IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Benefits of a Population: Five Mechanisms that
Advantage Population-Based Algorithms

Adam Priigel-Bennett
School of Electronics and Computer Science, University of Southampton, SO17 1BJ, UK.

Abstract—This paper identifies five distinct mechanisms by
which a population-based algorithm might have an advantage
over a solo-search algorithm in classical optimisation. These
mechanisms are illustrated through a number of toy problems.
Simulations are presented comparing different search algorithms
on these problems. The plausibility of these mechanisms occur-
ring in classical optimisation problems is discussed.

The first mechanism we consider relies on putting together
building blocks from different solutions. This is extended to
include problems containing critical variables. The second mech-
anism is the result of focusing of the search caused by crossover.
Also discussed in this context is strong focusing produced by
averaging many solutions. The next mechanism to be examined
is the ability of a population to act as a low-pass filter of the
landscape, ignoring local distractions. The fourth mechanism is
a population’s ability to search different parts of the fitness
landscape, thus hedging against bad luck in the initial position or
the decisions it makes. The final mechanism is the opportunity of
learning useful parameter values to balance exploration against
exploitation.

Index Terms—Populations, genetic algorithms, crossover,
building blocks, critical variables, focusing, low-pass filtering,
hedging, parameter tuning.

I. INTRODUCTION

MPIRICALLY population-based algorithms have been

found to perform well on many real world problems.
This has led to an effort by theorists to understand and explain
this behaviour. This paper attempts to categorise the different
mechanisms whereby a population has an advantage over a
solo-search algorithm in the belief that a better understanding
of the benefits of populations might lead to improved algo-
rithms.

This paper focuses on mechanisms that provide a benefit to
population-based algorithms which are “generic” to a reason-
ably large set of real world problems. There is considerable
subjectivity in making this judgement as the set of potential
real world optimisation problems is unknown. This paper has a
clear bias towards mechanism studied by the author. The paper
excludes carefully manufactured problem even though some
of these show that population-based algorithms have provably
superior performance to solo-search algorithms (e.g. [1], [2]).
The problems presented in the cited papers, and many similar
papers, highlight the fact that there are a huge number of
mechanisms by which a population can be beneficial (or
sometimes detrimental). However, many of these mechanisms
depend on specific properties of the landscape structure. The
hope of this paper is that each of the five mechanisms we
have identified is applicable to a large ‘genus’ of problems

in the hierarchy of all problems. We know from the no free
lunch theorem [3] that, when considering a sufficiently large
set of problems, populations offer no benefit on average over
other search algorithms. This does not contradict the premise
of this paper as, at least in the author’s view, the problems of
interest in the real world are only a small subset of all possible
problems.

Although we are interested in mechanisms that should be
relevant to real world problems we illustrate many of them
using toy problems, as these make the mechanism more easily
understood. An attempt has been made to choose “natural toy
problems” which do not require much fine tuning. Again there
is a considerable subjective bias in deciding what constitutes
a natural toy problem. Many of the toy problems described
in this paper have been proposed elsewhere, although a few
of the problems appear here for the first time. By collecting
them together it is hoped they will provide a more rounded
picture of the possible benefits of populations. This paper
is informal in that it provides no proof of time complexity,
instead we give plausibility arguments for the efficiency of
different algorithms. In the case where concrete problems have
been proposed, we often show simulation results. These are
intended to illustrate the behaviour of different algorithms on
the problems of interest and are not exhaustive tests. For those
with a rigorous bent, this paper can be viewed as a challenge to
prove time complexity results for these, or related, problems.

As an additional caveat, it should be stressed that this
paper focuses on classical optimisation of, primarily, com-
binatorial problems. There are other application areas where
the use of populations carry benefits. For example, in multi-
objective optimisation, populations provide a natural way to
approximate the Pareto front. As another example, in statistical
sampling using Monte Carlo methods, populations provide a
greater independence. This paper does not attempt to survey
these important applications of population-based algorithms,
primarily dues to the lack of expertise in these areas of the
author. Populations have also proved very successful in solving
problems where evaluating the fitness function is subject
to sampling noise or in dynamically changing environments
where the fitness function is no longer static. Although impor-
tant, these applications fall outside of the remit of this paper.
Finally, by focusing on classical optimisation, no attempt has
been made to describing mechanisms that are plausible from
a biological perspective.

The paper is organised as follows. We start by outlining the
cost of using a population, since the benefit provided by using
a population must out-weigh this cost. The next five sections

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

take each of the mechanisms in turn and describe how they
work. We start with building block problems and those involv-
ing critical variables in section III. In section IV, we discuss
focusing produced by crossover and strong focusing produced
by averaging. We then consider the ability of populations to
ignore distractions in the landscape in section V. In section VI,
we consider the benefits of exploring different parts of the
fitness landscape. The last mechanism we discuss is learning
useful parameters, discussed in section VII. Finally, we draw
conclusions in section VIII.

II. COST OF POPULATIONS

Using a population as opposed to a solo-searcher comes
with a potential cost that every member of the population must
be moved. Given a population of size P this leads to a potential
increase in the required number of function evaluations by
a factor P. Whether this price is paid will depend on the
problem. For example, this would be the (approximate) loss
in performance if we tried to solve the Onesmax problem using
a population of hill-climbers, as the typical time to solve this
problem varies little between runs. Although Onesmax is very
well-known, variants of it will reappear many times in this
paper and so we take the trouble of defining it formally. The
problem consists of a binary string X = (X1, Xo, ..., X,),
where X; € {0, 1}. The fitness, which is to be maximised, is
equal to the number of 1’s in the string

FOnesmax(X) = Z Xi.
i=1

Starting from a random string, a solo hill-climber has to
change all its O variables to 1’s. Since almost all members of
the initial population will have approximately equal numbers
of 1’s and 0’s, there is very little variation in the run time of
different hill-climbers.

In problems where the solution could appear anywhere in
the search space, the linear cost of having to move every
member of the population is often offset by the fact that there
are P searchers. For example, in the Needle-in-a-haystack
problem, where one point in the search space is optimal and
all other points have the same fitness, a population would
search the space as effectively (or perhaps we should say
ineffectively) as a solo-searcher.

Problems of interest tend to fall somewhere between the
Onesmax problem and the Needle-in-a-haystack problem—
that is, Onesmax is of little interest as it is too easy with
very strong heuristics about the location of the optima, while
the Needle-in-a-haystack is of little interest as it is too hard
have no heuristic information about the location of the global
optimum. Problems lying in the middle of this spectrum give
more scope for populations to provide a significant advantage
compared to a solo-searcher.

III. BUILDING-BLOCKS AND CRITICAL VARIABLES
A. Concatenated-V Problem

One of the oldest explanations for the benefits of a pop-
ulation is that it allows different parts of the solution to be

discovered in different individuals and then these ‘building-
blocks’ are put together through crossover. This mechanism,
clearly, relies on combining solutions using crossover. Despite
the attractions of this idea it is non-trivial to construct a toy
problem that demonstrated how the building-block hypothesis
would work (we will, however, do this below). Perhaps the
best known toy problem, that was originally proposed to show
this mechanism at work, is the Royal Road function [4].
The problem is described by a binary string divided into a
number of blocks. The fitness is proportional to the number
of blocks consisting of all 1’s. The idea is that the blocks
could be solved in different individuals and then combined
together by single-point crossover. This problem, however,
failed to show any benefit from using a population, with a
simple hill-climber out-performing a genetic algorithm. The
reason for this is that there is no advantage to discovering
the blocks in different members of the population as opposed
to a single member. We shall see below that a modification
of this block problem can lead to a problem where a genetic
algorithm substantially out-performs more traditional search
algorithms. Other problems have also been proposed which
attempt to show that populations using crossover can put
together building blocks, such as the H-IFF problem [5], [6].
These need to be carefully tuned in order to work and are not
discussed here.

An example, of a problem that demonstrates a building-
block mechanism is the Concatenated-V problem. Again we
consider a binary string where the variables are grouped into
blocks. For simplicity we assume the blocks consist of &
variables and there are m blocks, where the fitness is equal to

k

k—1

5 —ZXkH-j :
j=1

An example of the block fitness function, F;(X), for a block
with 7 variables is shown in figure 1. The total fitness is equal
to the sum of the fitnesses of each block, and each block is
maximised when all the variables in it are equal to 1. However,
each block also has a local maximum when all the variables
are equal to 0. To illuminate the properties of this problem

m—1

Fey(X) = Z Fi(X), F(X)=
i=0

A

Iy

Block fitness, F;(X)

1 2 3 1 5 ¢ 71

7
Number of Ones in Block, > X7,
j=1

Fig. 1. Example of the block fitness function used in the Concatenated-)
problem for a block of 7 bits.

we can draw the ‘barrier tree’ of the landscape [7], [8].
Barrier trees provide a pictorial representation of the fitness

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

landscape which highlights the local maxima, and the fitness
barriers needed to move between them. They are constructed
by lumping together configurations of the same fitness which
are accessible through a path that does not exceed the fitness
of the current configurations. Figure 2 shows a barrier tree
for the block problem with m = 4 blocks of k = 7 variables
each. Each point represents a set of configurations which are
placed vertically according to their fitness (following the usual
convention for barrier trees, higher fitness configurations are
plotted lower on the tree). The nodes in the tree are connected
if there are neighbouring configurations in the two sets of
configurations and there are no other configurations with a
smaller fitness gap. To save space we have truncated the tree

8
9
2o —
= 1
AN
I 12
X 13
z
e 14
15
16
Fig. 2. Barrier tree of the Concatenated-} problem with m = 4 blocks

each consisting of k = 7 variables. A Hamming neighbourhood is used in
constructing the tree. Only high cost configurations are shown.

at a fitness of 8, lower fitness solutions would lie on a single
main trunk which goes to a fitness of zero. Each leaf in the
barrier tree represents a local optimum state. The tree shows
the lowest barrier that needs to be crossed to move between
local maxima through single variable flips. Thus to move from
any of the 4 local maxima at cost 15 to the global maximum
at cost 16 requires going through a configuration of cost 12
in the best case (since we have to move from a configuration
in which one of the blocks is all 0’s to a configuration where
3 of the variables are 1’s, at which stage a hill-climber could
reach the global maxima). Note, that the number of leaves in
the tree is 2™ and thus grows exponentially with the number
of blocks, m, while the heights of the barriers grow linearly
with the number of variables in each block, k.

