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Repeats are a common feature of genomic sequences and much remains
to be understood of their origin and structure. The identification of
repeated strings in genomic sequences is therefore of importance for a
variety of applications in biology.

In this paper a new method for finding all repeats and visualising
them in a two dimensional plot is presented. The method is first ap-
plied to a set of constructed sequences in order to develop a compara-
tive framework. Several complete genomes are then analysed, including
the whole human genome.

The technique reveals the complex repeat structure of genomic se-
quences. In particular, interesting differences in the repeat character
of the coding and non-coding regions of bacterial genomes are noted.

The method allows fast identification of all repeats and easy inter-
genome comparison. In doing this the plot effectively creates a sig-
nature of a sequence which allows some classes of repeat present in a
sequence to be identified by simple visual inspection.

To our knowledge this is the first time all exact repeats have been
visualised in a single plot that highlights the degree to which repeats
occur within a genomic sequence, giving an indication of the important
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role repeats play. From this it is clear that large scale repeat analysis
remains an important and unsolved problem in Bioinformatics.

1. Introduction

The repetition of both large and small sequences is a common feature of
both eukaryotic and prokaryotic genomes [1, 2, 3], with some authors
suggesting that as much as 50% of the human genome is composed
of repetitions [4]. The biological role of repeated sequences has been
investigated by a number of authors, where they have been linked to
evolutionary mechanisms in prokaryotic organisms [5]. In the case of
triplet repeats they have been linked to thermodynamic stability and
the effect of this in genetic expansion diseases [6]. Tsuge et al. also
recently reported on an association between three tandem repeats in
the regulatory region of SMYD3 and human carcinogenesis [7], and
detailed analysis of single sequence repeats in humans has been carried
out by Subramanian et al. [8].

Several methods have been developed for analysing the repeat struc-
ture of genomic sequences [9, 10, 11, 12]. Most methods scan for a
specific type of repeat such as short sequence repeats [1], palindromic
repeats [13], tandem repeats [14, 15, 16, 17], or highly periodic short
repeat elements [18, 19]. Usually, such methods are unable to detect
repeats that do not match a predefined pattern and intra- or inter-
genomic analyses are usually very difficult. Some methods, such as the
use of Fourier transforms for repeat identification [18], do not search
for a specific repeat pattern but rather try to locate occurrences of
highly correlated periodic repeats. However this approach typically
only identifies very strong genome-wide correlations such as those due
to the triplet nature of the genetic code. The problems of identifica-
tion combined with the size of large genomes makes identifying the full
range of repeated sequences in genomes a challenging computational
problem.

Computationally the use of suffix structures for genomic sequence
analysis, which include suffix tree [20, 2, 21] and suffix array meth-
ods [22, 23], has greatly increased the efficiency of searching and storing
strings. The analysis described here makes use of the suffix array [24],
and the associated LCP [25] (Longest Common Prefix) array which
require significantly less memory than suffix trees [26] but which can
still be constructed in linear time [27, 28, 29].

One of the major difficulties in comprehensive repeat analysis lies
in the visualisation of repeated structures. Additionally, repeat visu-
alisation, as it relates to word frequency, may also be of interest in the
linguistic analysis of genomic sequences [30] and, as shall be seen, par-
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allels between human language and genomic repeat visualisation can
be drawn.

Genomes are typically too large to be efficiently visualised as a string
of symbols or to be represented as a line. When the additional problem
of identifying and categorising repeats that differ widely in length, posi-
tion and spatial relationship is added the problem becomes increasingly
challenging.

Some attempts at sequence visualisation have been made such as the
visualisation of tandem repeats using colour-coding [14], the side-by-
side comparison of simple repeats [20] and visual linking of maximal
repeats between two strands [2]. Of these, GenAlyzer [31] and its
predecessor Reputer [2] are the only tools that visualise all maximal
repeats within a sequence. The GenAlyzer visualisation consists of
two horizontal lines, both of which may represent the same sequence,
repeats are shown as lines connecting the positions of repeat on the two
sequences. This provides a natural way of viewing all maximal repeats
and their distribution. However the visualisation has the potential
to become saturated for long, or highly repetitive sequences. (see [2]
figure 7).

This paper presents an efficient algorithm for collecting all exact
repeats within a genome. This data is presented as a colour plot which,
through visual inspection, exposes some of the many complex repeat
types in these sequences. This is the first time all repeats have been
visualised in a single plot. The work highlights the extent to which
repeats occur within genomic sequences and gives some indication of
the important role repeats play. From this it is clear that large scale
repeat analysis remains an important, and largely open, problem.

