in a separate machine in order to have
less complicated Event-B machines and consequently less proof obligations in each step.

3.3.1 Forth Refinement (M4)

CCS receives the value of a monitored variable through sensors. The sensed/received value needs to
be defined as an internal variable for the CCS in order to distinguish values of a sensed variable and a

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

monitored variable [8,/9]. We defined sensedSa as the sensed variable and an event called SenseSa which
sets sensedSa to the current value of sa. Since the two monitored and sensed variables are not always
equal, their equality is represented as a boolean flag [9]. This flag is called sensFlg and becomes TRUE
when event SenseSa sets variable sensedSa to sa.

Tip 6: For every monitored variable, defining one sensed variable and one boolean flag is necessary.
The sensed variable is of the same type as its corresponding monitored variable and usually is initialised
to the same value as the monitored variable is initialised to.

Based on the cookbook, variable sa in the control event UpdateAcceleration was substituted with
sensedSa (Figure [(a), @actl) in this refinement. Also, this event can only happen when sensedSa is
equal to sa which is the reason for adding @grd2 in Figure {4 (a). The cookbook also suggests adding the
invariant sensFlg = TRUE = sensedSa = sa in order to ensure that when sensFlg is TRUE, sensedSa
represents the value of sa [9]. This results in a proof problem in UpdateActualSpeed, since it can change
the value of sa while sensFlg is TRUE. Therefore, it is necessary to add the guard sensFlg = FALSE to
this event. Notice that we assumed in between the CCS sensing the value of monitored variable sa and
setting the acceleration, the monitored variable does not change. This is an engineering simplification
which helps us to reduce some of the complexity of the modelling of the system.

event UpdatelAcceleration event Update actAcc event
refines ActuatinglAcceleration
UpdateBAcceleration where refines
where Egrdl status = ON UpdatelAcceleration
@grdl status = ON @grdZ stFlg = TRUE where
fgrd2 stFlg = TRUE @grd3 sensFlg = TRUE fgrdl actFlg = TRUE
@grd3 sensFlg = TRUE then then
then @actl actAcc = @act]l acceleration =
@Bactl acceleration = accFun (st = sensedSa) acthcc
accFun(st—sensedSa) @actZ actFlg = TRUE actZ sensFlg =FALSE
fact? sensFlg :=FALSE fact3 actFlg := FALSE
end end end
(a) (b) (©

Figure 4: (a) Event UpdateAcceleration in M4, (b) events Update_actAcc in M5 and (c) event Actuatin-
gAcceleration in M5.

3.3.2 Fifth Refinement (M5)

In this machine we discuss that CCS decides on the value of acceleration distinctly from actuating it [9]].
Based on the cookbook, to do this we need to define an actuation variable and a boolean flag. These are
named actAcc and actFlg respectively. The flag actFlg will be set to TRUE when the internal process of
determining the value of a controlled variable is finished and this variable can be actuated.

Tip 7: For every controlled variable, defining one actuation variable and one boolean flag is necessary.
Also, the actuation variable is of the same type as its corresponding controlled variable and usually is
initialised to the same value as the controlled variable initialisation.

According to the cookbook, we also defined two events. Firstly, an internal event called Update_actAcc,
to set the value of actuation variable actAcc and set the flag actFlg to TRUE (Figure 4| (b), @actl and
@act2). Secondly, ActuatingAcceleration which sets the value of acceleration to the value of the internal
variable actAcc and turns actFlg to FALSE (Figure [Z_f] (c), @actl and @act3). This event refines the
control event UpdateAcceleration, since it modifies the value of acceleration. Note that ActuatingAc-
celeration can happen only when the value of actAcc is decided by the controller, therefore the guard
actFlg = TRUE is added to this event (Figure 4] (c), @grdl).

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

In addition to these variables and events, based on the cookbook it is necessary to define two invari-
ants. The first invariant represents that in between control decision on the value of actAcc and actuation
of acceleration, we assume st and sensedSa do not change. The second invariant shows that after actua-
tion of acceleration the value of this variable and actAcc are equal. Although it is not mentioned in the
cookbook, this invariant is only needed when the value of the controlled variable changes depending on
its previous value as well as some other variables. Since this is not the case in this model, defining the
second invariant is unnecessary.

Tip 8: Invariant actFlg = FALSE = actAcc = acceleration mentioned in the cookbook is unnecessary
if the value of controlled variable is set independent of its previous value.