A local hill-climber (flipping one bit at a time) will drive
each block to a state of all 1’s or all 0’s depending on the initial
number of 1’s in the block. There is a small bias towards
the all 1’s state, so that for a block of size kK = 7 a hill-
climber will end up in the all 1’s state with a probability of
p1 = 21/32 = 0.656 (this is easily computed by enumerating
all possible start states and computing the probability of them
finishing in a particular end state). This probability slowly
decreases towards 0.5 as k increases. The probability of a
hill-climber performing single-site mutation finishing with [
blocks in the all 1’s state and n — [blocks in the all 0’s state
is simply given by a binomial distribution with probability
p1. Thus, for m = 4 and k = 7 (the problem illustrated in
figures 1 and 2) the expected fitness reached by a hill-climber
is 14.625 £ 1 while the probability of ending up in the all

1’s state with fitness 16 is 0.185; for m = 10 and k = 7 the
expected fitness is 36.6 & 1.5 with the probability of ending
up in the all 1’s state with fitness 40 being 0.015; while for
m = 100 and k = 7 the expected final fitness for a hill-
climber is 366 &+ 5 with the probability of ending up in the all
1’s state with fitness 400 is 5 x 10719, We note that as the
number of states grow it becomes exponentially unlikely for
a hill-climber to find the optimum state.

To illustrate the performance of different algorithms on this
problem we run them on a problem with m = 64 blocks
and with k = 7 variables per block. The maximum fitness
for this problem is 256. Figure 3 shows the performance of
different algorithms on this problem. Each algorithm was run
1000 times. The curves show the mean fitness as a function of
the number of function evaluations. The empirical error bars
are similar in size to the line width and are not shown. We

Concatenated-V Problem, m=64, k=7

256 T
2241
@ 192
i
iT
(é)’ 160
o) I ® Hill Climber
5: 128 \ m Random Mutation Hill Climber, u= 6/n
Smulated Annealing, T = 10x0.9999'
A GA: nox-over, P=100, 8= 1,u= 1n
96‘ < GA: uniformx-over, P= 100, = 1,u= 1/n
i Hybrid-GA: uniform x-over, P = 100, 8= 0.1, n, = 20
)
64T ! ! !
0 50000 100000 150000 200000
Number of function evaluations
Fig. 3. The fitness averaged over 1000 runs for different algorithm on the

Concatenated-V problem with m=64 and k=7 versus the number of function
evaluations.

treat the hill-climber as a baseline algorithm. For this problem
it reaches a mean fitness of 234 with an expected standard
deviation of 3.8. The probability of a hill-climber reaching
the global maximum is 2.7 x 10713, Thus trying to solve the
problem by performing repeated runs of a hill-climber is a
very slow method to solve this problem.

A simple elaboration of a hill-climber is the random mu-
tation hill-climber where at each step, rather than mutate a
single variable, we attempt to mutate each variable of the string
with a probability u. If it reaches a state of equal or higher
fitness than the current state, then it accepts the mutations,
otherwise it stays in the current state. Compared with the
hill-climber this allows the random mutation hill-climber to
mutate a block from the local optimum state to the global
optimum state, however, because these states are far apart this
is very unlikely unless the mutation rate is very high. However,
because there are many blocks a large mutation rate is likely
to disrupt a good block so that, as the solution improves, it
becomes increasing difficult to find an improving move. In
consequence, a random mutation hill-climber does little better
then a normal hill-climber. For small mutation rates it behaves

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

very similarly to a normal hill-climber. For larger mutation
rates it explores the the search space through a set of large
macro-mutations. Although this slows down the search, given
enough time larger mutation rates are found to give slightly
better performance than smaller rates. In figure 3, we show
a random mutation hill-climber with a mutation rate of 6/n
so that on average about 6 of the 448 variables are mutated
at each step. Through initial experimentation this seems to be
close to the optimal fixed mutation rate (we may have done
better by annealing the mutation rate, but this was not tried).

A stochastic hill-climber sometimes makes a move that
decreases the fitness. In principle, this can allow it to escape
from a state where a block is in the local optimum to the
global optimum, but as with the random mutation hill-climber
the chance of this is low because of the large Hamming
distance between a block of all 0’s and a block of all 1’s.
In figure 3, we show the result of simulated annealing where
the stochastic hill-climber tries flipping a randomly chosen
variable. If the new configuration has an equal or higher fitness
than the current state then the searcher moves to the new state,
otherwise it accepts the move with a probability exp(AF/T)
where AF is the (negative) change in fitness and T is the
annealing temperature (this is just the famous Metropolis
algorithm used in Monte Carlo simulations). The annealing
temperature was chosen to be T = 10 x 0.9999° where ¢
is the number of steps—thus the annealing temperature, and
consequently the probability of making a fitness decreasing
move, drops slowly towards zero. Again these parameters
were chosen after some experimentation. Finding the optimum
annealing schedule is hard because there is a lot of flexibility
in its choice. For small sized systems, it is possible to build
an exact Markov Chain model which then allows the optimum
annealing schedule to be found. We describe optimal annealing
schedules computed for this problem with m=10 and k=7 in
appendix A. For the problem discussed here with m = 64 and
k = 7 it is not feasible to find the optimal annealing schedule,
although the results in appendix A suggest that using the
optimal annealing schedule is unlikely to substantially improve
the performance of simulated annealing over a well chosen
exponential schedule like the one shown. As can be seen in
figure 3, simulated annealing was the best algorithm we tested
after a hybrid-GA.

We also attempted to solve this problem with different
variants of genetic algorithms. In each case, we used scaled
Boltzmann selection where each member of the population is
chosen with a probability proportional to exp(8 F'/o), where
F' is the fitness of the member of the population, o is the
standard deviation in the fitness of the population, and 3 is
selection parameter. This mechanism was used as it provides
easy control of the selection strength in addition to having nice
theoretical properties [9]. We also used stochastic universal
sampling [10] (as opposed to roulette-wheel sampling) to
reduce sampling fluctuations. In the simplest GA we tested,
selection with a selection strength of 3 = 1 was combined
with mutation with a mutation rate of © = 1/n. Crossover
was not used. The GA without crossover performs little better
than hill-climbing.

In addition, we considered a classic GA where, as well as

selection and mutation, we also allowed crossover. In this case,
we performed crossover on the entire population. Interestingly,
uniform crossover was found to perform better than single-
point crossover. This may appear surprising as the blocks
are contiguous in this problem. Thus single-point crossover is
much less disruptive than uniform crossover, however, uniform
crossover provides much better mixing [11], [12], which, from
the empirical evidence, appears to be more important than
being less disruptive. A genetic algorithm using crossover has
an advantage over solo-search methods as it has the potential
of swapping different parts of the solution. In particular, if
different solutions have all 1’s blocks at different places, then
crossover has the potential of combining these good blocks
from solutions to get a child with even more all 1’s blocks.
However, the population in a GA tends to correlate due to
selection. This leads to “fixation” where all the variables across
the population, at a particular location, are in the same state.
If the variables in a block are fixated in the all 0’s state then
crossover is unable to reach the all 1’s state. For this problem
the selection strength has to be relatively high for mutation to
move the blocks to a high fitness state, but this increases the
likelihood of fixation. Thus, although the GA with crossover
has some advantage over hill-climbing on this problem we
could not find a set of parameters which allowed it to out-
perform simulated annealing.

The final algorithm we tried was a hybrid-GA where, instead
of performing mutation, we carried out nj,. = 20 hill-climbing
moves. Since hill-climbing drives the solutions to the local
optimum, it is not necessary to use such a strong selection
pressure—we used a selection pressure of 3 = 0.1. As a
consequence there is a much higher diversity in the population.
Crossover explores the different combinations of blocks. Again
uniform crossover was found to be superior to single-point
crossover, although this is, arguably, less surprising as hill-
climbing can repair the disruption caused by crossover. The
hybrid-GA was able to find the global optimum in almost all
runs. Although, a small population size would converge on a
good solution quicker than a larger population, it is vulnerable
to fixation leading to a sub-optimal state being found. The gain
in performance may not at first sight appear so dramatic in
figure 3, however, it should be borne in mind that the problem
gets increasingly difficult towards the global optimum. By
comparison, simulated annealing has a fitness of 10 below the
global optimum (i.e. on average it finds a solution with 10 of
the 64 blocks in their local optimum state). It would probably
take many orders of magnitude more computation time for a
solo-search algorithm to achieve the same quality of solution
as the hybrid-GA. Furthermore this gap in performance is
magnified in larger problems.

A closely related problem to the Concatenated-) problem,
again involving blocks of variables, has been proposed by
Watson and analysed in reference [13]. In that problem, a
simple GA is proved to substantially out-perform a hill-
climber, although in that case preserving linkage through using
single-point crossover is essential to achieving the result.

As a toy problem to illustrate the building-block mechanism,
the Concatenated-) problem has the desirable feature of being
very simple, however, it is arguably too simple in that it is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

just a sum of blocks where there is no interaction between
the blocks. Any rational solver that spotted this structure
would attempt to solve each block as a sub-problem and
then solve the full problem by combining the solutions of
the sub-problems. Using this strategy, this problem is easy
to solve. Furthermore, it would be relatively easy to learn
the separable structure of the problem. Even more critically,
most optimisation problems that we try to solve in practice
do not conveniently split into pieces, but contain long-range,
non-linear correlations between all the variables (although, the
correlations are not necessarily due to direct interactions, but
are often produced through interactions with intermediaries).
This raises the question of whether this problem is relevant
to real world problems. In the following, we will argue that
variants of this problem are possibly good analogues of some
real world problems.

B. Critical-Variable Problems

A large class of optimisation problems have the property
that there are a few variables that need to be correctly set to
get very good results. After the variables associated with these
critical features are set then a fairly basic algorithm such as a
hill-climber can find very good solutions. It is easy to imagine
(though harder to prove) that problems such as the travelling
salesperson problem (TSP) or graph colouring might fit this
picture. In TSP there might be some critical parts of the tour
which need to be chosen correctly, thereafter the rest of the
tour might be found easily by a greedy algorithm. Similarly,
in graph-colouring there may be a few nodes which need to
belong to the same colour class. Once these variables have
been set then the rest of the colouring problem might become
relatively simple. What makes these problems difficult is that
we do not know what variables are critical variables.