2. Results

In order to create the visualisation we consider all possible substrings of
length k in a sequence. The number of repetitions r of each substring
is counted (i.e. for substrings that occur once r = 0, for substrings
that occur twice r = 1, etc.). The repeat score function C(k, r) is the
number of substrings that repeat r-times, for a given substring length k.
For example if there are 30 different sequences of 20 nucleotides that
each occur 15 times in a specific genome then C(20, 15)=30.

Figure 1a shows an example of the repeat score function C(k, r)
for several values of r calculated for the whole human genome (build
35.1 [4]). The repeat score function for r = 0, i.e. no repeats, shows
the amount of unique sequences within the genome as a function of
substring length k and was previously used in the analysis of sequence
reassembly [32].

For r > 0 the repeat score falls by several orders of magnitude as
shown in figure 1a and is the main reason for employing a log scale.
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Figure 1. Repeat score function C(k, r) for the whole human genome (build

35.1 [4]) (a) as a function of substring length k and selected values of r

and (b) a logarithmic colour plot of the repeat score function C(k, r), where

the x and y axis indicate the substring length k and number of repeats r

respectively, the colour of the point at position (k, r) indicates the number

of differently composed substrings that repeat r times. The inset highlights

an example of the complex structure present in this plot.

Similarities in repeat score function C(k, r) can be seen for specific
repeat values r: For instance for values of k between 250 and 400 the
repeat score function of the human genome produces similar values for
C(k, r) where r is equal to 50 or 100. However outside this range there
are strong differences. It is therefore interesting to plot the repeat
score continuously as a function of r. Such a repeat score plot is shown
in figure 1b. The plot shows the repeat score function C(k, r) as a
function of both the substring length k and the number of repeats, r,
for the whole human genome, where colour represents log10 C(k, r).

It is clear from figure 1b that representing the repeat score func-
tion C(k, r) in this way allows the rapid visualisation of the complex
repeat structure of a sequence. This can be seen more clearly for the hu-
man genome when specific features of the plot are expanded, figure 1b.
Figure 1 also illustrates the capability of the underlying algorithm to
analyse large genomes. Since we consider both strands of DNA this
analysis was performed on a string of 6.2 billion bases. Clearly, algo-
rithms with (close to) linear time complexity are necessary for studying
such genomes.

To further understand and identify the structure present in this visu-
alisation a series of artifical sequences were constructed which provide
some basis for the interpretation of the repeat score plots. Figure 2a
shows the repeat score plot for an artifically generated sequence con-
taining three types of very simple periodic repeat: a sequence composed
only of a mononucleotide A; a triplet repeat ATG; and a quadruplet
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repeat ATGC each repeated 20 times. Such simple repeats always ap-
pear as straight lines in the repeat score plot. However, the slope of
this line depends both on the size of the repeated section, and on how
many times they are continuously repeated. Therefore its interpreta-
tion from the visualisation alone is not trivial. However the sequence
data from which a feature is composed may be extracted for further
investigation.
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Figure 2. Logarithmic colour plot of the repeat score function C(k, r) for (a)

A constructed sequence composed of (i) A repeated 20 times, (ii) the triple

ATG repeated 20 times and (iii) the quadruple ATGC repeated 20 times. (b)

Bacillus anthracis, size 95 kb [GenBank:NC 007323], (c) Bdellovibrio bacte-

riovorus HD100, size 3.8 Mb [GenBank:NC 005363], and (d) Sinorhizobium

meliloti 1021 plasmid pSymB, size 1.7 Mb [GenBank:NC 003037]. Parts (b),

(c) and (d) contain identified simple repeat structures marked as (i), (ii) and

(iii) as in part (a).