3.3.3 Sixth Refinement (M6)

In this section the operator’s command request and CCS’s response are distinguished by introducing
buttons. According to the cookbook, a boolean variable representing a button, needs to be defined for
every command event. Also the action of pressing a button should be introduced through an event which
sets the button variable to TRUE [9]. We introduced the followings as buttons: switchBtn, setBtn, incBtn,
decBtn and rsmBtn. Because CCS responds to a request only after the relevant button has been pressed,
a guard which requires the relevant button to be TRUE is added to each command event. Also, CCS
turns the relevant button back to FALSE when it responds to the request. Notice, there is no button
defined for the command events related to pedals, since pedal variables brkCltchPdl and acceleratPdl in
Section [3.2.2]count as buttons. Also, there are cases where CCS cannot respond to a coming request, for
instance when CCS is OFF. These cases are not mentioned in the cookbook, but we prefer to model these
situations as ignorance of CCS to the button’s request.

Tip 9: For every button an event can be defined to represent cases where there should be no response
to the pressed button. We add this event by defining its guards as the negation of the conjunction of all
the guards in the command event corresponds to the button.

This is the last machine of our model and we have modelled the CCS based on the requirement
document and the cookbook. In the remainder of this paper we reflect on the results of this work.

4 Results and Limitations

4.1 Evaluation of the Cookbook

The cookbook is mainly a guideline on vertical refinement. In addition to vertical refinement guidance,
the cookbook suggests identifying monitored, controlled and commanded variables and their correspond-
ing events at the most abstract level of a model. Once the variables are found, identifying events which
modify and update them in horizontal refinements becomes straightforward. Also, the focus of the cook-
book is mainly on the discrete aspects such as status, pedals and buttons and less on continuous, since
many of the complexity of the requirements are related to discrete aspects.

One of the other advantages of using cookbook is that almost all the necessary variables, events and
invariants for every step of vertical refinement are described. This can be helpful for the designers with
not a lot of knowledge on formal modelling in Event-B. In addition, some proof problems caused by
the invariants mentioned in the cookbook can help to identify errors of the model. In our work, the
process of modelling machines M4 to M6, which was done based on the cookbook, was reasonably easy.
In particular, M4 where the sensor was introduced had the most effortless refinement. However, the
cookbook lacks a means of dealing with some issues which can raise during modelling process, such as
modelling ignorance of a button, mentioned in Section [3.3.3]

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

Finally, based on the achieved results we believe the main advantage of following the cookbook is
the structure that it gives to the process of modelling and refinement. While deciding on how to organise
the refinement steps is known as a source of difficulty in the usage of refinement [3|], modelling a control
problem domain based on the cookbook can help to identify the required steps of refinement quicker and
easier. In the case of this work the steps of vertical refinements in machines M4 to M6 were decided
purely based on the cookbook.

4.2 Limitations

The limitations of this work can be categorised into two types. Firstly, limitations imposed by formal
methods themselves, although we should consider that gained benefits may outweigh these limitations.
A detailed discussion is beyond the scope of this paper but as an outline one of the limitations is that
models can only cover some aspects of a system’s behaviours, because mapping formal model and the
real world in limited [12]. The second types of limitations are what we have not considered in the
process of modelling. First of all we have not considered fault-tolerance and failure of the hardware and
it is assumed that the components do not fail. Also, timing and time constraints are not discussed. It
is important to notice that our intention was not to prepare a model which is ready to be implemented.
Therefore, such limitations will be considered in future work.

5 Related work, Future work and Conclusion

5.1 Related Work

One of the other approaches for development of embedded systems is Problem Frames (PFs) developed
by Michael Jackson. This approach focuses on the separation of problem (what the system will do) and
solution (how it will do it) domain. PFs describe any system engineering problem through the concept of
a machine which is going to be design by a software application, problem world and requirement [17]].
As part of the Deploy project a cruise control system was modelled using PFs. Here, the concepts of
PFs are as followings: Machine is the cruise control software; Problem world is anything that cruise
control software interacts with, such as pedals and driver; Requirement is controlling phenomena which
otherwise would be controlled by the driver, here controlling the car speed [17].

The other work which is related to the cookbook is SCR (Software Cost Reduction) [14]]. SCR
is a requirement method for real-time embedded systems which is, in the same way as the cookbook,
based on the four-variable model of Parnas [18]]. As well as identifying the four variables of the Parnas
model, SCR defines the following four constructs [[14]: modes which represent states of a monitored
variable; ferms which are auxiliary functions defined to make the specification more concise; conditions
to represent predicates and events to show the changes of the values in the model.

5.2 Future Work

The model of cruise control system represented in this paper contains the platform, the environment and
the software application. Separation of these concepts through decomposition in later steps of design
allows us to derive a specification of the control system, since the software and the hardware are being
separated. In addition, other aspects of an embedded system are usually analysed and modelled through
different techniques to formal methods. In order to ensure that cruise control system and other models
of the system such as a model of car engine are consistent, meta-modelling can be used.