A common observation that appears to lend support to this
interpretation is that, when solving many large hard problems
using heuristic algorithms, it can take many minutes or even
hours of work to achieve a particular level of fitness. If this
state is then perturbed by applying a large macro-mutation the
fitness can jump considerably so that the fitness has the same
value that was obtained in the first few seconds of optimising
the problem. However, on applying a hill-climber we return in
a fraction of a second to the same level of fitness that initially
took minutes or hours to achieve. We illustrate this with a
graph-colouring problem. We consider a random instance of
((1000,1/2), which are graphs with 1000 nodes, where the
probability of each edge is one half. The task is to minimise the
number of colour-conflicts (i.e. edges whose nodes have the
same colour). Empirically, it is found that almost all instances
of this class of graphs can be coloured with no colour-conflicts
using 83 colours. However, these are typically extremely hard
instances needing a lot of time and very powerful algorithms to
solve them [14]. In figure 4, we show an iterative local search
(consisting of a descent algorithm with occasional kick-starts)
minimising the number of colour-conflicts with 90 colours.
The best configuration found so far was remembered and the
system returned to that state if a kick-start produced worse
results. This algorithm was run for 950 seconds. We then

perturb the system by changing 50 randomly chosen variable.
The number of colour-conflicts jumps from 27 to 303, which
is equal to the cost reached well within the first second of
optimisation. On applying a descent algorithm the searcher
return to 27 colour-conflicts in less than 0.002 seconds (this
initially took over 300 seconds to find). One explanation of this

G(1000,1/2)

5]
3

100

I I
950.05 950.1

g

-

Number of colour conflicts
©
3

10,

L | L | L | L | L | L | L | L | L | L
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Fig. 4. Number of colour conflicts versus time for an instance of the
graph colouring problem G(1000, 1/2) with 90 colours. After 950 seconds a
perturbation of 50 variable is made. The system returns to the cost it started
with before the perturbation in a fraction of a second. The insert shows the
perturbation with the time axis magnified (the plateau at 950 seconds is due
to an initial book-keeping stage in the descent algorithm).

behaviour is that it takes a large amount of time to discover
a good set of critical variables. The perturbation is unlikely
to change the critical variables, as there are relatively few of
them. Finally, a descent algorithm is able to find good values
for the non-critical variables.

We can easily construct a problem which is closely related
to the Concatenated-) problem which has critical variables.
We call this the Concatenated-critical-variable problem. In its
simplest form it consists of m blocks, each with k-variables,
but one of the variables is the critical variable. We can write
the fitness function slightly more transparently if we use +1
variables, S; € {—1,1}. The fitness can written as

m—1 k
Feey(S) = Z Fi(S), Fi(S)=Sik+1 |1+ Zsik+j

i=0 j=2

One method for representing problems whose fitness function
decomposes is by using a factor graph. These are bipar-
tite graphs with one set of nodes (traditionally drawn as
circles) representing variables and the second set of nodes
(traditionally drawn as squares) representing the interaction
between variables. The factor graph for the Concatenated-
critical-variable problem is shown in figure 5. In this problem,
the fitness can be viewed as equal to a sum of terms coming
from the interaction nodes, which, in turn, is equal to the
product of variable nodes connected to the interaction nodes.
The critical variables, S; 1, interact with all other variables

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Fig. 5. Factor graph for the Concatenated-critical-variable problem

in the block. We also show an interaction involving only the
critical variable term to represent the fitness contribution which
is proportional to the value of the critical variable alone. The
non-critical or normal variables are optimised when they take
the same value as their corresponding critical variable. In a
similar manner to the Concatenated-)’ function, each block has
a global maximum when all the variables are 1’s with a block
fitness of F; = k, and a local maximum when all the variables
are -1’s with a block fitness of F; = k — 2. If we fix the
critical variables then the normal variables can be optimised by
a hill-climber. Heuristic algorithms behave almost identically
on this problem as the Concatenated-) function (we do not
show results for this problem, but we show results on a more
complex version below). For this problem, we can view the
hybrid algorithm as working at two levels. The hill-climber
optimises the normal variables, so that the fitness reflects
the quality of the critical variables. Selection and crossover
effectively explore the space of critical variables, in doing so
they disrupt the normal variables, but these are repaired by hill-
climbing. This second level, is almost as if we were solving
a Onesmax problem with the m critical-variables using a GA
with selection and crossover only. Fixation of the variables
associated with a particular block in the sub-optimal state can
still occur, but this is unlikely in large populations if we use
uniform crossover and weak selection. The reason for this
is that uniform crossover destroys linkage much faster than
weak selection can replicate good solutions, thus preventing
hitchhiking.

This problem again suffers from the same criticism that
it is completely separable into easier sub-problems, which is
not typical of many real world problems—of course, it also
illustrates that when a real world problem can be separated
then it is almost always beneficial to do so. We can however
easily extend the Concatenated-critical-variable problem so
that the problem is no longer separable. One way to do this
is to introduce some new normal variables that depend on
more than one critical variable. In this vein, we propose the

Interacting-critical-variables problem defined by

m—1

Fev(S) = Y Fi(S)

i=

k
Fi(S) = Sigkansr | 1+ [D Sithsn+s
j=2

k+1

FSmha+1 Y SiChti+i
j=k+1

where m = (mg, 7, ..., Tm—1) is a random permutation of
the sequence 1, 2, ..., m, such that m; # i. We show the
factor graph for this problem in figure 6. Notice that the only

Fig. 6. Part of the factor graph for the Interacting-critical-variables problem.
We assume 7o = i.

difference between this problem and the Concatenated-critical-
variable problem is the inclusion of [extra variables per block
which are optimal when they have the same sign as the product
of critical variables for the two blocks Si(x41)41 Sr, (k+1)+1-
This introduces a non-epistatic interaction between the differ-
ent blocks.

In figure 7, we show the performance of different heuristic
search algorithms on an instance of this problem with m = 64,
k = 7 and [= 3. This is a considerably harder problem
than the Concatenated-) problem we considered earlier, partly
because there is an extra three variables per block that need to
be optimised, but more crucially because these extra variables
makes learning the critical variables more complicated as they
are now epistatically linked. Thus for the hybrid-GA to solve
this problem with high probability we needed to use a 5-
times larger population running for twice as many generations.
Once again we have tuned the parameters by hand to obtain
good performance for the other algorithms. The ordering of
the performance of all algorithms is similar to that for the
Concatenated-) problem.

Another view of critical variables is in terms of the search
space. We can think of the search space as a set of points
connected by some adjacency graph. The adjacency graph

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Interacting-Critical-Variable Problem, m=64, k=7,1=3

Hill Climber

Average Fitness

°
® Random Mutation Hill Climber, u= 8/n
|+ Smulated Annealing, T = 10x0.99999'
A GA: nox-over,P=500,8=1u=1n
< GA: uniformx-over, P= 500, 8= 1,u= lUn
v Hybrid-GA: uniformx-over, P = 500, 3= 0.1, n, .= 20
Ok ! ! !
0 500000 1000000 1500000 2000000
Number of function evaluations
Fig. 7. Mean fitness versus the number of function evaluations for 1000

different runs on an instance of the Interacting-critical-variable problem with
m =064,k ="7and [= 3.

depends on what configurations we treat as neighbours. For a
binary variable problem, where configurations at a Hamming
distance of 1 are neighbours the adjacency graph will form
a hyper-cube. A large number of optimisation problems arise
through imposing a series of constraints each of which divides
the search space into those configurations that satisfy the
constraint and those which do not. We show a caricature of the
search space with one constraint in figure 8. In this picture we
have shown the adjacency lattice as a 2-dimensional lattice;
in most real problems of interest the search space is much
higher dimensional (e.g. an n-dimensional hypercube). In this

\
\

cpst=t1

gonspraint

Fig. 8. Caricature of a search space for a problem with one constraint.

problem we assign a cost of 1 if we break the constraint and a
cost of 0 otherwise. As we increase the number of constraints
the problem, typically, becomes less easy to solve. As more
and more constraints are added a stage is reached when there
are no longer any points in the search space that satisfy all

the constraints. At around this critical number of constraints,
it is frequently found that the problem becomes much more
difficult to solve because of the formation of a substantial
number of local optima. These persist as we increase the
number of constraints. As a consequence, many problems
show a phase transition between being easy to solve and hard
to solve, which happens close to the point where the set of
constraints is no longer satisfiable (for decision problems as
opposed to optimisation problems, such as deciding if a set of
clauses is satisfiable, the instances often become easy to decide
above this transition point). In figure 9, we show the cost
landscape after adding more constraints—note that, as the cost
counts the number of unsatisfied constraints, then to optimise
this problem we need to minimise the cost. We observe that

10

ot
cost

Fig. 9. Caricature of the hard phase after adding more constraints.

by adding more constraints we tend to increase the number of
local-minima making the problem hard to solve. For a binary
search problem each time we fix a variable we cut the search
space in half. The idea of critical variables is that if we set
a few well-chosen variables correctly then we might be able
to restrict the search to a part of the search space where the
global optimum has a large basin of attraction. This is shown
schematically in figure 10. In complex problems there may be
different sets of critical variables, which, once set, simplify the
landscape sufficiently that the problem can be solved using a
simple heuristic algorithm.

Some direct empirical evidence for critical variables comes
from investigations of SAT, albeit on rather small problems.
Small SAT instances were solved using a standard SAT solver.
These problems were found to be sufficiently hard that it took
a long time for the SAT solver to find a solution which satisfied
all the clauses. It was found that, by setting a small number
of variables, a SAT solver could solve the problem trivially.
These sets of variables had to be found through exhaustive
search so that it was only possible to look for these sets of
variables in small SAT instances. These sets of variables have
been called backdoors in the context of SAT [15], [16].

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

10

ot
cost

— 1

— 0

Fig. 10. Schematic illustration of reducing the search space by fixing two
of the variable so that the remaining problem becomes easy to solve.

When working with large combinatorial optimisation prob-
lems it is much harder to be sure whether they possess
critical variables. One candidate problem which might have
this property is graph-colouring in dense graphs. This is a
problem where the best-known solution method is a hybrid
genetic algorithm due to Galinier and Hao [14]. Not only
did they introduce a powerful crossover operator, they also
introduced a very efficient tabu search as a local search
operator. Nevertheless, the quality of the solutions they found
was due to the crossover operator [17].