Randomly generated sequences contain few repeats, and the repeat
score plot of such sequences, as shown in figure 3a, typically presents
strong clustering around small substring lengths k and repetitions r.
The repeat score decreases rapidly for moderately long substrings. For
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Figure 3. Logarithmic colour plot of the repeat score function C(k, r) for (a)

a random genomic sequence of size 4.7 Mb and (b) a Fibonacci sequence a15,

with a1 = AT and b1 = GC, generated from Eq. 1.

the sequence shown in figure 3a (length 4.7 Mb) the base composition
was biased as in [33]. When random sequences of increasing length
are analysed the plot retains the same general shape, while the ridges
shift to larger lengths and greater numbers of repetitions. The random
sequence therefore provides an important baseline for comparison with
other sequences and represents an absence of repeat structure. How-
ever, absence of repeat structure should not be confused with absence
of functional structures containing information such as those that code
for proteins. While the prokaryotic and eukaryotic genomes analysed
showed strong deviation from the randomly generated sequences (see
below), the analysis of small viral genomes yields a repeat score plot
similar to that of a random sequence of the same size (data available
from our website: http://4g.soton.ac.uk). This is consistent with a
lack of redundancy in the genomes of these highly efficient organisms.

Another interesting example, which highlights the potential of the
repeat score plot, are quasi-periodic structures, i.e., sequences with a
high degree of structure and periodicity but yet not completely peri-
odic [34]. A well known example is the Fibonacci sequence, created by
taking two seed sequences, in this case: a1 = AT and b1 = GC, and
applying the inflation rule

ai+1 = ai + bi, bi+1 = ai. (1)

For instance a sequence a5 would be

a5 = ATGCATATGCATGCAT

In figure 3b the repeat score for a Fibonacci sequence a15 (3195 nt) is
shown. Although the Fibonacci sequence has a high degree of repetition
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its repeat score function shows a distinctive difference from the sloped
lines of simple repeats, figure 2a. Instead horizontal lines are observed
which become broader and more closely spaced for lower repetitions r.
These features are characteristic of all the Fibonacci sequences we have
analysed, regardless of size or seed sequences used (data not shown).
This indicates that the repeat score plot allows the visualisation of re-
peats based upon the repeat structure, not the size or base composition
of this particular sequence. Such structures might be expected to be
generated by serial duplication of a specific region. In a visual inspec-
tion of over 900 real sequences we were unable to find any displaying
this characteristic pattern. To date, no Fibonacci sequences have been
found. Our study suggests that if they do occur they are quite rare.

As a general rule, highly repetitive structures appear in the repeat
score plot at large substring lengths k and many repetitions r, while
non-repeated structures show as intense clusters for small values of k
and r. The logarithmic plot employed in our analysis ensures that only
significant repeats are highlighted, although there is no restriction in
using a linear scale when less frequent repeats are to be detected.

2.1 Visualisation of genomic sequences

From our analysis of artifical sequences it becomes clear that the repeat
score function visualised as a function of substring length and number
of repetitions provides a visual “signature” which is helpful in iden-
tifying repeated elements in genomic sequences. Figure 2b,c,d shows
examples of simple repeat structures found in real genome sequences.
These were identified by visual comparison with artifically generated
repeat score plots, such as those shown in figure 2a. Subsequently,
the sequence data related to these repeat elements were extracted and
confirmed to be of a similar type to the synthetic repeats. That is
to say, the structure labelled i, in figures 2a and 2b was a mononu-
cleotide repeat composed of the nucleotide A. The structure labelled
ii was in both cases a triplet repeat (ATG in the artificial sequence
and GAA in figure 2b), and structure iii was composed of a quadru-
plet repeat (ATGC in the artificial sequence and AGAG, in figure 2d,
showing that two and four nucleotide repeat elements will exhibit a
similar structure). Note that the repeats were identified independently
of the size of the genome, which in our examples ranged from 95 kb
(figure 2a) to 3.8 Mb (figure 2b).

Apart from detecting specific repeat patterns, the repeat score can
also be used for comparative analysis between different regions of a
genome. For instance, the coding and non-coding sections of a genome
can be visualised separately and then compared, even if the two sections
are very different in size.

In figure 4a the repeat score plot of the coding section of the well
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Figure 4. Logarithmic colour plot of the repeat score function C(k, r) for

(a) the coding and (b) non-coding portion of non-pathogenic E. coli K12, size

4.6 Mb [GenBank:NC 000913], and (c) the coding and (d) non-coding portion

of the pathogenic E. coli O157:H7, size 5.5 Mb [GenBank:NC 002695].