Evaluation of a Modelling Cookbook Yeganefard, Butler, and Rezazadeh

5.3 Conclusion

This work has achieved its main objectives in evaluation of the cookbook and preparation of the best
design model for the cruise control system. We showed how the cookbook can make the process of
modelling simpler and how it can help to find modelling errors. Also, the model of cruise control system
represented in this paper and the given tips can be used by future users of the cookbook. We believe the
outcomes of this work have contributed to the research in refinement-based methods such as Event-B
and have the potential of leading to improved patterns and guidelines.

Acknowledgement : This work is partly supported by the EU research project ICT 214158 DEPLOY
(Industrial deployment of system engineering methods providing high dependability and productivity)
www.deploy-project.eu.

References

[1] Roadmap for rodin platform. http://wiki.event-b.org/images/Roadmap.pdf} 2009. cited: 2009 Sep.

[2] Jean-Raymond Abrial. The B-book: assigning programs to meanings. Cambridge University Press, 1996.

[3] Jean-Raymond Abrial. Formal methods in industry: achievements, problems, future. In ICSE, pages 761—
768, 2006.

[4] Jean-Raymond Abrial. Cruise control requirement document. Technical report, Internal report of the Deploy
project, 2009.

[5] Jean-Raymond Abrial. Modeling in Event-B. To be published, 2010.

[6] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, and Laurent Voisin. An open extensible tool
environment for Event-B. In ICFEM, pages 588-605, 2006.

[7] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantiation of discrete mod-
els: Application to event-b. Fundam. Inform., 77(1-2):1-28, 2007.

[8] Michael Butler. Chapter 8 modelling guidelines for discrete control systems, Deploy deliverable
d15, d6.1 advances in methods public document. http://www.deploy-project.eu/pdf/D15-D6.
1-Advances-in-Methodological-WPs. .pdf, 2009. cited 2009 7th July.

[9] Michael Butler. Towards a cookbook for modelling and refinement of control problems. in Working Paper.
ECS, University of Southampton, 2009.

[10] Kriangsak Damchoom and Michael Butler. Applying event and machine decomposition to a flash-based
filestore in event-b. In SBMF, pages 134152, 2009.

[11] Stephen Edwards, Luciano Lavagno, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. Design of em-
bedded systems: Formal models, validation, and synthesis. In Proc. of the IEEE, pages 366-390, 1997.

[12] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19, 1990.

[13] Stefan Hallerstede. Justifications for the Event-B modelling notation. Lecture Notes in Computer Science,
4355:49-63, 2006.

[14] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Automated consistency checking of re-
quirements specifications. ACM Trans. Softw. Eng. Methodol., 5(3):231-261, 1996.

[15] Michael Jackson. Problem Frames: Analyzing and Structuring Software Development Problems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[16] Xin B. Li and Feng X. Zhao. Formal development of a washing machine controller model based on formal
design patterns. WTOS, 7(12):1463—-1472, 2008.

[17] Felix Losch. Chapter 6 problem frames, Deploy deliverable d15, d6.1 advances in methods public
document. http://www.deploy-project.eu/pdf/D15-D6.1-Advances-in-Methodological-WPs.
.pdf} 2009. cited 2009 3rd Aug.

[18] David Lorge Parnas and Jan Madey. Functional documents for computer systems. Sci. Comput. Program.,
25(1):41-61, 1995.

[19] Jeannette M. Wing. A specifier’s introduction to formal methods. IEEE Computer, 23(9):8-24, 1990.

http://wiki.event-b.org/images/Roadmap.pdf
http://www.deploy-project.eu/pdf/D15-D6.1-Advances-in-Methodological-WPs..pdf
http://www.deploy-project.eu/pdf/D15-D6.1-Advances-in-Methodological-WPs..pdf
http://www.deploy-project.eu/pdf/D15-D6.1-Advances-in-Methodological-WPs..pdf
http://www.deploy-project.eu/pdf/D15-D6.1-Advances-in-Methodological-WPs..pdf

	Introduction
	 Background
	 Event-B and Refinement
	 Cruise Control System
	 Overview of Cookbook

	 Cruise Control Model
	 Initial Model (M0)
	 Horizontal Refinements
	 First Refinement (M1)
	 Second Refinement (M2)
	 Third Refinement (M3)

	 Vertical Refinements
	 Forth Refinement (M4)
	 Fifth Refinement (M5)
	 Sixth Refinement (M6)

	 Results and Limitations
	 Evaluation of the Cookbook
	 Limitations

	 Related work, Future work and Conclusion
	 Related Work
	 Future Work
	 Conclusion