IV. FOCUSING SEARCH

We now consider a second possible mechanism by which a
population can be beneficial. Again this mechanism relies on
crossover. Most crossover operators have the property that if
both parents share the same value of a variable, then the child
will also have the same value for that variable—this property
of crossovers has been called respect by Radcliffe [18].
As a consequence crossover only explores the part of the
search space where individuals disagree. In contrast, mutation
explores the entire search space. This focusing of the search
by crossover, can dramatically reduce the time needed to find
a good solution.

This mechanism has been illustrated previously in a number
of toy problems. For example, in the Basin-with-a-barrier
problem [19], [20], [21] and the closely related Jump func-
tion [22] and, to some extend, in the Hurdle problem [23]
(although, in this case, we can also interpret the success
of GAs as, at least partly, due to it acting as a low pass
filter). Here we consider a variant of the Basin-with-a-barrier
problem, which we will call the Iceberg problem. We represent
this problem by a binary string X = (X3, Xo, ..., X,,)
where X; € {0,1}. The fitness is taken to be a function of
the number of I’s in the string Fyeepero(X) = g(3°12; Xi)

where
: 8n
— 8 ;e 8n 9
g(k) =4 8n if 80 <)< 91
if$>k>n

This function is shown in figure 11. This diagram does not,

0.9
0.8
s 0.74
~
s
=
S 0.6+
9
% 0.5
5
a
=
o044
=
2
< 0.3
55}
0.2
0.1+
O
0 01 02 03 04 05 06 07 08 09 1
Proportion of Ones, %EL"':] Xi
Fig. 11. Fitness function of the Iceberg problem as a function of the

proportion of 1’s in the string.

however, show the number of configurations with a particular
number of 1’s. This is given by the binomial function (Z)
where k is the number of ones in the string. Figure 12 shows
the logarithm of the number of states, N(y), divided by n in
the large n limit, where y = k/n is the proportion of 1’s in the
string. For large n, almost all strings have an equal number

17
e
=
= 0.8
=
& 0.6+
2
B 0.4
<)
—
g
= 0.2
o+——r—7+—r—+——r—7—"—r—"—7""—71"—11
0 01 02 03 04 05 06 07 08 09 1
Proportion of Ones, y = %27:1 X;
Fig. 12. The entropy (logarithm (to the base 2) of the number of

configurations) per variable is shown as a function of the proportion of 1’s,
in the limit n — oo.

of I’s and 0’s. As we approach the global maximum there
is a very strong fall-off in the number of states (or entropy).
Because of the large decrease in entropy, the configurations
with fitness above 0.9n look like a small Iceberg in a large
ocean containing strings with 80-90% of the variables equal
to 1.

A hill-climber will, with high probability, start in a state
with approximately equal number of 1’s and 0’s. It will then
rapidly reach the state where 80% of the variables are 1’s. It

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

could carry on and reach the state where 90% of variables
are 1’s, however, this is extremely unlikely because it would
require the vast majority of hill-climbing moves to change
0’s to 1’s, however, there are many more 1’s than 0’s so
most of the time a random move will change a 1 to a 0
and take the solution back to edge of the ocean. The first-
passage time to reach the global optimum will consequently
scale exponentially with the problem size, n. Figure 13 shows
the logarithm of the expected first-passage time versus the
system size. The expected first-passage time for a hill-climber
was computed exactly by solving a Markov chain model using
the techniques described in appendix B.

Iceberg Problem

30 \

— Hill-climber
—— GA: uniformx-over, P =100, 8= 1,u= 1/n _|

251

20

15

10

Log First Passage Time, log, (T(n))

300
Problem size, n

Fig. 13. Logarithm of the mean first-passage time versus size for the Iceberg
problem. T'(n) counts the mean number of function evaluations needed to
solve the problem. The results for the GA are averaged over 1000 runs, while
those for the hill-climber are exact.

We also measured the first-passage time empirically for
a standard genetic algorithm with a population of size 100
using Boltzmann selection (8 = 1), uniform crossover, and
a mutation rate of 1/n—no attempt was made to fine tune
these parameters. The results are also shown in figure 13.
The first-passage time appears to grow exponentially which
is what we would expect (since the ratio of the size of the
iceberg to the ocean becomes exponentially small in the size
of the problem), nevertheless, we see that a standard genetic
algorithm allows us to solve reasonably large problem sizes
where a hill-climber would take far too long. For this problem
a random mutation hill-climber, simulated annealing or a GA
without crossover all suffer from the same problem as hill-
climbing. Namely, that almost all mutations take the searcher
away from the all 1’s state. The good performance of the GA
arises because crossover focuses the search. An analysis of
a closely related problem is given in [20], [21]. The reason
why the GA is out-performed by the hill-climber for small
problem sizes is simply because of the linear cost of carrying
a population described in section II. Had we chosen a smaller
population size we would be able to beat the hill-climber on
smaller-sized problems as well.

This toy problem is open to the criticism that even the

GA solves this problem in exponential time, which is often
regarded as impractical. However, in the example shown the
exponent is rather small so a GA provides a practical solution
even for fairly large problem sizes. We could also modify the
problem so that the width of the ocean is fixed rather than
growing with n. This brings the problem closer to the Hurdle
problem introduced in [23] and described in section V, where
the run times for all algorithms are polynomial rather than
exponential.

A. Strong Focusing

There is another approach to solving the Iceberg problem
which is dramatically more efficient than even the GA. That
is, to run a population of hill-climbers for a fixed number of
steps and then average the variables at each site in the string.
This is then rounded to zero or one. Given a reasonable sized
population (say 100) then with overwhelming probability the
resulting string will be the all 1’s string. Averaging causes
strong focusing of the search. It has not been used much,
perhaps because it breaks the analogy with natural selection.
It focuses the solutions so strongly that it is only useful to
apply this operator once.

The success of averaging depends on a very specific geom-
etry of the solution space. That is, the high-fitness regions of
the search space has to lie directly in the centre of a larger
region containing good quality solutions. This very particular
landscape might appear slightly artificial and unlikely to
occur in real world problems, however, in a recent paper
this strategy was found to be very effective on one of the
classic combinatorial optimisation problems, namely MAX-3-
SAT [24].

The MAX-SAT problem consists of a set of m clauses con-
structed from n Boolean variable. Each clause is a disjunction
of literals (a literal being either a variable or a negation of a
variable). The optimisation problem is to maximise the number
of satisfied clauses (i.e. clauses that are true). In MAX-3-
SAT all clauses consist of three literals (this paper uses the
convention that these literals involve different variables and all
clauses are different). The paper studied the case of randomly
generated MAX-3-SAT instances where the ratio of clauses to
variables was 8. This is believed to be well within the hard
phase.

For averaging to provide a performance advantage, the only
modification made was to run a hill-climber on the solution
found after performing the average. An even more successful
strategy was to run multiple hill-climbers and then to cluster
the resulting solutions based on their Hamming distances to
each other. This was done using k-means clustering. The
centroid of each cluster was clipped to the closest vector of
0/1 variables and used as a starting point for another round
of hill-climbing. This was found to substantially out-perform
hill-climbing on large randomly generated instances of MAX-
3-SAT. We illustrate the performance of a hill-climber, hybrid-
GA, and the k-means clustering algorithm in figure 14 with a
graph taken from reference [24]. Note that we plot the number
of unsatisfied clauses rather than the number of satisfied
clauses, thus lower values are better. Ten hill-climbers were

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

used in parallel and the best of them is plotted (this gives
better performance than running a single hill-climber ten times
longer). The hybrid-GA uses a population of size 10, the
selection rate and number of hill-climbs between selection and
crossover was carefully chosen. In the k-means clustering an
initial population of 100 hill-climbers was run for 27 000 steps.
At this stage k-means clustering with k¥ = 10 was carried out
and 10 hill-climbers were restarted from the feasible solutions
closest to the 10 centroids. The jump in number of satisfied
clauses at around 10 seconds shown in figure 14 is caused
by the k-means clustering step. For larger-sized instances
the performance of k-means clustering became even more
pronounced. Using this algorithm the authors obtained superior
results on large randomly chosen instances to all other local
search algorithms they tested against. Further details of these
results are given in reference [24].

2000 f: : ——
— — — Hill-climber
: Hybrid-GA
1900 K-Means
1800
3
8 1700
<
o
E 1600, |
o
3 15001
=4
=)
1400
13001
e I ——
20 40 60 80 100 120 140 160 180
Time (s)
Fig. 14. Performance of a hill-climber, hybrid-GA and k-means clustering

algorithm on random MAX-3-SAT instances with 6000 variables and 8 clauses
per variables. The results were averaged over 100 instances.

The argument put forward in reference [24], which was
supported by a number of empirical observations, was that
there exists a small number of global optima some of which
were well separated (e.g. having a Hamming distance of 40%
of the variables). Around each global optima were good quality
local optima. A caricature of the fitness landscape is to think
of the search space as a world, where the height of each
point represents its fitness. A cartoon of this search space is
shown in figure 15. Good quality solutions lie in mountain
ranges which are weakly correlated, so they do not exist
in completely random places in the world, but tend to lie
in one hemisphere. The number of foothills out-number the
mountains so that a hill-climber will find a foothill with a
high probability. Figure 16 illustrates schematically how the
k-means algorithm might work. Clustering picks out those
solutions that lie in foothills surrounding a mountain range.
The centroid of these solutions would then lie in the mountain
range. As the landscape is rugged the centroid might not be
a high quality solution, however, by hill-climbing we quickly
find a good quality solution. In this way the population learns
about the large-scale features of the fitness landscape.

These ideas can be generalised to other problems. We can

Fig. 15. Cartoon depiction of the fitness landscape of MAX-3-SAT.