annotated E. coli K12 genome [GenBank:NC 000913] is shown. First
a strong clustering around substring length k = 10 nt and repeti-
tions r = 10 is noted, similar to the random sequence (see figure 3a),
and then the broad horizontal lines, at low values of r, which indi-
cate large exact repeats. These are sequences that occur up to four
times and are largely made up of ancient proteins involved in pro-
tein translation, tRNA metabolism and proteins involved in transpo-
sition or related to prophages. Another identified feature is the peak
at r = 6 repetitions which arises from the seven copies of genes coding
for components of the ribosome [35]. The repeat score plot of the non-
coding part is very different, with a highly repetitive cloud-like pattern
clearly visible in figure 4b. The fact that the non-coding sequence
accounts for only 15% of the genome was of no importance for the
detection of these patterns, which are also clearly visible in the anal-
ysis of the complete genome (data not shown). Many of these repeats
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are intergenic repetitive sequences such as Intergenic Repeat Elements
(IRUs) and Enterobacterial Repetitive Intergenic Consensus sequences
(ERICs) [13]. ERICs are related to the REP family of repeats for
which multiple functions have been proposed including transcription
termination, mRNA stability and chromosomal domain organisation
in vivo [36]. The exclusive presence of highly repeated short sequences
within non-coding DNA appears to be a characteristic of a large num-
ber of the sequences we have analysed (data available from our website:
http://4g.soton.ac.uk).

Since size poses no significant constraint for the repeat score plot
the comparison of different genomes can easily be performed. Fig-
ures 4c and 4d show the coding and non-coding regions, respectively, of
a pathogenic strain of E. coli [GenBank:NC 002695]. Comparing this
to the non-pathogenic E. coli of figures 4a,b is straightforward, despite
a difference in size of almost 1 Mb. While the coding and non-coding
regions of these two genomes are largely similar, the striking diagonal
feature in figure 4c exists only in the coding region of the pathogenic
strain. The sequences composing this feature were identified as part
of a pathogenicity island [37], structures found within the genomes of
microbes and pathogens that are associated with pathogenicity. These
regions are often flanked by direct repeats, generated by the integra-
tion of the pathogenicity island into the host genome via recombina-
tion [38]. Similar features in the genomes of many pathogenic organ-
isms such as Mycoplasma pneumoniae M129 [Genbank:NC 000912.1]
and Haemophilus influenzae Rd KW20 [Genbank:NC 000907.1] were
observed. Repeat score plots for these and more than 500 other se-
quences can be accessed from our website (http://4g.soton.ac.uk).

3. Discussion

A visualisation technique that can rapidly identify all repeated se-
quences of any length in genomes up to and including the 6.1 billion
bases (including the forward and reverse strand) of the full human
genome has been developed. The plots expose the complex repeat
structure that exists in genomic sequences. They provide a visualisa-
tion that is largely independent of genome size and can identify re-
peated sequences independently of their position and spatial relation-
ship. Unlike many techniques for locating repeats, the repeat score plot
can be used to locate repeats of all sizes, and those of unknown type
and structure. The plots provide a signature of the repeat structure of
a sequence as well as providing a straightforward means for compari-
son within and between sequences. While the visualisation is largely
independent of genome size, normalising the visualisation with respect
to genome size would be a useful extension of this work. One possible
solution to this problem would be to plot the degree to which repeats
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0 10 20 30 40
Substring length k (nt)

0

10

20

30

40

50

R
ep

et
iti

on
s 

r
a) Dialogue

0 10 20 30 40
Substring length k (nt)

b) Stage Directions

0

1

2

3

4

5

6

7

lo
g 1

0 
C

(k
,r

)

Figure 5. Logarithmic contour plot of the repeat score function C(k, r) for

the a) dialogue and b) stage directions of the plays of Shakespeare [39]. The

dialogue not only constitutes the largest part of the text; it is also the most

creative part, for which a relatively low level of repetition would be expected.

On the other hand, stage directions are highly repetitive. ‘Act 1 Scene 1’

appears in every one of the 37 plays. The figure illustrates this distinction.

An analogy can be drawn between the dialogue and the coding information in

the genome sequences and the stage directions and non-coding DNA. Indeed

if there were many more plays by Shakespeare (i.e. ‘Act 1 Scene 1’ occurred

100 or 200 times rather than 37) then the similarity between repeat frequency

in the non-coding DNA and the stage directions would be even stronger.

deviate from a random distribution. Constructing an effective random
model, however, is a non-trivial problem which we hope to investigate
in the future.

Using this technique significant differences between the repeat struc-
ture of the coding and non-coding regions of prokaryotic and eukaryotic
genomes have been identified. As have striking features associated with
pathogenicity in bacterial genomes.