Fig. 16. Schematic illustration of the k-means clustering algorithm. Inde-
pendent hill-climbers find solutions in the foothills of mountainous (i.e. high
fitness) regions. The k-means clustering algorithm groups solutions which
predominantly lie in the foothills of the mountain range, so that the centroids
lie close to high quality solutions. Performing hill-climbing starting from the
nearest feasible solution to the centroids allows good quality solutions to be
found rapidly.

define the average or centroid of a set of configurations to
be the configuration with the smallest average distance to
all the members in the set. There is then some flexibility
in how we choose to measure distance. In reference [24] it
was shown that moving to the centroid of a set of solutions
obtained through hill-climbing also appears to be useful in
other NP-hard problems such as graph-colouring and the Ising
perceptron.

V. Low-PAsSS FILTERING

A third mechanism by which a population can be bene-
ficial is by ignoring distractions in the landscape. That is,
population-based algorithms can behave as if they ignore
short-length scale features in the landscape. Populations acting
as a low-pass filter has been proposed previously based on a
mechanical model of a genetic algorithm [25]. This robustness
to distractions comes from the averaging effect of having
a large population and the fact that at each generation the
individuals tend to move so that over a few generations sub-
populations respond to their average fitness. As an illustra-
tion of this mechanism in operation we consider the Noisy-
Onesmax problem where we add a static random noise to the
fitness so that

Fyo(X) = round (Fopesmax(X) + v/nhash(X)) ,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

where ‘round(y)’ returns the integer closest to ,
Fonesmax(X) is the fitness function for Onesmax and
‘hash(X)’ is a function that returns an independently chosen
Gaussian random deviate for each X with zero mean and
unit variance. Note, that this is a static fitness function, in
that it returns the same fitness value if it is called with the
same binary string.

The landscape is a Onesmax landscape with a random
function added on top. We note that the contributions of these
terms differ considerably over different (Hamming) distance
scales. The contribution to the fitness from the Onesmax
function changes by 1 for Hamming neighbours, while the
contribution from the random noise term produces changes
of order y/n. By contrast a change in the number of 1’s of
order n causes a change in the Onesmax function of order
n, while the random noise term still only causes a change of
order y/n. Thus the noise function can be viewed as producing
short range variation while the Onesmax function produces
long range variations in the Hamming space. We argue below
that a genetic algorithm averages out the short range noise, but
picks up the long range trends. In this sense, we view this as
a kind of low-pass filtering. Technically, however, assuming
a Hamming neighbourhood the search space has the topology
of a hyper-cube and there is no high-frequency component in
any direction. Thus, the idea of filtering should not be taken
too literally. A more accurate description is that a population
can averages out short range noise while still being sensitive
to long range trends.

As with the previous problems we have empirically mea-
sured the performance of a number of algorithms attempting
to solve this problem. The results are shown in figure 17. All

Noisy-Onesmax Problem

T T T T
PEPEPES S S
1000} P g
4
L « |
<
900+ 4" [@ Hill Climber
@ A ® Random Mutation Hill Climber, u= 9/n
< r /4/ Smulated Annealing, T = 10x0.99999"
iL 800+ A GA: nox-over, P=500, 8= 1,u=1/n
% | / < GA: uniformx-over, P= 500, 3= 1,u= 1n
o / Hybrid-GA: uniformx-over, P = 500, 8= 0.1, n, = 20
3:700f/(A A A A A A A A A A a4
% I = A S O =0 i — L~ o~
f S >
eoot * 1
5001 . | | | |
0 20000 40000 60000 80000 100000
Number of function evaluations
Fig. 17. Empirical measured performance of algorithms on the noisy-

Onesmax problem with n = 1024. The results are averaged over 1000 runs.

solo-search algorithm quickly find a nearby local optimum
where they become effectively trapped. A hybrid-GA performs
no better than a random mutation hill-climber or simulated
annealing. Using an averaging operator as discussed in the
previous section does not help much either since there is not
a significant bias in the number of 1’s of the solution found
by the hill-climbers (results are not shown in figure 17). The
best algorithms for solving this problem are the traditional

genetic algorithms and this is particularly true for a GA
using crossover. The reason for this substantial improvement
in performance is that the GA does not locally optimise the
fitness function because mutation and crossover are always
changing the configuration. As a consequence the GA is
learning the average fitness as a function of the Hamming
distance, and therefore it is effectively ignoring the static noise.
It is almost as if it is solving a Onesmax problem. In fact, the
GA would perform almost identically if the noise being added
was not static, but changed at each function evaluation.

The significant difference in performance between the GA
with crossover compared to the GA without crossover is prob-
ably due to the focusing effect of crossover. That is, crossover
is much more likely to create a child with an increased number
of 1’s compared with mutation. This illustrates an important
point that more than one of the mechanisms described in
this paper might be in operation on a particular problem.
Another problem which is solved effectively by a combination
of focusing and ignoring distractions in the Hurdle problem
proposed in reference [23]. As with the Iceberg problem, the
fitness function is taken to be a function of the number of 1’s
in a binary string Fr,,,q7.(X) = h(3"1; X;) where

h(k) =k —2[n—k is odd] ,

and [[predicateﬂ is Iverson’s notation for an indicator function,
which is equal to 1 if the predicate is true and O otherwise. The
Hurdle function is shown in figure 18. Again this is a problem
where a GA does extremely well, particularly when using
crossover. It was shown in reference [23] that the run time
performance of a GA with crossover on the Hurdle problem
was very similar to that of the same algorithm working on the
Onesmax problem with added (non-static) noise.

Y S ey)

n—1- Fn—1
n—2- =n—2
n—3- —n—3
o N
;z i L
SR L
(S L
5 -5
4 -4
34 3
24 2
14 1
o F L LA T L L A A o o e Py
Number of Ones, X1 | X;
Fig. 18. The fitness function of the Hurdle problem as a function of the

number of ones in the string.

VI. HEDGING

In the last two decades many algorithms have been proposed
based on parallelising a state-of-the-art solo-algorithm using
a population [26], [27], [28], [29], [30]. These “Hybrid-GAs”
have often been found to out-perform the solo-algorithm, with

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

crossover often playing an unimportant role. One plausible
explanation for the improvement is that by running multiple
times they hedge against bad luck in their starting position or
the choices they make. This provides the basis of our fourth
mechanism which exploits the variation in the performance
of an algorithm depending on the part of the landscape it
is currently searching. In its simplest form we can imagine
a problem with many local optima of different quality. A
hill-climber will get stuck in a particular local optimum so
given enough time there is clearly an advantage to running
multiple hill-climbers and choosing the best. For many al-
gorithms such as simulated annealing and random mutation
hill-climbers that can escape from local optima, it can still
be advantageous to run these algorithms in parallel as the
success of the algorithm may depend strongly on the starting
position. Thus, a population might provide an advantage by
hedging against being unlucky. This is a mechanism that does
not depend on crossover. There is clearly an exploration-
exploitation balance between the cost of using a population
as described in section II and the benefit it might provide by
having a member of the population in a better part of the
search space.

This hedging mechanism might appear rather trivial and
unimportant, however, it can take on rather subtle forms. It
can also potentially lead to a dramatic speed-up in perfor-
mance. We illustrate this in the following example. For many
optimisation problems, a search algorithm often needs to be
able to make large steps from a local optimum to another
optimum with a higher fitness value. A fitness landscape with
a global optimum and a number of local optima is shown
schematically in figure 19 (we will assume in the following
that we are solving a discrete optimisation problem where
the fitness takes integer values only). We consider a hill-

Fitness

@® [max
© fmax—1

O F < Fmax—1

Fig. 19. Cartoon of the fitness landscape showing the global maximum con-
figurations and the configuration with the next highest fitness. Configurations
with any other fitness are shown as white circles. In this example there is a
single global maximum and five sub-global maxima.

climbing algorithm which escapes from a local maximum by
systematically searching all neighbours of increasing distance
from itself until it finds a fitter solution. Suppose this algorithm
has reached one of the local maxima with fitness Fj;qx—1. We

will call such a local maximum a sub-global maximum. The
algorithm now has to move from the sub-global maximum
it is in to the global optimum. By definition, there are no
configurations of higher fitness that lie between the sub-global
and global maxima, thus there is no heuristic information that
the algorithm can easily exploit. As a consequence, the time
it will take to make this step will scale with the number of
configurations in a ball around the sub-global maximum whose
radius is the distance to the global optimum. In a problem
with n binary variables the number of configuration within a
Hamming ball of radius A is

=0

This is one aspect where the cartoon landscape depicted in
figure 19 differs dramatically from the landscape of high-
dimensional problems, in that it misrepresents the number of
configurations within a small Hamming distance of a particular
configuration. Figure 20 shows the number of configurations
within different Hamming distances for a binary problem of
size 100. Notice that there is a dramatic increase in the number

1014
1012
1010
108
10¢
10000
100

Number of states

0 1

2 3 45 6 7 8 910
Size of Hamming ball

Fig. 20. Shows the number of configurations within a Hamming-ball of
different radii for a binary problem with 100 variables. Note that we are
using a logarithmic scale to measure the number of states.

of configurations as a function of the radius. As a consequence
the exhaustive hill-climber described above will take dramat-
ically different times to find the global optimum depending
on the Hamming distance between the sub-global and global
optimum. If the probability of our algorithm reaching any sub-
global maxima is the same for them all, then the median
number of function evaluations need to make the last step
and reach the global optimum will be N(h) where h is the
median distance between the sub-global and global maxima,
and N(h) is the number of configurations in a Hamming-
ball of size h. If we have a population of P searchers using
the same algorithm, but at different sub-global maxima, then
the number of function evaluations until the global optimum
is reached will be P N(h,,;,) where h,,;, is the smallest
Hamming distance between a member of the population and
the global optimum. Thus, if there is some variation in this
Hamming distance then the expected time for a population to
find the global optimum will be much smaller than that for a
solo-searcher.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

To make the argument above concrete we concentrated on
an exhaustive hill-climber that systematically expanded its
area of search. However, the same argument could equally
well be made for a random mutation hill-climber or for a
stochastic hill-climber as the expected time to find a better
solution is likely to grow, at least, as much as the number of
configurations in a Hamming ball of size h, where h is the
Hamming distance to a better solution. In most real optimisa-
tion problems it is likely that an algorithm will have to make
multiple jumps between local optima of increasing fitness. In
the above scenario the gain in performance came from the fact
that it is necessary only to wait for the first member of the
population to make an improvement. However, if the whole
population moved to the best solution then diversity would
be lost and a population would no longer appear to have an
advantage. There may still be an advantage for a population
as, in many problems, the number of good quality solutions
tends to decrease rapidly as the fitness increases towards the
maximum fitness. Consequently it will always be easier to
find solutions of the same fitness than a fitter solution. Thus
a population will tend to diversify as new local maxima of
the same fitness are discovered. In figure 19, we can imagine
it would be easier for a population starting at a sub-optimal
maximum, say in the top right-hand corner, to diversify to
other sub-optimal maxima rather than immediately find the
global maximum.

This mechanism depends on a particular structure of the
landscape, although it seems plausible that some problems
might have these properties, an important question is whether
these properties are common? As a partial answer to this ques-
tion we have studied the structure of MAX-3-SAT empirically
for problems up to 100 variables. To do this we have run
a modified hill-climbing algorithm adapted to exhaustively
search all neighbouring configuration and their neighbours
at the current cost, until either a better solution is found or
all neighbouring configurations are searched. This guaranteed
that a local fitness maximum is reached. For each MAX-3-
SAT instance we performed 10000 such hill-climbs. For the
sizes of problems we have investigated we believe that we
are able to find the global-maximum solutions. The reason
for this belief is that we found all maximum-cost solutions
multiple times—on average 250 times and in a sample of 100
instances with a worst case of 23 times. Given that the basins
of attractions tend to increase with higher fitness it seems
unlikely that we would have missed a optimum solution with
higher fitness. Even the second highest solution we found on
average around 125 times. In fact, as an empirical observation
it appears that on average the basin of attraction of the local
optima approximately halves each time the fitness (i.e. the
number of satisfied clauses) decreases by one. The reason why
solving MAX-3-SAT becomes difficult is that, as the fitness
decreases from the maximum, the number of local maxima
increases more quickly than the decease in the size of the
basins of attraction. Thus for random MAX-3-SAT instances
with n = 100 variables and m = 8 n clauses, the mean number
of global optima is around 3, the mean number of local optima
with fitness of 1 less than the global optima is approximately
11, while for fitness of 2 less than the global optima there are

approximately 90 local optima on average, etc. These mean
numbers vary considerably between instances. On average
each local optima consists of around 20 configurations of the
same cost that are accessible by changing a single variable at
a time.

Figure 21 shows a histogram of the minimum Hamming
distance between every configuration in the sub-global maxima
and a configuration of at least the same fitness in the basin
of attraction of the global maxima. This is computed for a
single randomly generated instance of MAX-3-SAT so as not
to confound the variation due to different sub-global maxima
with variations between instances. This instance had 2 global
maxima and 5 sub-global maxima, with each optima having
a large number of configurations associated with it. As can
be seen in this example there is a very large spread of min-
imum Hamming distances suggesting that a population may
have a considerable advantage compared with a solo-searcher.
Although there is a lot of variation between different instances,
nevertheless a big variation in the minimum Hamming distance
between sub-global and global optima is typical. The purpose

0.15F =
0.1 B
£ |]

o
0.05+- B

0 | |
0 10 20 30 40 50
Hamming distance, h
Fig. 21. Histogram of minimum Hamming distance between configurations

in the local and global maxima for a randomly generated instance of MAX-
3-SAT with 100 variables and 800 clauses.

of figure 21 is to illustrate that, at least in random MAX-
3-SAT problems, there is a very significant variation in the
distance between the sub-global and global maxima. Thus for
any algorithm which attempts to find a global maximum from
a sub-global maximum there will be a huge difference in the
expected run time depending on which sub-global maximum
the algorithm starts from. If by using a population there
is more chance of, at least, one individual being at a sub-
global maximum closer to a global maximum then the gain in
expected run time can easily compensate for the cost of using
a population as described in section II.

Although this mechanism provides a plausible explanation
of why running an algorithm as a population might be ad-
vantageous, it is less obvious whether there is a significant
advantage of using a population as opposed to running the
algorithms multiple times sequentially. For the population to
be advantageous it must explore a larger proportion of the
search space than a solo-search algorithm would. A population
of independent searchers with no interaction would achieve

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

the greatest diversity, however, such a population would gain
no benefit from hedging during the run. By introducing some
selection it is possible to concentrate the search on parts of
the search space that appear to be more productive, however
in doing so it correlates the population. In consequence, this
mechanism relies on a fine balance between exploiting the best
solution found in the population and maintaining diversity to
increase the likelihood of “being lucky” (i.e. being at a location
close to an improving solution).

VII. PARAMETER TUNING

The final mechanism by which a population might afford
an advantage over a solo-searcher is by using the population
to learn about good parameters of the algorithm. This is rarely
done explicitly although there are some notable exceptions.

Choosing good parameters is well studied within simulated
annealing where the performance of the algorithm is often
found to depend critically on the annealing schedule—that
is, the functional behaviour of the “temperature” versus step
number (see appendix A for more details on optimal annealing
schedules). The temperature governs the probability of making
a move that reduces the fitness; it thus controls the degree
of exploration versus exploitation. Usually, the temperature is
started quite high allowing a lot of exploration and reduced
slowly over time to ensure at the end that the searcher finishes
close to a (local) optimum. In many problems it is found that
the dynamics of the Monte Carlo algorithm used in simulated
annealing undergoes a phase transition as the temperature is
reduced beyond a critical “freezing temperature”. Above the
freezing temperature there is a high probability of the Monte
Carlo algorithm accepting a move, while below the freezing
temperature the searcher gets trapped in a local optimum
with an exponentially small probability of escaping. It is
found that a good annealing schedule for many problems
involves setting the temperature to just above the freezing
temperature [31], [32]. Many heuristics have been developed
within the simulated annealing community to choose good an-
nealing schedules based on the performance of the searcher. A
population might afford a more reliable means of determining
the annealing temperature and more generally of balancing
exploration versus exploitation, however, I am not aware of
this being done explicitly.

The most notable situation where the parameters of a
population-based algorithm are learnt is in continuous opti-
misation. This is an application where it is essential for any
competitive algorithm to learn an appropriate step length to
search the landscape. A number of evolutionary strategies use
the population to learn this step size. A transparent example of
this is the Covariance Matrix Adaptation Evolution Strategy
(CMA) [33] which uses a population to learn an approximation
to the Hessian describing the local curvature of the fitness
landscape.

In applications of genetic algorithms to combinatorial opti-
misation problems, the most prominent attempts to explicitly
learn parameter values from the population is through evolving
the parameters of the search at the same time as evolving the
solutions. Although there is considerable work in this area it is

an idea that has not taken off, presumably because in general
the benefits of doing this do not sufficiently compensate for
the extra complication in the implementation. This lack of
success may suggest that using the statistics of the population
to balance exploitation and exploration is difficult.

There is, however, one way in which a genetic algorithm
using crossover implicitly provides a slow shift from explo-
ration to exploitation. This is caused by the diversity of the
population regulating the step size produced by crossover. This
arises because the distance between a child and its parents in
crossover reduces as the parents become more alike. Selection
causes an inevitable correlation as members of the population
are replicated. As a consequence of this reduction in diversity,
crossover becomes less exploratory. Thus, loss of diversity
causes a reduction in the search area, which can be interpreted
as an annealing of the search operators. This loss of diversity
is often beneficial.

This may seem counter-intuitive—in crossover based evolu-
tionary algorithms diversity is often regarded as purely bene-
ficial. After all, if there was no diversity then crossover would
just replicate members already in the population. However,
this view is an over simplification. A completely diverse
population would contain random strings, and crossover would
just produce new random strings. Furthermore in many prob-
lems there exist very different arrangements of the variables
that correspond to good solutions (sometimes this is due to
symmetries in the problem, although, it can also arise from
a spontaneous shattering of the fitness landscape as depicted
in figure 9). In such situations a loss of diversity might be
essential to confine the population to a region of the search
space with one dominant optimum. This has been discussed
at length in reference [34]. Thus, regulating the diversity may
have a significant impact on the performance of a search
algorithm using crossover. For example, in Onesmax, starting
from random strings, it makes sense to make reasonable large
steps at the beginning of the search; crossover will naturally do
this as the members of the population are far apart in Hamming
distance. Later on, when the strings have a high proportion
of I’s, large steps are much more likely to be disruptive.
However, the population is likely to have converged so that
crossover will produce smaller jumps.

It is even conceivable that, on some problems, the diversity
of the population is benignly related to the roughness of the
landscape. If the population is so diverse that it covers a region
with very different fitness values, then crossover will lead to an
offspring population with a large variation in fitness. Selection
is then likely to strongly reduce diversity. On the other hand,
if the population strongly converges on a region with little
variation in fitness (e.g. a plateau region) then there would be
little differential selection and the diversity of the population is
likely to grow through mutation. As a consequence knowledge
about the roughness of the landscape encoded in the population
might be beneficially determining the amount of exploration
produced by crossover.

To illustrate that this may be happening we consider a final
toy problem; we call the Multi-Step Iceberg Problem. The
fitness is again a function of the number of ones, but now
this function consists of a set of steps. This is illustrated

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

in figure 22. As we can see this consists of a series of

100

T T T T T T T T

T T T T T T T
80 100 120 140 160 180 200

Y1 Xi

UL
0 20 40 60

Fig. 22.
Problem.

Fitness versus the number of ones for the Multi-Step Iceberg

plateaux. Crossing the plateaux become harder towards the
extremes because of the entropy gradient (see figure 12). In
figure 23, we show empirical results for a GA using crossover,
mutation (with mutation rate 1/n) and Boltzmann selection.
For comparison purposes we show results for a simple hill-
climber (these are exact results obtained using a Markov Chain
analysis). The first-passage time for the hill-climber on this
problem is 1.705 x 10'2 function evaluation.

Multi-Step Iceberg Problem

£
=z
L — Hill-climb]
—- GA: uniformx-over, P= 100, 8= 1,u= 1/n
50 n
40 | | | |
0 2000 4000 ~ 6000 8000 10000
Number of function evaluations
Fig. 23. The expected fitness as a function of the number of fitness

evaluations is shown for a GA and a hill-climber on the multi-step iceberg
problem. The GA curve is estimated from 1000 independent runs of the
algorithm.