The most important contribution of this work is to describe the
extent to which repetitions of functional importance occur in genomic
sequences. We have shown that these are not merely simple repeats
but in many cases have a complex structure which warrants further
investigation.

The technique may also prove useful as an analysis in its own right.
It may, for example, be useful in annotation problems, such as the
analysis of newly sequenced genomes. Where structure is unknown,
repeated elements can be quickly and easily identified using this tech-
nique.

The use of these visualisations is obviously not limited to genetic
sequences but can be applied to any string. Therefore it will have
application to the analysis of language like features within genomic
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sequences [30] as well as potential applications in the analysis of lan-
guage and data compression. An example of its application to written
language which shows parallels with genomic analysis, is shown in fig-
ure 5.

The plot has potential as an analytical tool and the development of
normalised plots and objective comparison is clearly the most impor-
tant next step. However a particular strength is its ability to rapidly
present a visual representation of the repeat structure of a very large
string. The importance of fully utilising the power of the human visual
system to recognise patterns has been discussed [40] and this represen-
tation approach provides a novel method of exploiting this.

Appendix

A. Algorithm

An all against all comparison approach to constructing the repeat score
plot would require O(kn2) comparisons. Here an optimal algorithm is
described.

Consider a string S[0 : n] with elements indexed from 0 to n where
the last element is marked with a special end marker S[n] = $ which
does not occur at any other position. The suffix array [24] sa[0 : n]
of all suffixes and the array lcp[1 : n] giving the length of the longest
common prefix between sa[k] and sa[k−1] can efficiently be computed
in linear time [29, 27, 28].

An example string, ‘banana$’, shall be used to illustrate the oper-
ation of the algorithm. This has suffixes banana$, anana$, . . . , a$, $.
The suffix array and lcp array for this example are given in table 1.

A relation between suffixes Rk(s1, s2) is defined which is true if s1
and s2 share the same prefix of length k. The equivalence relation
Rk(s1, s2) defines a partitioning of the suffixes into equivalence classes.
Equivalence classes can be labelled by [prefix] where prefix is the

Index Position Suffix lcp
0 1 anana$

1 3 ana$ 3
2 5 a$ 1
3 0 banana$ 0
4 2 nana$ 0
5 4 na$ 2
6 6 $ 0

Table 1. Suffix and LCP array of the string banana$

Complex Systems, volume (year) 1–1+
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Index Suffix lcp k = 1 k = 2 k = 3 k = 4
0 anana$ [a] [an] [ana] [anan]
1 ana$ 3 [a] [an] [ana] [ana$]
2 a$ 1 [a] [a$] [a$.] [a$..]
3 banana$ 0 [b] [ba] [ban] [bana]
4 nana$ 0 [n] [na] [nan] [nana]
5 na$ 2 [n] [na] [na$] [na$.]
6 $ 0 [$] [$.] [$..] [$...]

Table 2. Equivalences classes for substrings of banana$

prefix which all strings share. For our example the equivalence classes
are shown in table 2.

When the suffix is shorter than k an arbitrary symbol ‘.’ is added.
The equivalence classes are denoted by

{0, 1, . . . , n − 1}/Rk = {P i
k|i = 1, nk} (A.1)

where nk is the number of equivalent classes for substrings of size k
and in our example

P1
1 = [a] = {anana$, ana$, a$}

P2
1 = [b] = {banana$}

P3
1 = [n] = {nana$, na$}

P4
1 = [$] = {$}

P1
2 = [an] = {anana$, ana$, a$}

P2
2 = [a$] = {a$}

P3
2 = [ba] = {banana$}

P4
2 = [na] = {nana$, na$}

P5
2 = [$.] = {$}

etc. The number of substrings of length k that repeats r times is equal
to

C(k, r) =

nk∑

i=1

q
|P i

k| = r
y

(A.2)

where JpredicateK is equal to one if predicate is true and equal to zero
otherwise.

Let vmax be the largest value in the lcp array. It is noticed that for
k > vmax all members suffixes are unique (by the definition of vmax).
Therefore for k > vmax, C(k, 0) = n + 1 − k and C(k, r) = 0 for
r > 0. The equivalence classes P1

k can now be computed iteratively
starting from k = vmax and decrementing until k = 1 is reached. This is
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performed efficiently by sorting the lcp array into a list of sets indexed
by the value of the lcp array, where the elements in the set are the
indexes of the lcp array. That is, i ∈ H[v] if lcp[i] = v. In our example,

H[0] = {3, 4, 6, 7}

H[1] = {2}

H[2] = {5}

H[3] = {1}.