In figure 24, we show the correlation between members of
the population as a function of the number of 1’s for the GA.
A correlation of 1 means that all strings in the population are
identical, while a correlation of O means that the strings differ
at 50% of the sites. This data is taken from the same set of
simulations shown in figure 23. We also show the expected
correlation between random strings with a fixed number of
I’s. We notice, that when the population reaches a plateau
its correlation starts to decrease, indicating a diversification
of the population. This is particularly true for the last plateau
which is by far the hardest to cross. In this case the correlation

almost reaches that expected of random strings with the same
mean number of 1’s. This diversification allows crossover to
make much larger jumps. As we argued in section IV on
focusing, the crossover operator is much more effective at
crossing this plateau than mutation alone. In contrast, for the
non-plateau sections of the search mutation is effective and
there is no particular advantage of having a large diversity.
Thus, at least in this problem, the population seems to be
benignly controlling the diversity.

1 T T —100
r — Empirical Correlation b
--- Fitness
0.8 Correlation for random strings -190
c L J
° /
Boe- S / {80
) /
O y =
504 J— {70 ™
>+ J
0.2~ A -160
| \ | |
0 100 120 140 160 180 206o

Mean Number of Ones

Fig. 24. The correlation between members of the population averaged over
1000 independent runs is shown as a function of the number of 1’s. Also
shown is the fitness value, and the expected correlation between random
strings with a fixed number of 1’s.

This final benefit of a population is rather speculative.
It relies on a careful balance between selection, mutation
and crossover which might be difficult to achieve in more
realistic problems. Furthermore, in the argument above we
considered crossover as a macro-mutation whose mutation
rate is coupled with the diversity of the population, however,
crossover is different from a macro-mutation as the focusing
mechanism discussed in section IV makes clear. It might be
hard empirically to differentiate the benefits due to focusing
from those caused by changing the effective step size. Thus,
although a plausible mechanism, there is little evidence, to the
author’s knowledge, showing this mechanism in operation.

VIII. CONCLUSIONS

To clarify the contribution of this paper I make a bold
(and possibly fallacious) hypothesis with a few qualifica-
tion. Namely, that in any real world problem where a
generic population-based algorithm substantially out-performs
all solo-search algorithms, the advantaged enjoyed by the
population-based algorithm is attributable to one of the five
mechanisms outlined above. Clearly this contention can be
refuted by coming up with another natural toy problem, where
a population-based algorithm beats a conventional algorithm,
that does not fit any of the five mechanisms. I accept there
are already toy problems with carefully designed fitness land-
scapes that demonstrably show an advantage for populations
(e.g. [11, [2]), however, I contend these are not natural (e.g.
they have to be carefully tuned and often have unrealistic

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

features such as fitness values that vary in size exponentially
in the size of the system). My belief is that problems with
these features occur so rarely that they can be neglected—
this, of course, is a second conjecture based entirely on
personal prejudice. I would therefore reject these models as
unnatural or not generic, although I must concede that this
is a subjective judgement. I would also accept that there are
likely to be problems with very well defined structure where
a very specific population-based algorithm may be beneficial
and where the benefit comes from a different mechanism to
that described here. However, such cases would only refute
my hypothesis if the population-based algorithm was generic
(i.e. not using very specialised operators). I would argue, in
the toy problems given in this paper, the population-based
algorithms used natural operators and were not highly tuned.
My final proviso is that the problem is a classic combinatorial
optimisation problem and not, for example, a multi-objective
optimisation problem where there may be additional benefits
to populations in describing the Pareto front, etc.

In the majority of cases the benefit comes from the use
of crossover, although that is not the case in hedging. It
is also possible that a population could perform some kind
of low-pass filtering or parameter tuning without crossover,
although the benefits seem to be magnified when crossover
is used. It should also be noted that problems such as the
Iceberg problem, or Hurdle problem are rather artificial in that
crossover tends to have little cost on average. In more realistic
problems, crossover is often so disruptive that it comes at a
considerable cost. To compensate for the cost of crossover it
is often necessary to use a hybrid-GA where the disruption
caused by crossover can be quickly repaired.

These mechanisms provide a somewhat different view of
how population-based algorithms work than is often presented.
For example, strong-focusing produced by averaging is seldom
used. If these mechanisms are important, then it opens two
research directions. The first is to develop algorithms that
better exploit the mechanisms. The second is to investigate
what class of problems benefit from these different mecha-
nisms. In the authors view, both of these research agendas have
significant potential to furthering the success of population-
based algorithms.

Acknowledgements

The author would like to thank his collaborators who have
contributed much to the understanding of these mechanisms.
In particular, Jonathan Shapiro, Alex Rogers, Celia Glass, Will
Benfold, Jonathan Hallam and Mohamed Qasem have all made
direct contributions to studying the models discussed in this

paper.

APPENDIX

A. Optimal Annealing Schedules

Some of the toy models discussed in this paper have a
sufficient degree of symmetry so that, for moderate sized prob-
lems, many of their properties can be studied using Markov

chains. In this appendix, we concentrate on the Concatenated-
V problem, while in appendix B we consider the Iceberg
problem.

In the Concatenated-) problem with m blocks of size k,
it is sufficient for many algorithms to describe a solution in
terms of the number of blocks with [of the variables in the 1’s
state where [€ {0, 1, ..., k}. This can be viewed as an exact
coarse-graining of the model from the initial search space of
size 2™ to a state space of size (" *). Each state (usually)
correspond to many possible configurations all with the same
fitness. It is straightforward to compute the probability of
changing from one state to another.

To set up a Markov chain model describing the dynamics
of a solo-search algorithm such as hill-climbing or simulated
annealing we denote the probability of being in state ¢ at itera-
tion ¢, by p;(t). We can describe the probability of being in all
possible states by a vector p(t) = (p1(t), p2(), - .., ps(t))T
where s = (™). We denote the transition probabilities
between states by a matrix M(¢), with elements M;;(¢) giving
the probability of making a transition from state j to state 7 at
iteration step ¢. The dynamics of the system is described by
the matrix equation

p(t+1) =M(t)p(t)

where p(0) describes the probability distribution for the initial
population. In the following analysis, we assume that the pop-
ulation consists of random strings so that p;(0) is proportional
to the number of configurations in state <.

For simulated annealing (and, for that matter, hill-climbing)
the matrix M(¢) is very sparse. We therefore never explicit
write the matrix M(¢), but rather consider only the neighbours
of each state. This allows the exact computation of the
dynamics for surprisingly large systems (e.g. m = 30 and
k = 7), although as our aim is to find optimal annealing
schedules (which requires a lot of additional computation) we
consider a much smaller problem instance.

In simulated annealing there is flexibility in choosing the
annealing temperature which determines the probability of
making a move which decreases the fitness. The set of
temperatures is known as the annealing schedule. To optimise
the annealing schedule we have to choose some criteria we
wish to optimise. In this appendix we choose the expected
fitness at time 7. If ¢ = (c1, co, ...,cs)" Where ¢; is the
cost of state ¢, then the objective will be to optimise ¢"p(T').
Other optimisation criteria could also been considered such
as optimising the expected best solution found throughout the
entire run—this however, requires even more computation so is
not considered here. If we parametrise the annealing schedule
by a set of parameters @ = (1, 65, ...), then our task is to
find an assignment of @ which maximises ¢"p(T). This is a
standard multi-dimensional continuous optimisation problem
which can be solved by standard methods. To speed up the
search we can compute the gradients

9c’p(T) _ +9p(T)
o0 00

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

where we can use the recursion relation

to compute the gradient of p(7'). More details of this approach
and various extensions are given in reference [35].

In this paper, we considered 3 parametrisations of the
annealing schedule. In the first case, we consider the annealing
temperature at step t to be Tpa® where Ty and a are to
be determined. As a richer parametrisation of the annealing
schedule we chose the probability of making a step from one
state to a neighbouring state with a fitness lower by 1 to be

/B0 1
1 + ez%io c; Cheb,; (2t/T—1)

where Cheb;(z) are the Chebyshev polynomials defined by
Chebi+1(:17) =2z Chebl (I) + Chebi_l(x)

and the ¢;’s are a set of parameters to be tuned. Although this
looks rather complicated, the purpose was to provide a flexible
parametrisation of smooth functions between 0 and T. Details
of Chebyshev polynomials can be found in reference [36].
The logistic function was used to ensure the probability was
constrained between 0 and 1. The final parametrisation was to
choose the annealing temperature independently at each step.
In this last case, it was found that the annealing temperatures
either became zero or infinity, indicating that a better strategy
for this problem than simulated annealing was to perform hill-
climbing with occasional random walks. The strategy found by
gradient descent optimisation was found to be locally optimal
only. To find better strategies we optimised a schedule of
hill-climbs and random walks using a hill-climber. That is,
we defined a schedule for a hill-climber/walk algorithm by a
vector of 1’s an 0’s where 1 signified a hill-climbing step and
0 a random walk step. We then optimised this binary vector
using a hill-climbing algorithm.

Figure 25 shows the performance of simulated annealing
with the best exponential schedule, the best parametrised
Chebyshev schedule and the best found hill-climber/walk
schedule. Although the hill-climber/walk algorithm can be
viewed as a simulated annealing schedule with temperatures
of zero and infinity, it differs considerably from a classical
annealing schedule. Interestingly, the profiles for both the
hill-climbing/walk algorithm and the parametrised-Chebyshev
schedule are extremely close. In figure 26, we show the
annealing schedules used to obtain the result shown in fig-
ure 25. It is hard to show the hill-climbing/walk schedule
as this regularly jumps between O and 1. Instead we have
computed the negative of the reciprocal of the log-probability
of performing a walk averaged over a window of size 10—
for this problem, this quantity plays a similar role as the
temperature in determining the probability of making a random
step. The hill-climber/walk schedule is extremely close to the
optimal Chebyshev schedule, illustrating that the two strategies
explore the search space in a very similar way. In fact, the
difference is that hill-climber/walk strategy is deterministic in
choosing to move in the wrong direction rather than stochastic.

A few comments are in order. Firstly, the difference between
the optimum exponential schedule and the global optimum

Concatenated-V Problem, m=10, k=7

40
351 /,’ _
ﬁ 301 /' _
L
s [i]
"% 25 -
= " -
20~ ¢ .- Exponential Schedule N
L’ -~ Optimal Chebyshev Schedule |
e Hill-Climber/Walk
15 _
3 1
10 | | | |
0 200 400 600 800 1000
Steps, t
Fig. 25. Expected fitness versus iteration number for the Concatenated-

V problem with m = 10 and k = 7. The expected fitness of the hill-
climbing/walk algorithm exhibits high frequency fluctuations as a result of
the rapid switch between hill-climbing and random walks.

2 \ \
L ---- Exponential Schedule |
- - Optimal Chebyshev Schedule
15:-,, Smoothed Hill-Climber/Walk Schedule| |
W | |
5
ﬁ "'\‘
g_ 17: "\. B
5 [0
E N]
' MR,
0.5 | i
f 1]
A '
it b S 4
e
oo T e
0 \ ! IS il
0 200 400 600 800 1000
Step number, t
Fig. 26. Annealing schedules used in obtaining the results shown in

figure 25 is shown for the optimal exponential schedule and the optimal
parametrised-Chebyshev schedule. For the hill-climbing/walk algorithm the
negative reciprocal log-probability of performing a walk averaged over a
window of size 10 is shown.

annealing schedule is small. This provides support for the
assertion made in the main text that we have not unduly
penalised simulated annealing, by choosing a poor annealing
schedule (although, the exponential annealing schedules used
elsewhere this paper were optimised by hand after a small
amount of preliminary tuning rather than through systematic
optimisation as described in the appendix). The second ob-
servation is that there seems to be an annealing temperature
where search spends most of its time (around 0.75 for this
problem). This is commonly observed in many problems. It
says that for a large part of the search time the optimal
exploration-exploitation balance remains approximately fixed.
This can be seen as a consequence of the exponentially large
search space—most of the time the landscape being explored is
statistical similar. Finally, the approach taken here comes with
the caveat that the results are correct only up to numerical
accuracy of the computer. Empirically, the Markov chain
analysis appears to be numerically reliable. The optimisation is

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

carried out to a certain accuracy, so the true optimal annealing
schedule may differ slightly from that shown. Finally, this
approach can only find locally optimal annealing schedules
and provides no guarantees that they are globally optimal.
Nevertheless, we have some confidence that they may well be
global as we found the same solution from different starting
points.

B. Exact First-Passage Times

In this appendix, we consider the problem of computing
the expected number of iterations before reaching a global
optimum. This is often referred to as the first-passage or first-
hitting time. We can compute this exactly for a hill-climber
using a Markov chain approach. We illustrate this procedure
for the Iceberg problem. This problem can again be coarse-
grained. In this case, configurations with the same number of
I’s are lumped together in a state. Thus for a string of size n
there are n + 1 states which we can label by the number of
1’s. The global optimum state is the state n. Assuming single-
bit mutations the probability of a transition between states is
again very easy to compute. The expected first-passage time is
equal to the average time it takes to reach the global optimum

Zt(pn(t) _pn(t - 1))
t=0

A standard result is that the expected first-passage time is given
by

1 (l - M)_lp(O) —1

where 1 is a vector of all 1’s, | is the identity matrix and M is
the transition matrix modified so that the transition probability
from the optimal state to all other states (including itself) is
zero. A derivation of this formula is given in reference [23].

For the Iceberg problem the (modified) transition matrix is
tri-diagonal so that inverting | — M can be computed in order
n operations. Thus it is fast to find the expected first-passage
time. However, as with all matrix inversions, the results can
be numerically unstable as the matrix becomes large. Even
using quadratic precision the program fails for n around 270.
However, for the Iceberg problem the initial probabilities
and the transition probabilities can all be expressed exactly
as rational numbers. Thus to compute the first-passage time
exactly an arbitrary length rational data structure was used.
The result of this are shown in figure 13. (It should be noted
that this Markov Chain analysis is only feasible because of
the simplicity of the problem and the search algorithm.)

REFERENCES

[1]1 T. Jansen and I. Wegener, “Real royal road functions: where crossover
provably is essential,” Discrete Appl. Math., vol. 149, no. 1-3, pp. 111-
125, 2005.

[2] C. Witt, “Population size versus runtime of a simple evolutionary
algorithm,” Theoretical Computer Science, 2008.

[3] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67-82, 1997.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

M. Mitchell, J. Holland, and S. Forrest, “When will a genetic algo-
rithm outperform hill climbing?” in Advances in Neural Information
Processing Systems, J. Cowan, G. Tesauro, and J. Alspector, Eds. San
Francisco, CA.: Morgan Kauffman, 1994, pp. 51-58.

R. A. Watson, “Analysis of recombinative algorithms on a non-separable
building-block problem,” in Foundations of Genetic Algroithms (FOGA-
6), W. N. Martin and W. M. Spears, Eds. San Francisco: Morgan
Kaufmann, 2001, pp. 69-89.

M. Dietzfelbinger, B. Naudts, C. Van Hoyweghen, and 1. Wegener, “The
analysis of a recombinative hill-climber on h-iff,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 5, pp. 417423, 2003.

O. M. Becker and M. Karplus, “The topology of multidimensional
potential energy surfaces: Theory and application to peptide structure
and kinetics,” The Journal of Chemical Physics, vol. 106, 1997.
[Online]. Available: http://link.aip.org/link/?JCP/106/1495/1

J. Hallam and A. Priigel-Bennett, “Large barrier trees for studying
search,” IEEE Transaction on Evolutionary Computation, vol. 9, no. 4,
pp. 385-397, 2005.

A. Priigel-Bennett, “Finite population effects for ranking and tournament
selection,” Complex Systems, vol. 12, no. 2, pp. 183-205, 2000.

J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Proceedings of the Second International Conference on Genetic
Algorithms. Lawrence Erlbaum Associates (Hillsdale), 1987.

A. Priigel-Bennett, “The mixing rate of different crossover operators,” in
Foundations of Genetic Algorithms 6, W. N. Martin and W. M. Spears,
Eds. San Francisco: Morgan Kaufmann, 2001, pp. 261-274.

——, “Modelling crossover induced linkage in genetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 5, no. 4, pp. 376—
387, 2001.

R. A. Watson and T. Jansen, “A building-block royal road where
crossover is provably essential,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2007), 2007, pp. 1452—
1459.

P. Galinier and J. K. Hao, “Hybrid evolutionary algorithms for graph
coloring,” Journal of Combinatorial Optimization, vol. 3, no. 4, pp. 379—
397, 1999.

R. Williams, C. Gomes, and B. Selman, “Backdoors to typical case
complexity,” in Proc. of the 18th 1JCAI, 2003.

P. Kilby, J. Slaney, and T. W. S. Thiebaux, “Backbones and backdoors
in satisfiability,” in Proc. of the 20th National conference on artificial
intelligence and the 17th innovative appllications of artificial intelli-
gence conference, 2005, Ed. Menlo park, CA: AAAI/MIT Press, pp.
1368-1373.

C. A. Glass and A. Priigel-Bennett, “Genetic algorithms for graph
colouring: Exploration of Galinier and Hao’s algorithm,” Journal of
Combinatorial Optimization, vol. 7, pp. 229-236, 2003.

N. J. Radcliffe, “Forma analysis and random respectful recombination,”
in Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann (San Mateo), 1991, pp. 222-229.

J. L. Shapiro and A. Priigel-Bennett, “Genetic algorithms dynamics in
two-well potentials with basins and barriers,” in Foundations of Genetic
Algorithms 4, R. K. Belew and M. D. Vose, Eds. San Francisco: Morgan
Kaufmann, 1997, pp. 101-116.

A. Rogers and A. Priigel-Bennett, “The dynamics of a genetic algorithm
on a model hard optimization problem,” Complex Systems, vol. 11, no. 6,
pp. 437-464, 2000.

——, “A solvable model of a hard optimization problem,” in Theoretical
Aspects of Evolutionary Computing, ser. Natural Computing, L. Kallel,
B. Naudts, and A. Rogers, Eds. Berlin: Springer, 2001, pp. 207-221.
T. Jansen and I. Wegener, “On the analysis of evolutionary algorithms
— a proof that crossover can really help,” in Proceedings of the 7th
Annual European Symposium on Algorithms (ESA’99), J. Nesettil, Ed.
Berlin: Springer, 1999, pp. 184-193.

A. Priigel-Bennett, “When a genetic algorithm outperforms hill-
climbing,” Theoretical Computer Science, vol. 320, no. 1, pp. 135-153,
2004.

M. Qasem and A. Priigel-Bennett, “Learning the large-scale structure
of the max-sat landscape using populations,” IEEE Transactions on
Evolutionary Computation, 2008, submitted.

R. Poli, W. A., M. N,, and L. W., “Emergent behaviour, population-
based search and low-pass filtering,” in IEEE Congress on Evolutionary
Computation, p. 2006.

H. Miihlenbein, M. Gorges-Schleuter, and . Kraemer, “Evolution algo-
rithm in combinatorial optimization,” Parallel Computing, vol. 7, pp.
65-88, 1988.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

D. Costa, A. Hertz, and O. Dubuis, “Embedding a sequential procdure
within an evolutionary algorithm for coloring problems,” Journal of
Heuristics, vol. 1, pp. 105-128, 1995.

E. Falkanauer, “A hybrid grouping genetic algorithm for bin packing,”
Journal of Heuristics, vol. 2, no. 1, pp. 5-30, 1996.

B. Freisleben and P. Merz, “New genetic local search operators for the
travelling salesman problem,” in Lecture Notes in Computer Science
114°. Springer, 1996, pp. 890-899.

P. Merz and B. Freisleben, “A genetic local search approach to the
quadratic assignment problem,” in Proc. of the 7th International Con-
ference on Genetic Algorithms. Morgan Kauffman, 1997, pp. 465-472.
H. Horner, “Dynamics of learning for the binary perceptron problem,”
Zeitschrift fiir Physik: B, vol. 86, pp. 291-308, 1992.

K. Patel, “Computational complexity, learning rules and storage capaci-
ties: Monte Carlo study for the binary perceptron,” Zeitschrift fiir Physik:
B, vol. 91, pp. 257-266, 1993.

N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159-195, 2001.

A. Priigel-Bennett, “Symmetry breaking in population-based optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 1,
pp. 63-79, 2004.

W. Benfold, J. Hallam, and A. Priigel-Bennett, “Optimal parameters
for search using a barrier tree Markov model,” Theoretical Computer
Science, vol. 386, 2007.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computation, 3rd ed.
Cambridge, UK.: Cambridge University Press, 2007.