The algorithm uses a disjoint set data structure [41] to efficiently
compute union operations. The disjoint set data structure is aug-
mented with an auxiliary array which maintains the sizes of sets. C[vmax + 1, 0]
is first initialised to be |lcp|, this can be seen to be so because for sub-
strings greater than vmax all substrings are unique (by definition of
vmax).

H is iterated over from v = vmax to v = 1. For each value of v, the
sizes of all sets in H[w] where w ≥ v are obtained, and stored in C
such that C[v][x] contains the number of sets of size x + 1 (1 is added
to maintain our original definition of C(k, 0)).

To do this C[v] is initialised with C[v + 1]. Union operations are
then performed on H, first subtracting sizes of the sets to be unioned,
then adding the size of the final unioned set. The algorithm can be
summarised in the following pseudo code:

Input: Array of sets H[1 : vmax]
Extended lcp array lcp[0 : n]

Output: Count of repeats C[1 : n, 0 : n]

Initialise DisjSets;

C[vmax + 1, 0] ←|lcp|

for v ← vmax to 1

C[v, 0..n] ←C[v + 1, 0..n]
forall i ∈ H[v]

j ← DisjSets.find(i)
k ← DisjSets.find(i− 1)

C[v, |j| − 1] ←C[v, |j| − 1]− 1
C[v, |k| − 1] ←C[v, |k| − 1]− 1

l ← DisjSets.union(j,k)

C[v, |l| − 1] ←C[v, |l| − 1] + 1
endfor

endfor

The algorithm can be modified to compensate for the unique end
marker and substrings overlapping the end of the sequence, simply

Complex Systems, volume (year) 1–1+



14N. Whiteford, N. Haslam, G. Weber, A. Prügel-Bennett, J. Essex, and C. Neylon

by subtracting k, C ′(k, 0) = C(k, 0) − k. Sequence breaks may be
compensated for similarly.

It is clear that the algorithm operates in linear time, a single op-
eration for every entry in the array H. The complexity of a given
implementation will therefore depend on the information you wish to
extract, which in the case of the repeat score plot, will be its area.

B. Example Implementation

In this section an example C++ implementation of the algorithm pre-
viously described in provided. When combined with a suffix and LCP
construction algorithm, this forms a complete implementation of the
algorithm described. The function repeatscore takes the lcp array of
a string as its input and returns a newly constructed 2 dimensional vec-
tor containing the repeatscore matrix of the input sequence indexed by
substring length and number of repeats. A complete implementation
is available on request from the corresponding author.

#include <vector >

#include <iostream >

using namespace std;

typedef vector <vector <int > > vec2d;

class DisjSets {

public:

vector <int > s, s_sizes;

DisjSets(int l) : s(l,-1) , s_sizes(l,1) {}

int find(int x) {

if(s[x] < 0) return x;

return s[x] = find(s[x]);

}

int unionsets(int r1 ,int r2) {

if(s[r2] < s[r1]) {int sw=r1; r1=r2; r2=sw;}

if(s[r1]==s[r2]) s[r2]--;

s_sizes[r1]= s_sizes[r1]+ s_sizes[r2];

return s[r2]=r1;

}

int set_size(int x) { return s_sizes[x]; }

};

int repeatscore(vector <int > &lcp ,vec2d **C_ptr) {

int n=lcp.size ();

DisjSets p(n);

int v_max =0;

for(int i=0;i<n;i++) // find v_max

if(lcp[i] > v_max) v_max=lcp[i];
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vec2d height(v_max+1,vector <int >(0));

for(int i=1;i<n;i++) // create height

height[lcp[i]]. push_back(i);

*C_ptr = new vec2d(v_max+2,vector <int >(n ,0));

vec2d &C = ** C_ptr;

C[v_max +1][0]=n;

for(int k=v_max;k>0;k--) {

for(int cp=0;cp <n;cp++) C[k][cp]=C[k+1][cp];

vector <int >:: iterator i = height[k]. begin ();

for(;i != height[k].end ();i++) {

int s = p.find ((*i));

int t = p.find ((*i)-1);

C[k][p.set_size(s)-1]--; // remove old

C[k][p.set_size(t)-1]--;

int l = p.unionsets(s,t);

C[k][p.set_size(l) -1]++; // add new set

}

}

}
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